CN116655370A - 适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法 - Google Patents

适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法 Download PDF

Info

Publication number
CN116655370A
CN116655370A CN202310622111.5A CN202310622111A CN116655370A CN 116655370 A CN116655370 A CN 116655370A CN 202310622111 A CN202310622111 A CN 202310622111A CN 116655370 A CN116655370 A CN 116655370A
Authority
CN
China
Prior art keywords
basno
hours
ntc
ceo
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310622111.5A
Other languages
English (en)
Inventor
付志龙
鲁明泽
张博
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN202310622111.5A priority Critical patent/CN116655370A/zh
Publication of CN116655370A publication Critical patent/CN116655370A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明涉及一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及制备方法,该方法以分析纯碳酸钡、二氧化锡和二氧化铈为原料,经混合研磨、煅烧、润湿、冷等静压、高温烧结、被电极,即获得BaSnO3+xCeO2(x=2%、4%、7%)线性输出NTC热敏陶瓷材料,在温度375‑450℃范围内阻温特性(ρT)呈现线性NTC输出,材料常数B 375℃/450℃为5678‑7670 K,温度375℃时电阻率为1.88×105‑3.14×105Ω·cm,非线性误差为7.13‑10.64%。本发明所述制作方法工艺简单、制备效率高,获得的线性输出NTC热敏电阻器耐高温性好、性能稳定、精确度高、灵敏度高、一致性好,在375‑450℃的温度范围内阻温特性(ρT)呈现线性NTC输出,适合制造小型燃气轮机排气测温的线性输出NTC热敏电阻器。

Description

适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及 制备方法
技术领域
本发明涉及一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及制备方法,属于高温热敏电阻器技术领域。
技术背景
负温度系数(NTC)热敏电阻器以其响应速度快、生产成本低、尺寸小、电阻随温度变化速率快等优点,在温度传感器领域获得快速发展。在汽车、燃气轮机、深海探测、航空航天的实际应用中,通常需要通过电路设计线性输出,来克服其阻温曲线以指数形式存在带来的测温误差,以使特定温度下的阻温曲线呈线性变化成为研究趋势。该设计使应用电路更为复杂,同时也降低传感器的精度。这对温度传感器的集成化制造与精确性提出了更高的要求,使得发展具有线性输出的NTC热敏陶瓷材料及其电阻器成为该领域发展的迫切需求。
线性输出NTC热敏陶瓷材料的阻温曲线呈现出线性变化,其具有测量精度高、互换精度好等优势,它能够有效简化应用电路并满足一定温区范围内的测温或线性补偿需求。但存在的关键问题是绝大多数NTC热敏材料均属于非线性的阻温关系,且在较宽温区内的阻温特性线性化难以实现,此外普遍处于常温段的线性温区难以向低温段和高温段拓展也是另一个关键问题。采用传统方法对材料进行改性处理很难解决线性化面临的实际问题,因此为了获得适用于高温段的线性输出NTC热敏陶瓷材料,本发明利用复合材料组成相性能上的乘积效应,通过复合手段,旨在实现一种NTC热敏陶瓷材料的阻温特性线性化,且将线性区间向高温段拓展。
BaSnO3陶瓷材料具有较理想的立方钙钛矿结构,其具有优异的光学和电学性质,以及良好的NTC特性。借此可以调节该热敏陶瓷材料的线性温区与线性度。单相BaSnO3陶瓷材料虽展现出非线性NTC特性,但具备向线性NTC特性输出改性的潜力。
发明内容
本发明的目的在于,提供一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及制备方法,该电阻器以碳酸钡、二氧化锡和二氧化铈为原料,经混合研磨、煅烧、润湿、冷等静压、高温烧结、被电极,即得到高灵敏度BaSnO3+xCeO2线性输出NTC热敏电阻器,其中x=2%、4%、7%,材料常数B375℃/450℃为5678-7670K,温度375℃时电阻率为1.88×105-3.14×105Ω·cm,ρ和T的非线性误差为7.13-10.64%。该线性输出NTC热敏电阻器耐高温性好、性能稳定、精确度高、灵敏度高、一致性好,在375-450℃的温度范围内阻温特性(ρ-T)呈现出线性NTC输出,适用于小型燃气轮机的排气测温领域。
本发明所述的一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器,该电阻器以碳酸钡、二氧化锡和二氧化铈为原料,其化学组成为BaSnO3+xCeO2,其中x=2%、4%或7%,该材料由具有立方相钙钛矿结构BaSnO3和具有立方相萤石结构CeO2制成,具体操作按下列步骤进行:
a、按摩尔比1:1称取碳酸钡和二氧化锡,置于玛瑙研钵中混合研磨6-10小时,然后于温度1000-1200℃下煅烧3-5小时,得到单相BaSnO3粉体;
b、按BaSnO3+xCeO2组成,其中x=2%、4%或7%将步骤a得到的粉体材料与已干燥的二氧化铈置于玛瑙研钵中混合研磨4-8小时,得到x=2%、4%或7%比例的复合粉体材料;
c、将步骤b得到的x=2%、4%或7%比例的粉体材料,置入湿度为75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以10-20Kg/cm2的单轴压力进行成型,将已成型的坯体进行于200-300MPa下冷等静压3-5分钟,接着在1300-1400℃温度下烧结3-5小时,得到BaSnO3+xCeO2的片状陶瓷材料;
d、将步骤c所得片状陶瓷材料,在正反两面涂覆高温铂浆,然后于900℃温度下金属化30分钟,最后将其烧制铂金引线,即得到线性输出NTC热敏电阻器。
一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器的制备方法,以碳酸钡、二氧化锡和二氧化铈为原料,其化学组成为BaSnO3+xCeO2,其中x=2%、4%或7%,具体操作按下列步骤进行:
a、按摩尔比1:1称取碳酸钡和二氧化锡,置于玛瑙研钵中混合研磨6-10小时,然后于温度1000-1200℃下煅烧3-5小时,得到单相BaSnO3粉体;
b、按BaSnO3+xCeO2组成,其中x=2%、4%、7%,将步骤a得到的粉体材料与已干燥的二氧化铈置于玛瑙研钵中混合研磨4-8小时,得到x=2%、4%或7%比例的复合粉体材料;
c、将步骤b得到的x=2%、4%或7%比例的复合粉体材料,置入湿度为75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以10-20Kg/cm2的单轴压力进行成型,将已成型的坯体进行于200-300MPa下冷等静压3-5分钟,接着在温度1300-1400℃下烧结3-5小时,得到BaSnO3+xCeO2的片状陶瓷材料;
d、将步骤c所得片状陶瓷材料,在正反两面涂覆高温铂浆,然后于900℃温度下金属化30分钟,最后将其烧制铂金引线,即得到线性输出NTC热敏电阻器。
步骤c中的润湿后粉体致密化坯体进行300MPa下冷等静压3分钟,并于1350℃温度下烧结4小时。
本发明所述的适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及制备方法,该材料可用以制造线性输出NTC热敏电阻器。
本发明提出一适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及制备方法,该热敏电阻器以碳酸钡、二氧化锡和二氧化铈为原料,经混合研磨、煅烧、润湿、冷等静压、高温烧结、被电极,即可得到;所述热敏陶瓷材料其化学组成体系为BaSnO3+xCeO2,其中x=2%、4%、7%;考虑到复合改性在组成相性能上的乘积效应,以及CeO2中可变价的Ce4+离子对BaSnO3陶瓷电性能的调节作用和晶界处偏析,为BaSnO3+xCeO2线性输出NTC热敏陶瓷材料的制备提供了条件,为线性输出NTC热敏电阻器的制造提供了可能。
本发明从BaSnO3热敏陶瓷材料的半导体特性出发,通过与晶间相CeO2复合设计,合成出可在375-450℃的温度范围内实现阻温特性(ρ-T)关系呈线性NTC输出的热敏陶瓷材料。
有益效果:与现有技术相比,本发明具有如下优点:
1、BaSnO3+xCeO2(x=2%、4%、7%)热敏电阻器在温度375-450℃范围内的阻温特性(ρ-T)呈现线性NTC输出,在应用过程中简化电路和提高测量温度、超高温报警的精确度。
2、该NTC热敏陶瓷材料的阻温特性关系线性化的实现设计思路新颖,主要通过与晶间相CeO2复合设计调节晶粒和晶界性质控制温度相关电阻率变化规律,后续可将其设计思路尝试在其它材料体系进行推广。
3、该NTC热敏陶瓷材料具有高灵敏度,其材料常数B375℃/450℃为5678-7670K,通常该领域用NTC热敏电阻器材料常数在2000K-6000K范围内,该NTC热敏陶瓷材料可成为制造小型燃气轮机排气测温用线性输出NTC热敏电阻器的候选材料。
4、本发明从BaSnO3热敏陶瓷材料的半导体特性出发,通过与晶间相CeO2复合设计,合成可在375-450℃的温度范围内呈现出阻温特性(ρ-T)线性输出的NTC热敏陶瓷材料,BaSnO3+xCeO2线性输出NTC热敏陶瓷材料的具体化学式及摩尔组成比见表1;
表1
本发明所述的适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器及制备方法,所得到的BaSnO3+xCeO2,其中x=2%、4%、7%的线性输出NTC热敏电阻器,采用固相法将钡的碳酸盐与锡、铈的氧化物进行混和研磨、煅烧、混合,再研磨即得NTC热敏陶瓷粉体材料,再将该粉体材料润湿、压块、冷等静压成型、高温烧结、被电极,即获得线性输出NTC热敏电阻器,该热敏电阻器常数B375℃/450℃为5678-7670K,温度375℃时电阻率为1.88×105-3.14×105Ω·cm,非线性误差为7.13-10.64%,具有耐高温性好、性能稳定、精确度高、灵敏度高、一致性好等优点。在375-450℃的温度范围内阻温特性(ρ-T)呈现线性NTC输出,适用于小型燃气轮机的排气测温领域,具体性能参数见表2;
表2
附图说明
图1为本发明高温NTC热敏陶瓷材料的X射线衍射图谱。
图2为本发明线性高温NTC热敏电阻器的阻温特性曲线。
具体实施方式
实施例1
a、以10g为基数,按化学式BaSnO3+2%CeO2称取碳酸钡5.6822g和二氧化锡4.3178g,置于玛瑙研钵中混合研磨9小时,然后于温度1100℃下煅烧3.5小时,得到单相BaSnO3粉体;
b、按BaSnO3+2%CeO2组成将步骤a得到的10g BaSnO3粉体材料与已干燥的0.1132g二氧化铈置于玛瑙研钵中混合研磨5小时,得到x=2%比例的复合粉体材料;
c、将步骤b得到的粉体材料,置入75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以15Kg/cm2的单轴压力进行成型,将已成型的坯体进行于250MPa下冷等静压4分钟,接着在温度1400℃下烧结3.5小时,得到BaSnO3+2%CeO2的片状陶瓷材料;
d、将步骤c所得陶瓷材料,在正反两面涂覆高温铂浆,然后于温度900℃下金属化30分钟,最后将其烧制铂金引线,即得到线性温度范围为375-450℃,材料常数为B375℃/450℃=5678K,温度375℃下的电阻率为3.14×105Ω·cm,ρ和T的非线性误差不超过7.13%的高灵敏度线性NTC热敏电阻器。
实施例2
a、以10g为基数,按化学式BaSnO3+2%CeO2称取碳酸钡5.6822g和二氧化锡4.3178g,置于玛瑙研钵中混合研磨10小时,然后于温度1000℃下煅烧3小时,得到单相BaSnO3粉体;
b、按BaSnO3+2%CeO2组成将步骤a得到的10g BaSnO3粉体材料与已干燥的0.1132g二氧化铈置于玛瑙研钵中混合研磨4小时,得到x=2%比例的复合粉体材料;
c、将步骤b得到的粉体材料,置入75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以20Kg/cm2的单轴压力进行成型,将已成型的坯体进行于200MPa下冷等静压5分钟,接着在温度1400℃下烧结3小时,得到BaSnO3+2%CeO2的片状陶瓷材料;
d、将步骤c所得陶瓷材料,在正反两面涂覆高温铂浆,然后于温度900℃下金属化30分钟,最后将其烧制铂金引线,即得到线性温度范围为375-450℃,材料常数为B375℃/450℃=5729K,温度375℃下的电阻率为3.13×105Ω·cm,ρ和T的非线性误差不超过7.28%的高灵敏度线性输出NTC热敏电阻器。
实施例3
a、以10g为基数,按化学式BaSnO3+4%CeO2称取碳酸钡5.6822g和二氧化锡4.3178g,置于玛瑙研钵中混合研磨9小时,然后于1150℃温度下煅烧4小时,得到单相BaSnO3粉体;
b、按BaSnO3+4%CeO2组成将步骤a得到的10g BaSnO3粉体材料与已干燥的0.2265g二氧化铈置于玛瑙研钵中混合研磨5小时,得到x=4%比例的复合粉体材料;
c、将步骤b得到的粉体材料,置入75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以10Kg/cm2的单轴压力进行成型,将已成型的坯体进行于300MPa下冷等静压3分钟,接着在1350℃温度下烧结4小时,得到BaSnO3+4%CeO2的片状陶瓷材料;
d、将步骤c所得陶瓷材料,在正反两面涂覆高温铂浆,然后于温度900℃下金属化30分钟,最后将其烧制铂金引线,即得到线性温度范围为375-450℃,材料常数为B375℃/450℃=7548K,温度375℃下的电阻率为3.11×105Ω·cm,ρ和T的非线性误差不超过8.71%的高灵敏度线性NTC热敏电阻器。
实施例4
a、以10g为基数,按化学式BaSnO3+4%CeO2称取碳酸钡5.6822g和二氧化锡4.3178g,置于玛瑙研钵中混合研磨8小时,然后于1200℃温度下煅烧4小时,得到单相BaSnO3粉体;
b、按BaSnO3+4%CeO2组成将步骤a得到的10g BaSnO3粉体材料与已干燥的0.2265g二氧化铈置于玛瑙研钵中混合研磨6小时,得到x=4%比例的复合粉体材料;
c、将步骤b得到的粉体材料,置入75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以10Kg/cm2的单轴压力进行成型,将已成型的坯体进行于300MPa下冷等静压3分钟,接着在1350℃温度下烧结4小时,得到BaSnO3+4%CeO2的片状陶瓷材料;
d、将步骤c所得已烧结陶瓷,在正反两面涂覆高温铂浆,然后于温度900℃下金属化30分钟,最后将其烧制铂金引线,即得到线性温度范围为375-450℃,材料常数为B375℃/450℃=7614K,温度375℃下的电阻率为3.12×105Ω·cm,ρ和T的非线性误差不超过8.50%的高灵敏度线性NTC热敏电阻器。
实施例5
a、以10g为基数,按化学式BaSnO3+7%CeO2称取碳酸钡5.6822g和二氧化锡4.3178g,置于玛瑙研钵中混合研磨10小时,然后于温度1100℃下煅烧4.5小时,得到单相BaSnO3粉体;
b、按BaSnO3+7%CeO2组成将步骤a得到的10g BaSnO3粉体材料与已干燥的0.3963g二氧化铈置于玛瑙研钵中混合研磨8小时,得到x=7%比例的复合粉体材料;
c、将步骤b得到的粉体材料,置入75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以15Kg/cm2的单轴压力进行成型,将已成型的坯体进行于250MPa下冷等静压4分钟,接着在温度1300℃下烧结4.5小时,得到BaSnO3+7%CeO2的片状陶瓷材料;
d、将步骤c所得陶瓷材料,在正反两面涂覆高温铂浆,然后于温度900℃下金属化30分钟,最后将其烧制铂金引线,即得到线性温度范围为375-450℃,材料常数为B375℃/450℃=7670K,温度375℃下的电阻率为1.88×105Ω·cm,ρ和T的非线性误差不超过10.64%的高灵敏度线性NTC热敏电阻器。
实施例6
a、以10g为基数,按化学式BaSnO3+7%CeO2称取碳酸钡5.6822g和二氧化锡4.3178g,置于玛瑙研钵中混合研磨6小时,然后于1000℃温度下煅烧5小时,得到单相BaSnO3粉体;
b、按BaSnO3+7%CeO2组成将步骤a得到的10g BaSnO3粉体材料与已干燥的0.3963g二氧化铈置于玛瑙研钵中混合研磨8小时,得到x=7%比例的复合粉体材料;
c、将步骤b得到的粉体材料,置入75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以20Kg/cm2的单轴压力进行成型,将已成型的坯体进行于200MPa下冷等静压5分钟,接着在1400℃温度下烧结5小时,得到BaSnO3+7%CeO2的片状陶瓷材料;
d、将步骤c所得陶瓷材料,在正反两面涂覆高温铂浆,然后于温度900℃下金属化30分钟,最后将其烧制铂金引线,即得到线性温度范围为375-450℃,材料常数为B375℃/450℃=7651K,温度375℃下的电阻率为1.90×105Ω·cm,ρ和T的非线性误差不超过10.53%的高灵敏度线性NTC热敏电阻器。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此。

Claims (3)

1.一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器,其特征在于该电阻器以碳酸钡、二氧化锡和二氧化铈为原料,其化学组成为BaSnO3+xCeO2,其中x = 2%、4%或7%,该材料由具有立方相钙钛矿结构BaSnO3和具有立方相萤石结构CeO2制成,具体操作按下列步骤进行:
a、按摩尔比1:1称取碳酸钡和二氧化锡,置于玛瑙研钵中混合研磨6-10小时,然后于温度1000-1200℃下煅烧3-5小时,得到单相BaSnO3粉体;
b、按BaSnO3+xCeO2组成,其中x = 2%、4%或7%,将步骤a得到的粉体材料与已干燥的二氧化铈置于玛瑙研钵中混合研磨4-8小时,得到x = 2%、4%或7%比例的复合粉体材料;
c、将步骤b得到的x = 2%、4%或7%比例的粉体材料,置入湿度为75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以10-20 Kg/cm2的单轴压力进行成型,将已成型的坯体进行于200-300 MPa下冷等静压3-5分钟,接着在1300-1400℃温度下烧结3-5小时,得到BaSnO3+xCeO2的片状陶瓷材料;
d、将步骤c所得片状陶瓷材料,在正反两面涂覆高温铂浆,然后于900℃温度下金属化30分钟,最后将其烧制铂金引线,即得到线性输出NTC热敏电阻器。
2.一种适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器的制备方法,其特征在于,以碳酸钡、二氧化锡和二氧化铈为原料,其化学组成为BaSnO3+xCeO2,其中x = 2%、4%或7%,具体操作按下列步骤进行:
a、按摩尔比1:1称取碳酸钡和二氧化锡,置于玛瑙研钵中混合研磨6-10小时,然后于温度1000-1200℃下煅烧3-5小时,得到单相BaSnO3粉体;
b、按BaSnO3+xCeO2组成,其中x = 2%、4%、7%将步骤a得到的粉体材料与已干燥的二氧化铈置于玛瑙研钵中混合研磨4-8小时,得到x = 2%、4%或7%比例的复合粉体材料;
c、将步骤b得到的x = 2%、4%或7%比例的复合粉体材料,置入湿度为75%的恒湿箱中保持12小时,然后将润湿后的复合粉体灌入磨具,以10-20 Kg/cm2的单轴压力进行成型,将已成型的坯体进行于200-300 MPa下冷等静压3-5分钟,接着在温度1300-1400℃下烧结3-5小时,得到BaSnO3+xCeO2的片状陶瓷材料;
d、将步骤c所得片状陶瓷材料,在正反两面涂覆高温铂浆,然后于900℃温度下金属化30分钟,最后将其烧制铂金引线,即得到线性输出NTC热敏电阻器。
3.根据权利要求2所述的适用于小型燃气轮机排气测温的线性输出NTC热敏电阻器的制备方法,其特征在于步骤c中的润湿后粉体致密化坯体进行300 MPa下冷等静压3分钟,并于1350℃温度下烧结4小时。
CN202310622111.5A 2023-05-30 2023-05-30 适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法 Pending CN116655370A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310622111.5A CN116655370A (zh) 2023-05-30 2023-05-30 适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310622111.5A CN116655370A (zh) 2023-05-30 2023-05-30 适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法

Publications (1)

Publication Number Publication Date
CN116655370A true CN116655370A (zh) 2023-08-29

Family

ID=87714717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310622111.5A Pending CN116655370A (zh) 2023-05-30 2023-05-30 适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法

Country Status (1)

Country Link
CN (1) CN116655370A (zh)

Similar Documents

Publication Publication Date Title
US10622124B2 (en) High temperature negative temperature coefficient thermistor material and preparation method thereof
CN107324799B (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
CN110903087B (zh) 一种低b高阻型宽温区高温热敏电阻材料及其制备方法和应用
CN109133201A (zh) 基于多组分a位共掺杂镍基钙钛矿氧化物材料及使用方法
CN115093224A (zh) 一种烧绿石相高熵陶瓷的制备方法及应用
CN112876238B (zh) 一种锡酸盐体系负温度系数热敏电阻材料及其制备方法
CN102964119A (zh) 一种可低温烧结BiFeO3基高性能负温度系数热敏陶瓷材料及其制备方法
CN110372335A (zh) 一种锰镍铝钴基ntc热敏电阻材料及其制备方法
CN104347202B (zh) 一种厚膜负温度系数电阻浆料的制备方法
CN116655370A (zh) 适用于小型燃气轮机排气测温的线性输出ntc热敏电阻器及制备方法
CN110317045A (zh) 一种锰镍铁钴基ntc热敏电阻材料及其制备方法
CN113979728A (zh) 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法
CN112960979B (zh) 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法
CN113004039B (zh) 一种钨青铜型高温热敏电阻材料及其制备方法
CN112759391A (zh) 一种镱掺杂ntc型高温热敏电阻陶瓷材料及其制备方法和应用
CN108863350B (zh) 一种钛酸铋基钙钛矿相热敏陶瓷复合材料及其制备方法和用途
CN112851335A (zh) 一种类钙钛矿基复合高温热敏电阻材料及其制备方法
JPS6328325B2 (zh)
CN112830770A (zh) 一种高温复合热敏电阻材料及其制备方法
JP2676469B2 (ja) Ntcサーミスタの製造方法
CN114956789B (zh) 一种线性宽温区高温热敏电阻材料及制备方法
CN112939602B (zh) 一种钛酸盐体系负温度系数热敏电阻材料及制备方法
CN115894029B (zh) 基于高熵稀土锆酸盐的氧不敏感型负温度系数热敏材料
CN116621573A (zh) 一种用于高温宽温区测温的尖晶石型热敏电阻材料及其制备方法
CN118197725A (zh) 适用于航空发动机进气道测温的线性输出负温度系数热敏电阻器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination