CN116639970A - 一种钙锶铝氧系列陶瓷靶材的制备方法 - Google Patents

一种钙锶铝氧系列陶瓷靶材的制备方法 Download PDF

Info

Publication number
CN116639970A
CN116639970A CN202310631411.XA CN202310631411A CN116639970A CN 116639970 A CN116639970 A CN 116639970A CN 202310631411 A CN202310631411 A CN 202310631411A CN 116639970 A CN116639970 A CN 116639970A
Authority
CN
China
Prior art keywords
calcium strontium
strontium aluminum
calcium
series ceramic
aluminum oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310631411.XA
Other languages
English (en)
Inventor
马吉
张通
李俊宏
赵米
黄鑫
吴绮茜
孔睿琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310631411.XA priority Critical patent/CN116639970A/zh
Publication of CN116639970A publication Critical patent/CN116639970A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种钙锶铝氧系列陶瓷靶材的制备方法,将硝酸锶(四水硝酸钙)、九水硝酸铝、柠檬酸溶于去离子水溶剂中,其中,柠檬酸作为络合剂,乙二醇为分散剂,放置在恒温磁力搅拌器上,加热搅拌形成湿凝胶,放入干燥箱烘干;最后将凝胶研磨,预烧处理得到纳米粉体;将纳米粉体研磨并对其进行压片处理,再进行二次烧结即得锶钙铝氧系列陶瓷靶材。本发明采用溶剂凝胶法保证了各组分在分子级别的混合,得到的陶瓷靶材致密度好,成分、晶粒尺寸均一,此外,本法工艺简单,重复性好,选用的化学试剂价格低廉易得。

Description

一种钙锶铝氧系列陶瓷靶材的制备方法
技术领域
本发明涉及一种钙锶铝氧系列陶瓷靶材的制备方法,属于功能陶瓷技术领域。
背景技术
钙锶铝氧系列陶瓷是一种多用途的化合物:在陶瓷领域可以制备透明陶瓷;在纳米柔性薄膜领域可做为水溶性材料用于制备各种独立式薄膜,方便薄膜衬底剥离而不损伤薄膜;在建筑领域,其粉体可以用于水泥材料,提高水泥材料质量;在钢铁行业可用于耐火浇筑材料,在预防放射性领域用于制备辐射屏蔽混凝土的粘结材料。在发光材料领域用来作为荧光发光材料使用,在不需要任何掺杂的条件下能够激发出红色荧光,它的长效红色荧光能力可以用来有效消除交流电驱动发光二极管的发光闪烁问题;氧化物红色荧光粉在制备白色发光二极管上具有成本低廉,发光效率高,热发光稳定,易合成等的优势。
现有的钙锶铝氧系列陶瓷是通过固相法制备得到,固相法制备的陶瓷往往晶粒尺寸不均匀,致密度低,成相不纯,容易出现杂质,从而对后续应用造成不利影响。本发明提出的钙锶铝氧系列陶瓷靶材,采用溶胶凝胶方法,配合精细的烧结制度,克服以上制备过程中粉体均匀性差、块体致密度低、成相不纯等问题。
发明内容
本发明的目的在于提供一种钙锶铝氧系列陶瓷靶材的制备方法,本发明采用溶胶凝胶方法实现在较少合成工艺,致密度好,晶粒大小合适的钙锶铝氧系列靶材,在1200~1450℃得到钙锶铝氧系列靶材,此外,本法重复性好,选用的化学试剂价格低廉易得。
本发明所述的钙锶铝氧系列陶瓷靶材的制备方法,具体包括以下步骤:
(1)将硝酸锶、九水硝酸铝、四水硝酸钙按钙锶铝氧系列的化学计量配比进行称量,在密闭空间称量,然后称量柠檬酸,柠檬酸与钙锶铝氧系列的金属阳离子的摩尔比为1:1;在密闭空间称量,防止气流干扰其他等外界因素影响实验结果。
(2)将步骤(1)所称量的原料先后溶于去离子水溶剂中,均匀搅拌,经过5~10min溶解后,加入一定比例的乙二醇溶剂作为分散剂,经过一段时间,搅拌均匀。
(3)将步骤(2)溶液进行搅拌加热一段时间,待溶剂蒸发形成胶体,将胶体置于干燥恒温烘箱中发泡得到凝胶。
(4)将步骤(3)中的凝胶充分磨碎,得到钙锶铝氧系列陶瓷粉体。
(5)对步骤(4)的钙锶铝氧系列陶瓷粉体放入箱式炉进行预烧处理,得到初次煅烧粉体。
(6)将步骤(5)中的初次煅烧粉体放入特定模具中,进行加压处理,制成钙锶铝氧系列陶瓷块体。
(7)将步骤(6)所得陶瓷块体进行二次煅烧,得到钙锶铝氧系列陶瓷靶材。
本发明所述步骤(1)称量误差控制在±0.0004g范围内,柠檬酸与钙锶铝氧系列的金属阳离子摩尔比为1:1。
本发明所述步骤(2)去离子水与乙二醇的体积比值为10:1~3:1,搅拌时间15~45min。
本发明所述步骤(3)中混合溶液的加热温度为80~100℃,加热时长为0.5~2h,凝胶干燥温度为50~100℃,干燥时长为12~24h。
本发明所述步骤(4)中研磨时间0.5~1h。
本发明所述步骤(5)中初次烧结温度为400~600℃,加热时长为2~8h。
本发明所述步骤(6)中称量粉体质量1.5~6g,选用模具规格20~30mm圆形模具,使用压片机3~4Mpa,加压时间20~30min。
本发明所述步骤(7)中二次煅烧温度为1200~1450℃,加热时长为2~12h。
本发明有益效果:
本发明所使用的原料价格低廉,容易获得。其次,重复性好,易于控制陶瓷质量;所使用的烧结温度低于氧化物熔点,便于节约能源;烧结时间短,利于提高生产率。制备得到的钙锶铝氧系列陶瓷靶材,可以用于透明陶瓷,采用本发明的方法制备得到的纳米级别的钙锶铝氧系列陶瓷靶材,质量良好、颗粒均匀,靶材致密度高。在柔性薄膜生长过程中,使用钙锶铝氧系列陶瓷靶材生长的薄膜,易于外延生长,均一性好,为后续方便衬底完全剥离而不损伤薄膜提供条件。使用钙锶铝氧系列陶瓷靶材制备水泥建筑材料,可以提高产品质量,提升耐用性,使用钙锶铝氧系列陶瓷靶材制备荧光粉具有成分均匀,合成相纯,在纳米尺度上颗粒大小均一等特点。
附图说明
图1为实施例1初次烧结粉体样品的XRD图;
图2为实施例1二次煅烧样品的XRD图;
图3为实施例1二次煅烧样品的SEM照片(10000倍);
图4为实施例2初次烧结粉体样品的XRD图;
图5为实施例2二次煅烧样品的XRD图;
图6为实施例2二次煅烧样品的SEM照片(40000倍);
图7为实施例3初次烧结粉体样品的XRD图;
图8为实施例3二次煅烧样品的XRD图;
图9为实施例3二次煅烧样品的SEM照片(1500倍);
图10为实施例4初次烧结粉体样品的XRD图;
图11为实施例4二次煅烧样品的XRD图;
图12为实施例4二次煅烧样品的SEM照片(1500倍)。
具体实施方式
下面结合附图及具体实施例为本发明作进一步详细说明,但本发明的保护范围不限于所述内容。
实施例1
本实施例所述溶胶凝胶法钙锶铝氧系列陶瓷靶材的制备方法,具体包括以下步骤:
(1)将硝酸锶、九水硝酸铝按Sr3Al2O6的化学计量配比进行称量,按柠檬酸与Sr3Al2O6的金属阳离子摩尔比为1:1的比例称取柠檬酸。
(2)将步骤(1)所称量的硝酸锶、九水硝酸铝、柠檬酸溶于去离子水溶剂中,同时用磁力搅拌器搅拌均匀,等固体原料溶解,得到透明溶液,经过10min搅拌后,然后加入一定量的乙二醇溶剂,去离子水与乙二醇溶剂的体积比值为5:1,搅拌15min,得到混合溶液。
(3)将步骤(2)所得混合溶液进行加热搅拌,加热时长为0.5h,加热温度为80℃,得到胶体,将胶体置于烘箱中脱水发泡得到干凝胶,干燥温度为100℃,干燥时长为12h,干燥气氛为常压、空气。
(4)将步骤(3)中的凝胶充分磨碎1h,得到Sr3Al2O6陶瓷粉体。
(5)对步骤(4)的Sr3Al2O6陶瓷粉体进行预烧处理,初次烧结温度为600℃,加热时长为8h,得到Sr3Al2O6初次煅烧粉体。
(6)将步骤(5)中的Sr3Al2O6初次煅烧粉体称量6g,放入30mm的圆形模具中,使用压片机在3Mpa的压力下,加压20min,形成Sr3Al2O6陶瓷靶材。
(7)将步骤(6)所得Sr3Al2O6陶瓷靶材放入箱式炉距离热电偶合适位置,其中二次煅烧温度为1300℃,加热时长12h,烧结气氛为常压、空气气氛,得到Sr3Al2O6陶瓷靶材。
本实施例制备得到的Sr3Al2O6陶瓷纳米粉体的预烧XRD图谱如图1所示,由图可以看出预烧粉体杂相较少。
本实施例制备得到的Sr3Al2O6陶瓷靶材的二次煅烧XRD图谱如图2所示,可以看出最终成相较纯。
本实施例二次煅烧制备得到的Sr3Al2O6陶瓷靶材的SEM照片如图3所示,可以看出陶瓷靶材颗粒均匀。
实施例2
本实施例所述溶胶凝胶法钙锶铝氧系列陶瓷靶材的制备方法,具体包括以下步骤:
(1)将九水硝酸铝、四水硝酸钙按Ca3Al2O6的化学计量配比进行称量,柠檬酸与Ca3Al2O6的金属阳离子摩尔比为1:1。
(2)将步骤(1)所称量的四水硝酸钙、九水硝酸铝、柠檬酸溶于去离子水溶剂中,同时用磁力搅拌器搅拌均匀,等固体原料溶解,得到透明溶液,经过10min搅拌后,然后加入一定量的乙二醇溶剂,去离子水与乙二醇溶剂的体积比值为5:1,搅拌30min,得到混合溶液。
(3)将步骤(2)所得混合溶液进行加热搅拌,加热时长为1h,加热温度为90℃,得到胶体,将胶体置于烘箱中脱水发泡得到干凝胶,干燥温度为90℃,干燥时长为24h,干燥气氛为常压、空气。
(4)将步骤(3)中的凝胶充分磨碎0.5h,得到Ca3Al2O6陶瓷粉体。
(5)对步骤(4)的Ca3Al2O6陶瓷粉体进行预烧处理,初次烧结温度为400℃,加热时长为2h,得到Ca3Al2O6初次煅烧粉体。
(6)将步骤(5)中的Ca3Al2O6初次煅烧粉体称量2g,放入20mm的圆形模具中,使用压片机在3Mpa的压力下,加压30min,形成Ca3Al2O6陶瓷块体。
(7)将步骤(6)所得Ca3Al2O6陶瓷块体放入箱式炉距离热电偶合适位置,其中二次煅烧温度为1350℃,加热时长为12h,烧结气氛为常压、空气气氛,得到Ca3Al2O6陶瓷靶材。
本实施例制备得到的Ca3Al2O6陶瓷纳米粉体的预烧XRD图谱如图4所示,由图可以看出预烧粉体杂相较少。
本实施例制备得到的Ca3Al2O6陶瓷靶材的二次煅烧XRD图谱如图5所示,可以看出成相较纯。
本实施例二次煅烧制备得到的Ca3Al2O6陶瓷靶材的SEM照片如图6所示,可以看出成相颗粒均匀。
实施例3
本实施例所述溶胶凝胶法钙锶铝氧系列陶瓷靶材的制备方法,具体包括以下步骤:
(1)将硝酸锶、四水硝酸钙、九水硝酸铝按Sr2CaAl2O6的化学计量配比进行称量,柠檬酸与Sr2CaAl2O6的金属阳离子摩尔比为1:1。
(2)将步骤(1)所称量的四水硝酸钙、九水硝酸铝、柠檬酸溶于去离子水溶剂中,同时用磁力搅拌器搅拌均匀,等固体原料溶解,得到透明溶液,经过10min搅拌后,然后加入一定量的乙二醇溶剂,去离子水与乙二醇溶剂的体积比值为5:1,搅拌30min,得到混合溶液。
(3)将步骤(2)所得混合溶液进行加热搅拌,加热时长为1h,加热温度为90℃,得到胶体,将胶体置于烘箱中脱水发泡得到干凝胶,干燥温度为90℃,干燥时长为24h,干燥气氛为常压、空气。
(4)将步骤(3)中的凝胶充分磨碎0.5h,得到Sr2CaAl2O6陶瓷粉体。
(5)对步骤(4)的Sr2CaAl2O6陶瓷粉体进行预烧处理,初次烧结温度为400℃,加热时长为2h,得到Sr2CaAl2O6初次煅烧粉体。
(6)将步骤(5)中的Sr2CaAl2O6初次煅烧粉体称量2g,放入20mm的圆形模具中,使用压片机在3Mpa的压力下,加压30min,形成Sr2CaAl2O6陶瓷块体。
(7)将步骤(6)所得Sr2CaAl2O6陶瓷块体放入箱式炉距离热电偶合适位置,其中二次煅烧温度为1400℃,加热时长为12h,烧结气氛为常压、空气气氛,得到Sr2CaAl2O6陶瓷靶材。
本实施例初次烧结粉体样品制备得到的Sr2CaAl2O6陶瓷纳米粉体的XRD图谱如图7所示,可以看出最终成相较纯。
本实施例二次煅烧制备得到的Sr2CaAl2O6陶瓷靶材的XRD图谱如图8所示,可以看出成相较纯。
本实施例制备得到的Sr2CaAl2O6陶瓷靶材的SEM照片如图9所示,可以看出陶瓷靶材颗粒均匀。
实施例4
本实施例所述溶胶凝胶法钙锶铝氧系列陶瓷靶材的制备方法,具体包括以下步骤:
(1)将硝酸锶、四水硝酸钙、九水硝酸铝按SrCa2Al2O6的化学计量配比进行称量,柠檬酸与SrCa2Al2O6的金属阳离子摩尔比为1:1。
(2)将步骤(1)所称量的四水硝酸钙、九水硝酸铝、柠檬酸溶于去离子水溶剂中,同时用磁力搅拌器搅拌均匀,等固体原料溶解,得到透明溶液,经过10min搅拌后,然后加入一定量的乙二醇溶剂,去离子水与乙二醇溶剂的体积比值为5:1,搅拌30min,得到混合溶液。
(3)将步骤(2)所得混合溶液进行加热搅拌,加热时长为1h,加热温度为90℃,得到胶体,将胶体置于烘箱中脱水发泡得到干凝胶,干燥温度为90℃,干燥时长为24h,干燥气氛为常压、空气。
(4)将步骤(3)中的凝胶充分磨碎0.5h,得到SrCa2Al2O6陶瓷粉体。
(5)对步骤(4)的SrCa2Al2O6陶瓷粉体进行预烧处理,初次烧结温度为400℃,加热时长为2h,得到SrCa2Al2O6初次煅烧粉体。
(6)将步骤(5)中的SrCa2Al2O6初次煅烧粉体称量2g,放入20mm的圆形模具中,使用压片机在3Mpa的压力下,加压30min,形成SrCa2Al2O6陶瓷块体。
(7)将步骤(6)所得SrCa2Al2O6陶瓷块体放入箱式炉距离热电偶合适位置,其中二次煅烧温度为1400℃,加热时长为12h,烧结气氛为常压、空气气氛,得到SrCa2Al2O6陶瓷靶材。
本实施例中二次烧结的温度为1400℃,其他步骤及参数与实施例3相同。
本实施例初次烧结粉体样品制备得到的SrCa2Al2O6陶瓷纳米粉体的XRD图谱如图10所示,由图可以看出预烧粉体杂相较少。
本实施例二次煅烧制备得到的SrCa2Al2O6陶瓷靶材的XRD图谱如图11所示,由图可以看出成相较纯。
本实施例制备得到的SrCa2Al2O6陶瓷靶材的SEM照片如图12所示,由图可以看出陶瓷靶材颗粒均匀。
对比实施例1
本实施例所述固相法钙锶铝氧系列陶瓷靶材的制备方法,具体包括以下步骤:
(1)将碳酸锶、碳酸钙、氧化铝按SrCa2Al2O6的化学计量配比进行称量。
(2)将步骤(1)所称量的碳酸锶、氧化铝混合,然后将混合物在球磨机中均匀化12小时。
(3)将步骤(2)所得混合物取出,放入清洁的研钵中,添加粘结剂,研磨30min使粘合剂充分混合。
(4)将步骤(3)中的混合物称量6g,放入30mm的圆形模具中,使用压片机在3Mpa的压力下,加压20min,形成SrCa2Al2O6陶瓷靶材。
(5)将步骤(4)所得SrCa2Al2O6陶瓷靶材放入箱式炉距离热电偶合适位置,其中煅烧温度为1400℃,加热时长12h,烧结气氛为常压、空气气氛,得到SrCa2Al2O6陶瓷靶材。
本实施例制备得到的SrCa2Al2O6陶瓷杂相较多,成相不纯,陶瓷靶材颗粒不均匀,致密性差,短时间陶瓷靶材容易风化成粉末,不利于后续的实际应用。

Claims (7)

1.一种钙锶铝氧系列陶瓷靶材的制备方法,其特征在于,具体包括以下步骤:
(1)将硝酸锶、九水硝酸铝、四水硝酸钙按钙锶铝氧系列的化学计量配比进行称量,在密闭空间称量,然后称量柠檬酸,柠檬酸与钙锶铝氧系列的金属阳离子的摩尔比为1:1;
(2)将步骤(1)所称量的原料先后溶于去离子水溶剂中,均匀搅拌,完全溶解后,加入乙二醇溶剂作为分散剂,搅拌均匀;
(3)将步骤(2)溶液进行搅拌加热一段时间,待溶剂蒸发形成胶体,将胶体置于干燥恒温烘箱中发泡得到凝胶;
(4)将步骤(3)中的凝胶充分磨碎,得到钙锶铝氧系列陶瓷粉体;
(5)对步骤(4)的钙锶铝氧系列陶瓷粉体放入箱式炉进行预烧处理,得到初次煅烧粉体;
(6)将步骤(5)中的初次煅烧粉体放入特定模具中,进行加压处理,制成钙锶铝氧系列陶瓷块体;
(7)将步骤(6)所得陶瓷块体放入箱式炉中进行二次煅烧,得到钙锶铝氧系列陶瓷靶材。
2.根据权利要求1所述钙锶铝氧系列陶瓷靶材的制备方法,其特征在于:步骤(2)中去离子水与乙二醇的体积比值为10:1~3:1,搅拌时间15~45min。
3.根据权利要求1所述钙锶铝氧系列陶瓷靶材的制备方法,其特征在于:所述步骤(3)中混合溶液的加热温度为80~100℃,加热时长为0.5~2h,凝胶干燥温度为50~100℃,干燥时长为12~24h。
4.根据权利要求1所述钙锶铝氧系列陶瓷靶材的制备方法,其特征在于:所述步骤(4)中研磨时间0.5~1h。
5.根据权利要求1所述钙锶铝氧系列陶瓷靶材的制备方法,其特征在于:所述步骤(5)中初次烧结温度为400~600℃,加热时长为2~8h。
6.根据权利要求1所述钙锶铝氧系列陶瓷靶材的制备方法,其特征在于:所述步骤(6)中压片机的压力为3~4Mpa,加压时间20~30min。
7.根据权利要求1所述钙锶铝氧系列陶瓷靶材的制备方法,其特征在于:所述步骤(7)中二次煅烧温度为1200~1450℃,加热时长为2~12h。
CN202310631411.XA 2023-05-31 2023-05-31 一种钙锶铝氧系列陶瓷靶材的制备方法 Pending CN116639970A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310631411.XA CN116639970A (zh) 2023-05-31 2023-05-31 一种钙锶铝氧系列陶瓷靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310631411.XA CN116639970A (zh) 2023-05-31 2023-05-31 一种钙锶铝氧系列陶瓷靶材的制备方法

Publications (1)

Publication Number Publication Date
CN116639970A true CN116639970A (zh) 2023-08-25

Family

ID=87618470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310631411.XA Pending CN116639970A (zh) 2023-05-31 2023-05-31 一种钙锶铝氧系列陶瓷靶材的制备方法

Country Status (1)

Country Link
CN (1) CN116639970A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796191A1 (en) * 2005-12-06 2007-06-13 Council of Scientific and Industrial Research An improved process for the manufacture of strontium doped lanthanum manganite (LSM) ceramic powder suitable for solid oxide fuel cell (SOFC) applications
US20090004371A1 (en) * 2007-06-29 2009-01-01 Johnson Lonnie G Amorphous lithium lanthanum titanate thin films manufacturing method
CN103026474A (zh) * 2010-07-26 2013-04-03 日产化学工业株式会社 非晶态金属氧化物半导体层形成用前体组合物、非晶态金属氧化物半导体层及其制造方法以及半导体器件
RU2567305C1 (ru) * 2014-06-27 2015-11-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения сложного алюмината кальция-магния
CN111646798A (zh) * 2020-06-11 2020-09-11 昆明理工大学 一种镧钙锰氧低掺杂硝酸钐的制备方法
US20210339225A1 (en) * 2018-10-15 2021-11-04 University Court Of The University Of St Andrews Mixed oxide composite comprising calcium oxide and tricalcium aluminate
US20220356069A1 (en) * 2019-07-10 2022-11-10 Sasol Germany Gmbh Strontium Aluminate Mixed Oxide and Method for Producing Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796191A1 (en) * 2005-12-06 2007-06-13 Council of Scientific and Industrial Research An improved process for the manufacture of strontium doped lanthanum manganite (LSM) ceramic powder suitable for solid oxide fuel cell (SOFC) applications
US20090004371A1 (en) * 2007-06-29 2009-01-01 Johnson Lonnie G Amorphous lithium lanthanum titanate thin films manufacturing method
CN103026474A (zh) * 2010-07-26 2013-04-03 日产化学工业株式会社 非晶态金属氧化物半导体层形成用前体组合物、非晶态金属氧化物半导体层及其制造方法以及半导体器件
RU2567305C1 (ru) * 2014-06-27 2015-11-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения сложного алюмината кальция-магния
US20210339225A1 (en) * 2018-10-15 2021-11-04 University Court Of The University Of St Andrews Mixed oxide composite comprising calcium oxide and tricalcium aluminate
US20220356069A1 (en) * 2019-07-10 2022-11-10 Sasol Germany Gmbh Strontium Aluminate Mixed Oxide and Method for Producing Same
CN111646798A (zh) * 2020-06-11 2020-09-11 昆明理工大学 一种镧钙锰氧低掺杂硝酸钐的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGWEI XU等: "Variation of crystal structure and defect luminescence in Ca3−xSrxAl2O6 phosphors", CERAMICS INTERNATIONAL, pages 10967 - 10974 *
M. MISEVICIUS等: "Sol–gel synthesis and investigation of un-doped and Ce-doped strontium aluminates", CERAMICS INTERNATIONAL, pages 5915 - 5924 *
关丽丽: "CeO2基固体电解质的制备及性能研究", 30 June 2022, 燕山大学出版社, pages: 33 - 34 *

Similar Documents

Publication Publication Date Title
Lee et al. Preparation of Portland cement components by poly (vinyl alcohol) solution polymerization
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
WO1994012447A1 (en) Fluxed lanthanum chromite for low temperature air firing
US9379391B2 (en) Air electrode material powder for solid oxide fuel cell and its production process
Cinibulk Effect of precursors and dopants on the synthesis and grain growth of calcium hexaluminate
JP2017178744A (ja) 強誘電体セラミックス及びその製造方法
CN103214235A (zh) 一种微波介质陶瓷材料的制备方法
CN111019648A (zh) 一种含氧酸盐或氮氧化物荧光粉的熔盐法制备方法
CN104030693B (zh) 一种三元阳离子Ce:LuAG陶瓷荧光粉的制备方法
JP2008239363A (ja) 複合金属硫化物の製造方法および複合金属硫化物焼結体の製造方法
CN101831292A (zh) 一种铝酸锶发光材料及其可控合成方法
CN103864425B (zh) 一种微波介质陶瓷材料的制备方法
CN101595060B (zh) 固溶体微粒的制造方法
CN116639970A (zh) 一种钙锶铝氧系列陶瓷靶材的制备方法
CN107585779A (zh) 一种含铬镁砂的制备方法
JP4786143B2 (ja) 複酸化物セラミックスの製造方法
JP2023024537A (ja) 溶射用粒子及びその製造方法
CN112979306B (zh) 一种制备铁电储能陶瓷的方法
CN115340378A (zh) 一种氧化物固态电解质及其制备方法以及一种锂离子电池
CN114574203A (zh) 一种蓝光激发Pr3+、Eu3+掺杂可调色纳米荧光粉及其制备方法
TW201319007A (zh) 導電性鈣鋁石化合物燒結體、濺鍍用靶及導電性鈣鋁石化合物燒結體之製造方法
CN108751243B (zh) 一种浸渍型阴极用铝酸盐电子发射材料制备方法
CN112480919A (zh) 一种高热稳定性黄绿色荧光粉及其制备方法
CN101265408B (zh) 一种钐掺杂铝酸钆基荧光粉体及其制备方法
CN111377734A (zh) X9r型多层陶瓷电容器介质材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination