CN116652445A - 一种无铅钎料合金及制备方法 - Google Patents

一种无铅钎料合金及制备方法 Download PDF

Info

Publication number
CN116652445A
CN116652445A CN202310857216.9A CN202310857216A CN116652445A CN 116652445 A CN116652445 A CN 116652445A CN 202310857216 A CN202310857216 A CN 202310857216A CN 116652445 A CN116652445 A CN 116652445A
Authority
CN
China
Prior art keywords
solder
lead
free solder
smelting
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310857216.9A
Other languages
English (en)
Inventor
王韩冰
涂文斌
王善林
陈玉华
谢吉林
张体明
吴集思
刘冠鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202310857216.9A priority Critical patent/CN116652445A/zh
Publication of CN116652445A publication Critical patent/CN116652445A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/284Mg as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本发明公开了一种无铅钎料合金及制备方法,属于电子封装与材料技术领域。各组分按质量百分比,包括Zn:8~10%,Bi:2%~4%,至少含有Al:0.05~0.5%,Mg:0.05~0.5%,中的一种,余量为Sn。本发明公开的Sn‑Zn‑Bi系无铅钎料合金,具有成本低、无毒性、熔点低、抗氧化性好及较好的力学性能,适用于电子封装领域所有的无铅钎料,具有良好的钎焊效果。

Description

一种无铅钎料合金及制备方法
技术领域
本发明涉及一种电子封装材料,尤其涉及一种无铅钎料合金及制备方法。
背景技术
在电子封装领域中,传统的Sn-Pb钎料具有廉价、易焊接、成形美观、综合力学性能优良等特点一直被广泛应用于电子行业。然而,Pb是一种有毒物质,长期使用含铅钎料对环境和人类健康构成巨大威胁。随着人类对环境保护的意识逐渐增强,世界各国都通过法律限制电子产品中使用含铅钎料,传统的Sn-Pb钎料正逐渐被无铅钎料所取代。经过不断的创新研究,候选无铅钎料主要有Sn-Cu、Sn-Zn、Sn-Ag、Sn-Ag-Cu、Sn-Bi及Sn-In等,且Sn-Cu、Sn-Ag及Sn-Ag-Cu无铅钎料已进行了商业化生产和应用。
Sn-Ag-Cu是目前应用最广泛的无铅钎料,力学性能高于传统的Sn-Pb钎料。然而,工艺性能和成本,包括抗氧化性、润湿性及抗腐蚀性,都难以与传统的Sn-Pb钎料相比,其推广应用也明显受到限制。相比于其它合金钎料,Sn-Zn共晶钎料具有成本低,来源广,熔点低等优点,是一种极具开发潜力的无铅钎料。但Zn元素极易被氧化,会形成稳定的氧化物,恶化钎料的润湿性,同时还会降低Sn-Zn钎料的抗腐蚀性。相比传统的Sn-Pb钎料,Sn-Zn系钎料的力学性能也仍显不足。因此,通常在Sn-Zn钎料中添加其它合金元素的手段来提高钎料的性能,添加Bi可以明显提高Sn-Zn钎料的润湿性降低钎料的熔点,提高焊点的力学性能。因此,Sn-Zn-Bi钎料合金被认为是有非常前途的无铅焊料。随着电子器件焊点的微型化,对焊点的服役的环境要求的越来越严格,由此带来无铅钎料性能要求也越来越高。因此,通过对无铅钎料进行合金化改性,开发高工艺性能和力学性能的无铅钎料,具有明显的应用价值。
发明内容
本发明的目的是要提供一种无铅钎料合金及制备方法。适量的Mg和Al添加可以细化钎料组织,减少界面IMC的厚度,提高钎料的铺展性和硬度,增加焊点服役过程中的可靠性。同时,Al和Mg的熔点较低,抗氧化性能好,资源丰富。因此,Sn-Zn-Bi系钎料中添加适量的Mg和Al,提高钎料的抗氧化性、降低熔点和提高力学性能,具有广阔的应用前景。
为达到上述目的,本发明是按照以下技术方案实施的:
本发明无铅钎料合金采用Al或Mg的一种和Zn、Bi和Sn制成,按质量百分比,Al的含量为0.05~0.5%,Mg的含量为0.05~0.5%,Zn的含量为8~10%,Bi的含量为2%~4%,余量为Sn。
优选的,按质量百分比,Zn含量9%,Bi含量3%,Mg含量为0.1%~0.3%,Al含量为0.1%~0.3%。
本发明无铅钎料合金的制备方法包括以下步骤:
S1:将Sn与Al或Mg放置在真空熔炼炉中熔炼后冷却到室温后得到Sn-10Al和Sn-10Mg的中间合金;优选的,真空熔炼炉真空度为小于1Pa,熔炼温度为800~900℃,保温45-60min。
S2:将步骤S1得到的Sn-10Al和Sn-10Mg中间合金与Zn、Bi、Sn充分混合后放入石墨坩埚,并撒上覆盖剂;覆盖剂为质量比1.3:1.0的KCI:LiCl熔盐。
S3:将石墨坩埚放入熔炼炉中熔炼、保温搅拌均匀后浇铸成锭,即可得到Sn-Zn-Bi系的无铅钎料合金。熔炼温度为450~500℃,保温时间90-120min。
本发明的有益效果是:
本发明是一种无铅钎料合金及制备方法,与现有技术相比,本发明的有益效果:
1.本发明的Sn-Zn-Bi系无铅钎料合金,不含铅和银,具有环保、低成本的优点,焊接性能好的效果。
2.本发明的Sn-Zn-Bi系无铅钎料具有较好的抗腐蚀性、润湿性,成本低等优点,是一种新型低成本、高性能的无铅钎料。金属元素Bi提高钎料的力学性能和显著降低钎料熔点,金属活性元素Al或Mg可以降低合金熔点、提高钎料的抗氧化性能和力学性能。本发明添加的Al、Mg、Bi及Zn原料来源广泛,成本也相对较低、制备工艺简单,容易简单,有很好的发展前景。综合考虑多重因素,本发明具有较好的实用性与性价比。
附图说明
图1不同Al或Mg含量的Sn-9Zn-3Bi无铅钎料合金的熔点;
图2不同Al或Mg含量的Sn-9Zn-3Bi无铅钎料合金的平均维氏硬度值;
图3不同Al或Mg含量的Sn-9Zn-3Bi无铅钎料合金的铺展面积。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明的目的是针对Sn-Zn-Bi钎料合金存在的抗氧化性差,熔点较高及润湿性不佳等问题,通过在Sn-Zn-Bi钎料合金中添加适量的Mg和Al,降低无铅钎料的熔点、提高钎料的抗氧化性和力学性能,以获得具有价格低廉、熔炼工艺简单、综合性能良好的Sn-Zn-Bi系无铅钎料合金,同时公开了其制备方法。
本发明的Sn-Zn-Bi系无铅钎料的各组合合金元素的功能和作用如下:
Zn元素可以改善钎料抗拉强度、蠕变抗力和热疲劳性能;
Bi元素可以显著降低钎料熔点,提高钎料润湿性和力学性能;
Al元素可以降低钎料熔点,提高钎料抗氧化性和力学性能;
Mg元素可以降低钎料熔点,提高钎料抗氧化性和力学性能。
本发明无铅钎料合金采用Al或Mg的一种和Zn、Bi和Sn制成,按质量百分比,Al的含量为0.05~0.5%,Mg的含量为0.05~0.5%,Zn的含量为8~10%,Bi的含量为2%~4%,余量为Sn。
优选的,按质量百分比,Zn含量9%,Bi含量3%,Mg含量为0.1%~0.3%,Al含量为0.1%~0.3%。
无铅钎料的制备方法的最重要的步骤是熔炼,该钎料的熔炼过程当中主要存在下面两个问题:一是钎料合金中的组成元素Zn、Al、Mg都容易被氧化;二是高熔点的Al和Mg元素如何向低熔点的基体中添加。为解决Al和Mg元素的氧化问题,可采用真空熔炼方法或在箱式电阻炉中熔炼,但箱式熔炼方式需要在熔炼前添加覆盖剂(质量比为1.3:1.0的KCI:LiCl熔盐),防止钎料组元接触空气而被氧化。针对高熔点的Al和Mg元素向低低熔点基体中添加问题,可通过真空熔炼法形成Sn-xAl和Sn-xMg中间合金,考虑到Zn元素的饱和蒸汽压问题,Zn在真空熔炼过程中容易挥发。因此,最终的各组元的成分确定采用箱式电阻炉熔炼。
本发明无铅钎料合金的制备方法包括以下步骤:
S1:将Sn与Al或Mg放置在真空熔炼炉中熔炼后冷却到室温后得到Sn-10Al和Sn-10Mg的中间合金;优选的,真空熔炼炉真空度为小于1Pa,熔炼温度为800~900℃,保温45-60min。
S2:将步骤S1得到的Sn-10Al和Sn-10Mg中间合金与Zn、Bi、Sn充分混合后放入石墨坩埚,将箱式电阻炉的温度调至450℃,放入石墨坩埚进行预热15min后取出,将称量好的Sn粒子放入坩埚中,并加入少量的覆盖剂,覆盖剂为质量比1.3:1.0的KCI:LiCl熔盐。放入炉中15min后取出,此时Sn已经完全熔化。将称量好的Zn粒、Sn-10Al或Sn-10Mg用陶瓷棒迅速压入熔化的Sn当中,然后迅速将坩放入电阻炉中,整个过程一般不超过30s。10min后,取出坩埚后进行搅拌后放入炉中,目的是使钎料合金能够混合均匀。等到钎料完全混合后,取出坩埚加入称量好的Bi粒,继续撒上一定量的覆盖剂。由于Bi的熔点比较低,很快就熔化进入基体,5min后取出坩埚进行搅拌。之前每过15min后,对熔融的钎料进行搅拌,保证熔炼的钎料成分均匀。
S3:将石墨坩埚放入熔炼炉中熔炼、保温搅拌均匀后浇铸成锭,即可得到Sn-Zn-Bi系的无铅钎料合金。熔炼温度为450~500℃,保温时间90-120min。待熔炼的时间达到90~120min后,取出坩埚,同时清除在钎料表面的覆盖剂,然后将熔融的钎料倒入钢制的模具中进行浇注,浇注温度不低于300℃,把液态钎料合金铸成不同尺寸的棒或条状。把棒状或条状钎料采用拉拔、挤压或轧制等工艺进一步加工成不同尺寸的丝、环、箔等,以满足不同的需要。
对比例1
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi无铅钎料合金。
实施例1
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,Al:0.05%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料和中间合金。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi-0.05Al无铅钎料合金。
实施例2
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,Al:0.1%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料和中间合金。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi-0.1Al无铅钎料合金。
实施例3
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,Al:0.15%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料和中间合金。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi-0.15Al无铅钎料合金。
实施例4
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,Mg:0.05%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料和中间合金。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi-0.05Mg无铅钎料合金。
实施例5
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,Mg:0.1%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料和中间合金。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi-0.1Mg无铅钎料合金。
实施例6
一种Sn-Zn-Bi系无铅钎料,所述合金按质量百分比计由以下组分组成:Zn:9%,Bi:3%,Mg:0.15%,余量Sn。
按总质量200克计,采用分析天平称取按组分和各自所占比重的上述洁净的原材料和中间合金。
将上述原料进行超声波清洗10min,清洗烘干后放入石墨坩埚中,撒上覆盖剂后放入马弗炉中进行熔炼。熔炼温度设置为450~500℃,保温时间1.5~2小时,为保证熔炼的钎料成分均匀,每隔15min左右取出并用陶瓷棒进行机械搅拌,最后去熔融钎料除表面杂质,倒入铁质模具中进行浇注,获得Sn-9Zn-3Bi-0.15Mg无铅钎料合金。
钎料性能测量实验过程如下:
(1)DTA失重分析:将钎料打磨超声波清洗后,加工成直径3mm的圆片,采用热重综合热分析仪进行300℃不同时间的增重分析,测量结果表1所示。
(2)熔点测试:采用差示扫描量热仪测量钎料合金的熔点,实验样品的重量为80mg,氮气保护,升温速率为10℃/min,测量结果如图1所示。
(3)硬度测试:将浇铸的钎料表面打磨平整,放在维氏硬度硬度计上测试,加载力100g,保持载荷时间为15s,每种钎料合金测试5组数据,取平均值作为该钎料合金的硬度测量,测量结果如图2所示。
(4)铺展面积测试:在20mm×20mm×0.3mm的正方形紫铜片上放置0.2±0.01g钎料,然后将适量助焊剂(成分为ZnCl2:NH4Cl:H2O=40:5:55)用滴管滴在Cu片上,将铜片放在260℃的加热平台上30s,取下冷却后测量铺展面积。
从表1中可以看出,Sn-Zn-Bi钎料中添加Al或Mg后,钎料的熔点降低,更加接近传统的Sn-Pb钎料的熔点;由图1可以看出,Sn-Zn-Bi钎料中添加Al或Mg后,钎料的抗氧化增重明显降低,钎料的抗氧化性能得到改善;由图2可以看出,Sn-Zn-Bi钎料中添加Al或Mg后,钎料的硬度获得提高,力学性能得到改善。从图3中可以看出,Sn-Zn-Bi钎料中添加Mg后,钎料的铺展面积增大,意味着钎料的润湿性得到提高。由此可以看出,开发的无铅钎料无论在性能上还是在成本上,具有替代传统Sn-Pb钎料的潜力。
表1不同钎料成分(wt.%)的熔点测试结果
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (6)

1.一种无铅钎料合金,其特征在于:采用Al或Mg的一种和Zn、Bi和Sn制成,按质量百分比,Al的含量为0.05~0.5%,Mg的含量为0.05~0.5%,Zn的含量为8~10%,Bi的含量为2%~4%,余量为Sn。
2.根据权利要求1所述的无铅钎料合金,其特征在于:按质量百分比,Zn含量9%,Bi含量3%,Mg含量为0.1%~0.3%,Al含量为0.1%~0.3%。
3.一种如权利要求1所述无铅钎料合金的制备方法,其特征在于,包括以下步骤:
S1:将Sn与Al或Mg放置在真空熔炼炉中熔炼后冷却到室温后得到Sn-10Al和Sn-10Mg的中间合金;
S2:将步骤S1得到的Sn-10Al和Sn-10Mg中间合金与Zn、Bi、Sn充分混合后放入石墨坩埚,并撒上覆盖剂;
S3:将石墨坩埚放入熔炼炉中熔炼、保温搅拌均匀后浇铸成锭,即可得到Sn-Zn-Bi系的无铅钎料合金。
4.根据权利要求3所述的无铅钎料合金的制备方法,其特征在于:所述步骤S1中,真空熔炼炉真空度为小于1Pa,熔炼温度为800~900℃,保温45-60min。
5.根据权利要求3所述的无铅钎料合金的制备方法,其特征在于:所述步骤S2中的覆盖剂为质量比1.3:1.0的KCI:LiCl熔盐。
6.根据权利要求3所述的无铅钎料合金的制备方法,其特征在于:所述步骤S3中熔炼温度为450~500℃,保温时间90-120min。
CN202310857216.9A 2023-07-13 2023-07-13 一种无铅钎料合金及制备方法 Pending CN116652445A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310857216.9A CN116652445A (zh) 2023-07-13 2023-07-13 一种无铅钎料合金及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310857216.9A CN116652445A (zh) 2023-07-13 2023-07-13 一种无铅钎料合金及制备方法

Publications (1)

Publication Number Publication Date
CN116652445A true CN116652445A (zh) 2023-08-29

Family

ID=87724311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310857216.9A Pending CN116652445A (zh) 2023-07-13 2023-07-13 一种无铅钎料合金及制备方法

Country Status (1)

Country Link
CN (1) CN116652445A (zh)

Similar Documents

Publication Publication Date Title
TWI383052B (zh) Low silver solder alloy and solder paste composition
RU2662176C2 (ru) Бессвинцовый припой
JP3693762B2 (ja) 無鉛はんだ
EP0985486A1 (en) Leadless solder
JP2019527145A (ja) SnBiSb系低温鉛フリーはんだ
EP1231015B1 (en) Lead-free solder and solder joint
CN109352208B (zh) 一种Sn-Bi系低银无铅钎料合金及其制备方法
JPH0970687A (ja) 無鉛はんだ合金
CN100494436C (zh) 一种低熔点无铅焊料合金
EP1598142A1 (en) Lead-free solder alloy and preparation thereof
CN101862921B (zh) 含Pr、Sr和Ga的Sn-Cu-Ni无铅钎料
CN112342417B (zh) 一种锡基焊料及其制备方法
CN111940945A (zh) 一种Sn-Zn-In-Ga无铅焊料及其制备方法
CN114293066A (zh) 一种含Ni的无铅低温焊料合金材料及其制备方法
CN114289927A (zh) 一种无铅焊料
Chen et al. Effects of Ag on microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties of soldered joints
JP2020116638A (ja) 高温及び振動環境に適合した無鉛ソルダ合金組成物及びその製造方法
CN113789460B (zh) 一种含Si的无铅低温焊料合金及其制备工艺
CN112372177B (zh) 高润湿性钎料及其制备方法
WO2007082459A1 (fr) Soudure exempte de plomb et son procédé de préparation
Xia et al. Evaluation on the characteristics of tin-silver-bismuth solder
WO2007014530A1 (fr) Alliage de brasage sans plomb contenant un systeme sn-ag-cu-ni-al
CN116652445A (zh) 一种无铅钎料合金及制备方法
CN109702374B (zh) 一种Sn-Cu-Ni-In无铅钎料合金及其制备方法
Zerrer et al. Solidification and wetting behaviour of SnAgCu solder alloyed by reactive metal organic flux

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination