CN116606785A - 一种修饰的棒状杆菌属微生物及其应用与构建方法 - Google Patents

一种修饰的棒状杆菌属微生物及其应用与构建方法 Download PDF

Info

Publication number
CN116606785A
CN116606785A CN202210118698.1A CN202210118698A CN116606785A CN 116606785 A CN116606785 A CN 116606785A CN 202210118698 A CN202210118698 A CN 202210118698A CN 116606785 A CN116606785 A CN 116606785A
Authority
CN
China
Prior art keywords
microorganism
gene
threonine
enzyme
enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210118698.1A
Other languages
English (en)
Inventor
康培
宫卫波
何君
李岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langfang Meihua Bio Technology Development Co Ltd
Original Assignee
Langfang Meihua Bio Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langfang Meihua Bio Technology Development Co Ltd filed Critical Langfang Meihua Bio Technology Development Co Ltd
Priority to CN202210118698.1A priority Critical patent/CN116606785A/zh
Priority to PCT/CN2022/143761 priority patent/WO2023151421A1/zh
Publication of CN116606785A publication Critical patent/CN116606785A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01003Homoserine dehydrogenase (1.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01031Phosphoenolpyruvate carboxylase (4.1.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01019Threonine ammonia-lyase (4.3.1.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01001Pyruvate carboxylase (6.4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及微生物工程技术领域,具体公开了一种修饰的棒状杆菌属微生物及其应用与构建方法。本发明的修饰的棒状杆菌属微生物,相比于未修饰的微生物,其Cgl0978基因的表达弱化或失活,且所述微生物相比于未修饰的微生物具有增强的苏氨酸生产能力。本发明可明显提升苏氨酸的产量,降低异亮氨酸的产量,为苏氨酸的生产提供了一个新的思路。

Description

一种修饰的棒状杆菌属微生物及其应用与构建方法
技术领域
本发明涉及微生物工程技术领域,具体地说,涉及一种修饰的棒状杆菌属微生物及其应用与构建方法。
背景技术
L-苏氨酸(L-Threonin),化学名称为β-羟基-α-氨基丁酸,分子式为C4H9NO3,相对分子质量为119.12。L-苏氨酸是一种必需的氨基酸,苏氨酸主要用于医药、化学试剂、食品强化剂、饲料添加剂等方面。
谷氨酸棒杆菌中,由草酰乙酸生成苏氨酸需要五步催化反应,分别为天冬氨酸激酶(lysC编码)、天冬氨酸半醛脱氢酶(asd编码)、高丝氨酸脱氢酶(hom编码)、高丝氨酸激酶(thrB编码)以及苏氨酸合酶(thrC编码)。Hermann Sahm等人一直致力于高产苏氨酸的谷棒菌株的开发,并取得一定突破,获得了抗反馈抑制的hom基因(Reinscheid D J,Eikmanns BJ,Sahm H.Analysis of a Corynebacterium glutamicum hom gene coding for afeedback-resistant homoserine dehydrogenase.[J].Journal of Bacteriology,1991,173(10):3228-3230.)、lysC基因(Eikmanns B J,Eggeling L,Sahm H.Molecular aspectsof lysine,threonine,and isoleucine biosynthesis in Corynebacteriumglutamicum.[J].Antonie Van Leeuwenhoek,1993,64(2):145-163.)。继Hermann Sahm之后,Lothar Eggling在该领域进行了进一步的探索,弱化苏氨酸利用途径中的编码基因glyA,同时过表达苏氨酸外运蛋白ThrE,使得苏氨酸的产量由49mM提高到67mM(Simic P,Willuhn J,Sahm H,et al.Identification of glyA(Encoding SerineHydroxymethyltransferase)and Its Use Together with the Exporter ThrE ToIncrease l-Threonine Accumulation by Corynebacterium glutamicum[J].Appliedand Environmental Microbiology,2002,68(7):3321-3327.)。
但目前利用谷氨酸棒状杆菌生产苏氨酸的报道主要集中在其合成路径的解调控及过表达上,TCA循环及中央代谢等方面的报道较少。且现有报道仅对苏氨酸合成路径做了初步研究,并未形成系统。仍有必要对谷氨酸棒状杆菌生产苏氨酸进行进一步研究。
发明内容
本发明的目的是通过失活或弱化Cgl0978基因的表达使菌株生产苏氨酸的能力得到提升,从而提供一种产苏氨酸(L-苏氨酸)菌株及其构建方法与应用。
为了实现本发明目的,第一方面,本发明提供一种修饰的棒状杆菌属微生物,所述微生物相比于未修饰的微生物,其Cgl0978基因的表达降低或丧失,且所述微生物相比于未修饰的微生物具有增强的苏氨酸生产能力。
同Cgl0978基因相同的基因还有编号为NCgl0939和cg1116的基因。
目前关于苏氨酸的降解路径研究较少,苏氨酸通过苏氨酸脱水酶的催化生成异亮氨酸,目前编码该酶的基因为ilvA,且主流的降低异亮氨酸的副产物的方法为降低ilvA的表达量,或者失活ilvA。本发明研究发现Cgl0978具有苏氨酸脱水酶的作用,并且通过失活Cgl0978降低了异亮氨酸的产量,提高了菌株合成苏氨酸的能力。
可以采用诱变、定点突变或同源重组的方法来降低Cgl0978基因的表达或使其失活(如敲除内源的Cgl0978基因)。
进一步地,所述微生物与未修饰的微生物相比,其体内苏氨酸合成途径和/或前体供应途径相关的酶的活性增强;其中,与所述苏氨酸合成途径和/或前体供应途径相关的酶选自天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶中的至少一种;优选地,它们在NCBI上的参考序列编号分别为WP_003855724.1、WP_003854900.1、WP_011013816.1、WP_011014465.1,或与上述参考序列相似度为90%的氨基酸序列。
优选地,所述微生物为如下①~④中的任一种:
①Cgl0978基因的表达降低或丧失且天冬氨酸激酶和/或高丝氨酸脱氢酶活性增强的微生物;
②Cgl0978基因的表达降低或丧失且天冬氨酸激酶、高丝氨酸脱氢酶和/或丙酮酸羧化酶活性增强的微生物;
③Cgl0978基因的表达降低或丧失且天冬氨酸激酶、高丝氨酸脱氢酶和/或磷酸烯醇式丙酮酸羧化酶活性增强的微生物;
④Cgl0978基因的表达降低或丧失且天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶和/或磷酸烯醇式丙酮酸羧化酶活性增强的微生物。
所述微生物体内苏氨酸合成途径和/或前体供应途径相关的酶的活性的增强是由选自以下1)~5),或任选的组合实现的:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强。
优选地,本发明所述棒杆菌为谷氨酸棒状杆菌(Corynebacterium glutamicum),谷氨酸棒状杆菌包括ATCC13032、ATCC13870、ATCC13869、ATCC21799、ATCC21831、ATCC14067、ATCC13287等(参见NCBI Corunebacterium glutamicum进化树https://www.ncbi.nlm.nih.gov/genome/469),更优选谷氨酸棒状杆菌ATCC 13032。
第二方面,本发明提供产苏氨酸菌株的构建方法,所述方法包括:
A、弱化或失活具有氨基酸生产能力的棒杆菌中的Cgl0978基因,获得基因弱化菌株;和/或,
B、增强步骤A基因弱化菌株中与苏氨酸合成途径和/或前体供应途径相关的酶,获得酶活增强菌株;
所述增强的途径选自以下1)~5),或任选的组合:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强;
其中,与所述苏氨酸合成途径和/或前体供应途径相关的酶选自天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶中的至少一种。
第三方面,本发明提供一种生产苏氨酸的方法,所述方法包括如下步骤:
a)培养上述微生物,以获得所述微生物的培养物;
b)从步骤a)中获得的所述培养物中收集所产生的苏氨酸。
第四方面,本发明提供Cgl0978基因弱化或失活在苏氨酸发酵生产或提高苏氨酸发酵产量中的应用。
进一步地,通过失活具有氨基酸生产能力的棒杆菌(Corynebacterium)中的Cgl0978基因来提高苏氨酸的发酵产量。
优选地,本发明所述棒杆菌为谷氨酸棒状杆菌(Corynebacterium glutamicum),谷氨酸棒状杆菌包括ATCC13032、ATCC13870、ATCC13869、ATCC21799、ATCC21831、ATCC14067、ATCC13287等(参见NCBI Corunebacterium glutamicum进化树https://www.ncbi.nlm.nih.gov/genome/469),更优选谷氨酸棒状杆菌ATCC 13032。
第五方面,本发明提供所述修饰的棒状杆菌属微生物或按照上述方法构建得到的产苏氨酸菌株在苏氨酸发酵生产或提高苏氨酸发酵产量中的应用。
上述有关菌株的改造方法包括基因的强化和弱化等均为本领域技术人员可知的改造方式,参见满在伟.高产L-精氨酸钝齿棒杆菌的系统途径工程改造[D].江南大学,2016;崔毅.代谢工程改造谷氨酸棒杆菌生产L-亮氨酸[D].天津科技大学;徐国栋.L-异亮氨酸生产菌株的构建及发酵条件优化.天津科技大学,2015。
优选,本发明中,通过使Cgl0978编码区从基因组中去除,从而使其失活。
通过使编码天冬氨酸激酶的基因lysC突变,从而使其起始密码子由GTG突变为ATG,其编码的氨基酸第311位由苏氨酸变为异亮氨酸,并且使lysC基因由Psod启动转录,最终实现天冬氨酸激酶的表达强化和解调控。Psod的核苷酸序列如SEQ ID NO.37所示。
通过使编码高丝氨酸脱氢酶的基因hom突变,从而使其编码蛋白携带G378E突变,并且使hom基因由PcspB启动转录,最终实现高丝氨酸脱氢酶的解调控和表达强化。PcspB的核苷酸序列如SEQ ID NO.38所示。
通过使编码丙酮酸羧化酶的基因pyc突变,从而使其编码蛋白携带P458S突变,并且使pyc基因由Psod启动转录,最终实现丙酮酸羧化酶的表达强化。Psod的核苷酸序列如SEQ ID NO.37所示。
通过使编码磷酸烯醇式丙酮酸羧化酶的基因ppc突变,从而使其编码蛋白携带D299N突变,并且使ppc基因由Ptuf启动转录,最终实现磷酸烯醇式丙酮酸羧化酶的表达强化。Ptuf的核苷酸序列如SEQ ID NO.39所示。
本发明的有益效果至少在于:
本发明将Cgl0978失活菌株应用于苏氨酸生产,其苏氨酸的产量较未改造之前可提高20.8-51.2%,异亮氨酸的含量可由0.8g/L下降到0.2g/L。具体地,进一步将失活Cgl0978与苏氨酸合成路径中的天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶中的至少一个表达强化和解调控相组合时,其苏氨酸的产量均有提升,苏氨酸下游产物异亮氨酸的产量均有降低,为提升苏氨酸的生产能力提供了一个新的思路。
具体实施方式
下面将结合实施例对本发明的优选实施方式进行详细说明。需要理解的是以下实施例的给出仅是为了起到说明的目的,并不是用于对本发明的范围进行限制。本领域的技术人员在不背离本发明的宗旨和精神的情况下,可以对本发明进行各种修改和替换。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明涉及的蛋白及其编码基因如下:
天冬氨酸激酶,编码基因名称lysC,NCBI编号:cg0306、Cgl0251、NCgl0247;
高丝氨酸脱氢酶,编码基因名称hom,NCBI编号:Cg1337、Cgl1183、NCgl1136;
苏氨酸合酶,编码基因名称thrC,NCBI编号:cg2437、Cgl2220、NCgl2139;
丙酮酸羧化酶,编码基因pyc,NCBI编号:cg0791、Cgl0689、NCgl0659;
磷酸烯醇式丙酮酸羧化酶,编码基因ppc,NCBI编号:cg1787、Cgl1585、NCgl1523。
本发明以模式菌株ATCC13032为出发菌株单独构建Cgl0978失活菌株,发现失活Cgl0978对菌株无影响,由于模式菌株ATCC13032不是苏氨酸的生产菌,因此Cgl0978失活后对菌株无明显影响是可以预见的。
为了探索Cgl0978失活是否会降低苏氨酸降解成异亮氨酸的能力,本发明首先构建了一株具备苏氨酸生产能力的菌株,首先解调控并强化天冬氨酸激酶的表达,随后解调控并强化高丝氨酸脱氢酶的表达,获得具备苏氨酸生产能力的改造菌SMCT363。SMCT363苏氨酸产量为2.4g/L,异亮氨酸含量0.3g/L。将SMCT363的Cgl0978失活后获得的改造菌SMCT364苏氨酸产量为2.9g/L,异亮氨酸含量为0.1g/L,异亮氨酸含量降低,且苏氨酸产量提高20.8%。
为了进一步验证Cgl0978可以减少苏氨酸降解为异亮氨酸,进一步构建苏氨酸生产菌SMCT365、SMCT366,其在SMCT363的基础上分别表达强化和解调控丙酮酸羧化酶和磷酸烯醇式丙酮酸羧化酶。并进一步失活Cgl0978,获得改造菌SMCT367、SMCT368,改造菌的苏氨酸产量较未失活Cgl0978前分别提高30%和41.2%。
最后在SMCT366的基础上强化和解调控磷酸烯醇式丙酮酸羧化酶获得改造菌SMCT369,然后失活Cgl0978,得到SMCT370,改造菌苏氨酸产量达到6.5g/L,异亮氨酸含量为0.2g/L。
改造过程中的失活或弱化包括启动子的替换,核糖体结合位点的改变、点突变、序列的缺失等手段,改造过程中的表达强化包括启动子的替换,核糖体结合位点的改变、拷贝数的增加、质粒过表达等手段,且以上手段均为本领域研究人员公知手段。以上手段无法通过举例而穷尽,因此本发明中的实施例仅用启动子强化和点突变作为代表进行说明。
实施例1菌株基因组改造质粒构建
1)Cgl0978失活方案重组质粒pK18mobsacB-△Cgl0978
以ATCC13032基因组为模板,以P145/P146引物对进行PCR扩增得到上游同源臂up,以P147/P148引物对进行PCR扩增得到下游同源臂dn,以P145/P148引物对以up、dn为模板进行融合PCR,获得全长片段△Cgl0978。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-△Cgl0978
2)天冬氨酸激酶表达强化和解调控方案重组质粒pK18mobsacB-Psod-lysCg1a-T311I
以谷氨酸棒状杆菌ATCC 13032基因组为模板,以P21/P22引物对进行PCR扩增得到上游同源臂up,以P23/P24引物对进行PCR扩增得到启动子片段Psod,以P25/P26引物对进行PCR扩增得到lysCg1a-T311I,以P27/P28引物对进行PCR扩增得到下游同源臂dn。以P21/P24引物对以up、Psod为模板进行融合PCR,获得片段up-Psod。以P21/P28引物对以up-Psod、lysCg1a-T311I、dn为模板进行融合PCR获得全长片段up-Psod-lysCg1a-T311I-dn。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-Psod-lysCg1a-T311I
3)高丝氨酸脱氢酶表达强化和解调控方案重组质粒pK18mobsacB-PcspB-homG378E
以谷氨酸棒状杆菌ATCC 13032基因组为模板,以P29/P30引物对进行PCR扩增得到上游同源臂up,以ATCC14067基因组为模板以P31/P32引物对进行PCR扩增得到启动子片段PcspB,以ATCC13032基因组为模板以P33/P34引物对进行PCR扩增得到homG378E,以P35/P36引物对进行PCR扩增得到下游同源臂dn。以P29/P32引物对以up、PcspB为模板进行融合PCR,获得片段up-PcspB。以P29/P36引物对以up-PcspB、homG378E、dn为模板进行融合PCR获得全长片段up-PcspB-homG378E-dn。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-PcspB-homG378E
4)丙酮酸羧化酶表达强化和解调控方案重组质粒pK18mobsacB-Psod-pycP458S
以谷氨酸棒状杆菌ATCC 13032基因组为模板,以P13/P14引物对进行PCR扩增得到上游同源臂up,以P15/P16引物对进行PCR扩增得到启动子片段Psod,以P17/P18引物对进行PCR扩增得到pycP458S,以P19/P20引物对进行PCR扩增得到下游同源臂dn。以P13/P16引物对以up、Psod为模板进行融合PCR,获得片段up-Psod。以P13/P20引物对以up-Psod、pycP458S、dn为模板进行融合PCR获得全长片段up-Psod-pycP458S-dn。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-Psod-pycP458S
5)磷酸烯醇式丙酮酸羧化酶表达强化和解调控方案重组质粒pK18mobsacB-Ptuf-ppcD299N
以谷氨酸棒状杆菌ATCC 13032基因组为模板,以P53/P54引物对进行PCR扩增得到上游同源臂up,以P55/P56引物对进行PCR扩增得到启动子片段Ptuf,以P57/P58引物对进行PCR扩增得到ppcD299N,以P59/P60引物对进行PCR扩增得到下游同源臂dn。以P53/P56引物对以up、Ptuf为模板进行融合PCR,获得片段up-Ptuf。以P53/P60引物对以up-Ptuf、ppcD299N、dn为模板进行融合PCR获得全长片段up-Ptuf-ppcD299N-dn。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-Ptuf-ppcD299N
质粒构建过程中所用的引物如下表1所示:
表1
实施例2基因组改造菌株的构建
1)天冬氨酸激酶表达强化和解调控菌株的构建
按照谷棒经典方法(C.glutamicum Handbook,Charpter 23)制备ATCC13032感受态细胞。重组质粒pK18mobsacB-Psod-lysCg1a-T311I以电穿孔方法转化该感受态细胞,并在含有15mg/L卡那霉素的选择培养基上筛选转化子,其中目的基因由于同源性被插入到染色体中。将筛得的转化子过夜培养于普通液体脑心浸液培养基中,培养温度为30℃,回转摇床220rpm振荡培养。此培养过程中,转化子发生第二次重组,通过基因交换将载体序列从基因组中除去。将培养物做连续梯度稀释(10-2连续稀释至10-4),稀释液涂布在含有10%蔗糖的普通固体脑心浸液培养基上,33℃静置培养48h。蔗糖培养基上长出的菌株在其基因组中不携带插入的载体序列。通过PCR扩增目的序列,核苷酸测序分析,获得目的突变菌株分别命名为SMCT362。该菌株中,lysC基因被突变,其起始密码子由GTG突变为ATG,其编码的氨基酸第311位由苏氨酸变为异亮氨酸,且lysC基因的启动子被替换为强启动子Psod。
2)高丝氨酸脱氢酶表达强化和解调控菌株的构建
菌株构建方法参考上述1),以SMCT362为出发菌,进行高丝氨酸脱氢酶表达强化和解调控的改造(将pK18mobsacB-PcspB-homG378E导入SMCT362),获得的改造菌株命名为SMCT363。该菌株中,hom基因进一步被突变,对应的氨基酸突变位点为G378E,且hom基因的启动子被替换为强启动子PcspB。
3)丙酮酸羧化酶表达强化和解调控菌株的构建
菌株构建方法参考上述1),以SMCT363为出发菌,进行丙酮酸羧化酶表达强化和解调控的改造(将pK18mobsacB-Psod-pycP458S导入SMCT363),获得的改造菌株命名为SMCT365。该菌株中,pyc基因进一步被突变,对应的氨基酸突变位点为P458S,且pyc基因的启动子被替换为强启动子Psod
4)磷酸烯醇式丙酮酸羧化酶表达强和解调控菌株的构建
菌株构建方法参考上述1),以SMCT363、SMCT365为出发菌,进行磷酸烯醇式丙酮酸羧化酶表达强化和解调控的改造(将pK18mobsacB-Ptuf-ppcD299N导入SMCT363、SMCT365),获得的改造菌株命名为SMCT366、SMCT369。该菌株中,ppc基因进一步被突变,对应的氨基酸突变位点为D299N,且ppc基因的启动子被替换为强启动子Ptuf
5)Cgl0978失活菌株的构建
菌株构建方法参考上述1),以ATCC13032、SMCT363、SMCT365、SMCT366、SMCT369为出发菌,进行Cgl0978失活菌株的改造(将pK18mobsacB-△Cgl0978导入上述出发菌),获得的改造菌株命名为SMCT361、SMCT364、SMCT367、SMCT368、SMCT370。该菌株中Cgl0978基因编码区丢失,从而导致其失活。
获得的菌株列表如下表2。
表2
实施例3构建菌株摇瓶验证
1.培养基
种子活化培养基:BHI 3.7%,琼脂2%,pH7。
种子培养基:蛋白胨5/L,酵母抽提物5g/L,氯化钠10g/L,硫酸铵16g/L,尿素8g/L,磷酸二氢钾10.4g/L,磷酸氢二钾21.4g/L,生物素5mg/L,硫酸镁3g/L。葡萄糖50g/L,pH7.2。
发酵培养基:玉米浆50mL/L,葡萄糖30g/L,硫酸铵4g/L,MOPS 30g/L,磷酸二氢钾10g/L,尿素20g/L,生物素10mg/L,硫酸镁6g/L,硫酸亚铁1g/L,VB1·HCl 40mg/L,泛酸钙50mg/L,烟酰胺40mg/L,硫酸锰1g/L,硫酸锌20mg/L,硫酸铜20mg/L,pH 7.2。
2.工程菌摇瓶发酵生产L-苏氨酸
(1)种子培养:挑取ATCC13032、SMCT361、SMCT363、SMCT364、SMCT365、SMCT366、SMCT367、SMCT368、SMCT369、SMCT370斜面种子1环接至装有20mL种子培养基的500mL三角瓶中,30℃、220r/min振荡培养16h。
(2)发酵培养:将2mL种子液接种至装有20mL发酵培养基的500mL三角瓶中,33℃、220r/min振荡培养24h。
(3)取1mL发酵液离心(12000rpm,2min),收集上清液,用HPLC检测工程菌与对照菌发酵液中的L-苏氨酸、异亮氨酸的浓度。
(4)苏氨酸摇瓶发酵结果如下表3所示。
表3
由上表可以看出,Cgl0978失活后的改造菌株的苏氨酸产量较失活前有所提高,其产量提高在20.8%~51.2%之间,苏氨酸最高产量为6.5g/L。不同的Cgl0978失活菌株之间的苏氨酸产量有所差异,在0.9g/L~3.6g/L之间,说明Cgl0978的失活与不同位点的组合有不同的效果,且当其与苏氨酸合成路径中的天冬氨酸激酶、高丝氨酸脱氢酶以及丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶中至少一个表达强化和解调控相组合时,其苏氨酸的产量均有34%~124%的提升。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 廊坊梅花生物技术开发有限公司
<120> 一种修饰的棒状杆菌属微生物及其应用与构建方法
<130> KHP211124465.6
<160> 39
<170> SIPOSequenceListing 1.0
<210> 1
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
aattcgagct cggtacccgg ggatcctgac agttgctgat ctggct 46
<210> 2
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
cccggaataa ttggcagcta tagagtaatt attcctttca 40
<210> 3
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tgaaaggaat aattactcta tagctgccaa ttattccggg 40
<210> 4
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gaagatgtgt gagtcgacac gggtaaaaaa tcctttcgta 40
<210> 5
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tacgaaagga ttttttaccc gtgtcgactc acacatcttc 40
<210> 6
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ggtggagcct gaaggaggtg cgagtgatcg gcaatgaatc cgg 43
<210> 7
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ccggattcat tgccgatcac tcgcacctcc ttcaggctcc acc 43
<210> 8
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gtaaaacgac ggccagtgcc aagcttcgcg gcagacggag tctggg 46
<210> 9
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
aattcgagct cggtacccgg ggatccagcg acaggacaag cactgg 46
<210> 10
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cccggaataa ttggcagcta tgtgcacctt tcgatctacg 40
<210> 11
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cgtagatcga aaggtgcaca tagctgccaa ttattccggg 40
<210> 12
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tttctgtacg accagggcca tgggtaaaaa atcctttcgt a 41
<210> 13
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tacgaaagga ttttttaccc atggccctgg tcgtacagaa a 41
<210> 14
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tcggaacgag ggcaggtgaa ggtgatgtcg gtggtgccgt ct 42
<210> 15
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
agacggcacc accgacatca ccttcacctg ccctcgttcc ga 42
<210> 16
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
gtaaaacgac ggccagtgcc aagcttagcc tggtaagagg aaacgt 46
<210> 17
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
aattcgagct cggtacccgg ggatccctgc gggcagatcc ttttga 46
<210> 18
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
atttctttat aaacgcaggt catatctacc aaaactacgc 40
<210> 19
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
gcgtagtttt ggtagatatg acctgcgttt ataaagaaat 40
<210> 20
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
gtatatctcc ttctgcagga ataggtatcg aaagacgaaa 40
<210> 21
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tttcgtcttt cgatacctat tcctgcagaa ggagatatac 40
<210> 22
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
tagccaattc agccaaaacc cccacgcgat cttccacatc c 41
<210> 23
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
ggatgtggaa gatcgcgtgg gggttttggc tgaattggct a 41
<210> 24
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
gtaaaacgac ggccagtgcc aagcttgctg gctcttgccg tcgata 46
<210> 25
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
aattcgagct cggtacccgg ggatcctacg tcgtcgagca gacccg 46
<210> 26
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
cattcgcagg gtaacggcca agggtgttgg cgtgcatgag 40
<210> 27
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
ctcatgcacg ccaacaccct tggccgttac cctgcgaatg 40
<210> 28
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
tcgcgtaaaa aatcagtcat tgtatgtcct cctggacttc 40
<210> 29
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
gaagtccagg aggacataca atgactgatt ttttacgcga 40
<210> 30
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
gtgaccttat tcatgcggtt cgacaggctg agctcatgct 40
<210> 31
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
agcatgagct cagcctgtcg aaccgcatga ataaggtcac 40
<210> 32
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
gtaaaacgac ggccagtgcc aagcttggtg acttgggcgc gttcga 46
<210> 33
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
aattcgagct cggtacccgg ggatccgcag gcaccttcac cacaat 46
<210> 34
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
catcgagttc tagaaaacac aggctgtgat ttcaaacgat cacacgacg 49
<210> 35
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
cgtcgtgtga tcgtttgaaa tcacagcctg tgttttctag aactcgatg 49
<210> 36
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 36
cacgacgttg taaaacgacg gccagtgcca agcttgcatc caaacgcttc catcttc 57
<210> 37
<211> 192
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 37
tagctgccaa ttattccggg cttgtgaccc gctacccgat aaataggtcg gctgaaaaat 60
ttcgttgcaa tatcaacaaa aaggcctatc attgggaggt gtcgcaccaa gtacttttgc 120
gaagcgccat ctgacggatt ttcaaaagat gtatatgctc ggtgcggaaa cctacgaaag 180
gattttttac cc 192
<210> 38
<211> 260
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 38
acctgcgttt ataaagaaat gtaaacgtga tcggatcgat ataaaagaaa cagtttgtac 60
tcaggtttga agcattttct ccaattcgcc tggcaaaaat ctcaattgtc gcttacagtt 120
tttctcaacg acaggctgct aagctgctag ttcggtggcc tagtgagtgg cgtttacttg 180
gataaaagta atcccatgtc gtgatcagcc attttgggtt gtttccatag catccaaagg 240
tttcgtcttt cgatacctat 260
<210> 39
<211> 200
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 39
tggccgttac cctgcgaatg tccacagggt agctggtagt ttgaaaatca acgccgttgc 60
ccttaggatt cagtaactgg cacattttgt aatgcgctag atctgtgtgc tcagtcttcc 120
aggctgctta tcacagtgaa agcaaaacca attcgtggct gcgaaagtcg tagccaccac 180
gaagtccagg aggacataca 200

Claims (8)

1.一种修饰的棒状杆菌属微生物,其特征在于,所述微生物相比于未修饰的微生物,其Cgl0978基因的表达降低或丧失,且所述微生物相比于未修饰的微生物具有增强的苏氨酸生产能力。
2.根据权利要求1所述的微生物,其特征在于,采用诱变、定点突变或同源重组的方法来降低Cgl0978基因的表达或使其失活。
3.根据权利要求1所述的微生物,其特征在于,所述微生物与未修饰的微生物相比,其体内苏氨酸合成途径和/或前体供应途径相关的酶的活性增强;
其中,与所述苏氨酸合成途径和/或前体供应途径相关的酶选自天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶中的至少一种。
4.根据权利要求3所述的微生物,其特征在于,所述微生物为如下①~④中的任一种:
①Cgl0978基因的表达降低或丧失且天冬氨酸激酶和/或高丝氨酸脱氢酶活性增强的微生物;
②Cgl0978基因的表达降低或丧失且天冬氨酸激酶、高丝氨酸脱氢酶和/或丙酮酸羧化酶活性增强的微生物;
③Cgl0978基因的表达降低或丧失且天冬氨酸激酶、高丝氨酸脱氢酶和/或磷酸烯醇式丙酮酸羧化酶活性增强的微生物;
④Cgl0978基因的表达降低或丧失且天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶和/或磷酸烯醇式丙酮酸羧化酶活性增强的微生物。
5.根据权利要求3所述的微生物,其特征在于,所述微生物体内苏氨酸合成途径和/或前体供应途径相关的酶的活性的增强是由选自以下1)~5),或任选的组合实现的:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强。
6.根据权利要求1-4任一项所述的微生物,其特征在于,所述微生物为谷氨酸棒状杆菌(Corynebacterium glutamicum)。
7.产苏氨酸菌株的构建方法,其特征在于,所述方法包括:
A、弱化或失活具有氨基酸生产能力的棒杆菌中的Cgl0978基因,获得基因弱化菌株;和/或,
B、增强步骤A基因弱化菌株中与苏氨酸合成途径和/或前体供应途径相关的酶,获得酶活增强菌株;
所述增强的途径选自以下1)~5),或任选的组合:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强;
其中,与所述苏氨酸合成途径和/或前体供应途径相关的酶选自天冬氨酸激酶、高丝氨酸脱氢酶、丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶中的至少一种。
8.一种生产苏氨酸的方法,其特征在于,所述方法包括如下步骤:
a)培养权利要求1-6任一项所述的微生物,以获得所述微生物的培养物;
b)从步骤a)中获得的所述培养物中收集所产生的苏氨酸。
CN202210118698.1A 2022-02-08 2022-02-08 一种修饰的棒状杆菌属微生物及其应用与构建方法 Pending CN116606785A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210118698.1A CN116606785A (zh) 2022-02-08 2022-02-08 一种修饰的棒状杆菌属微生物及其应用与构建方法
PCT/CN2022/143761 WO2023151421A1 (zh) 2022-02-08 2022-12-30 一种修饰的棒状杆菌属微生物及其应用与构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210118698.1A CN116606785A (zh) 2022-02-08 2022-02-08 一种修饰的棒状杆菌属微生物及其应用与构建方法

Publications (1)

Publication Number Publication Date
CN116606785A true CN116606785A (zh) 2023-08-18

Family

ID=87563535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210118698.1A Pending CN116606785A (zh) 2022-02-08 2022-02-08 一种修饰的棒状杆菌属微生物及其应用与构建方法

Country Status (2)

Country Link
CN (1) CN116606785A (zh)
WO (1) WO2023151421A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265093B2 (ja) * 2000-08-11 2009-05-20 味の素株式会社 スレオニン及びイソロイシンの製造法
KR100451299B1 (ko) * 2002-03-21 2004-10-06 씨제이 주식회사 L―쓰레오닌의 제조방법
KR100498971B1 (ko) * 2003-04-04 2005-07-04 씨제이 주식회사 염색체 내 tdcBC 및 pckA 유전자가 불활성화된 미생물 및 이를 이용하여 L-쓰레오닌을 제조하는 방법
CN105505969A (zh) * 2014-09-26 2016-04-20 中国科学院天津工业生物技术研究所 一种提高l-苏氨酸转化率的方法及其应用

Also Published As

Publication number Publication date
WO2023151421A1 (zh) 2023-08-17

Similar Documents

Publication Publication Date Title
CN113322218B (zh) 重组谷氨酸棒杆菌及生产l-苏氨酸的方法
JP6679803B2 (ja) 新規プロモーター及びその用途
CN109251934B (zh) 利用具有产生l-赖氨酸能力的微生物产生l-赖氨酸的方法
JP6297134B2 (ja) プトレシン生産性を有する微生物及びそれを用いたプトレシン生産方法
CN106574237B (zh) 生产o-乙酰高丝氨酸的微生物和使用其生产o-乙酰高丝氨酸的方法
DK2236610T3 (en) Promoter and improved method for producing L-lysine using the same
KR101429815B1 (ko) GntK 활성 조절을 통해 L-쓰레오닌 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 L-쓰레오닌 생산 방법
CN116606785A (zh) 一种修饰的棒状杆菌属微生物及其应用与构建方法
CN116536227A (zh) 一种生产苏氨酸的修饰的棒状杆菌属微生物及其构建方法与应用
CN116622596A (zh) 一种修饰的棒状杆菌属微生物及其构建方法与在生产苏氨酸中的应用
CN116555136A (zh) 一种修饰的棒状杆菌属微生物及其构建方法与应用
CN116555132A (zh) 一种修饰的棒状杆菌属微生物及其生产苏氨酸的应用和构建方法
KR102377745B1 (ko) 신규 프로모터 및 이의 용도
CN116555251A (zh) 一种生产苏氨酸的重组微生物及其应用
CN116555134A (zh) 产苏氨酸菌株的构建方法
CN116606786A (zh) 一种生产苏氨酸的重组微生物及其构建方法和应用
CN116555137A (zh) 一种苏氨酸生产菌株及其应用
CN116536226A (zh) 产苏氨酸工程菌的构建方法
CN116555131A (zh) 一种重组微生物及其构建方法和应用
WO2023151409A1 (zh) 高产苏氨酸工程菌的构建方法
CN116555135A (zh) 高产苏氨酸基因工程菌的构建方法
WO2023151406A1 (zh) 苏氨酸生产菌株的构建方法
CN116555365A (zh) 修饰的棒状杆菌属微生物及其构建方法和应用
CN116622599A (zh) 高产苏氨酸菌株的构建方法
CN116555130A (zh) 产苏氨酸基因工程菌的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination