CN116555365A - 修饰的棒状杆菌属微生物及其构建方法和应用 - Google Patents

修饰的棒状杆菌属微生物及其构建方法和应用 Download PDF

Info

Publication number
CN116555365A
CN116555365A CN202210114594.3A CN202210114594A CN116555365A CN 116555365 A CN116555365 A CN 116555365A CN 202210114594 A CN202210114594 A CN 202210114594A CN 116555365 A CN116555365 A CN 116555365A
Authority
CN
China
Prior art keywords
threonine
microorganism
enzyme
artificial sequence
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210114594.3A
Other languages
English (en)
Inventor
康培
刘涛
宫卫波
何君
李岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langfang Meihua Bio Technology Development Co Ltd
Original Assignee
Langfang Meihua Bio Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langfang Meihua Bio Technology Development Co Ltd filed Critical Langfang Meihua Bio Technology Development Co Ltd
Priority to CN202210114594.3A priority Critical patent/CN116555365A/zh
Priority to PCT/CN2022/143100 priority patent/WO2023142859A1/zh
Publication of CN116555365A publication Critical patent/CN116555365A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01003Homoserine dehydrogenase (1.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01011Aspartate-semialdehyde dehydrogenase (1.2.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01016Diaminopimelate dehydrogenase (1.4.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03008ATP citrate synthase (2.3.3.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01039Homoserine kinase (2.7.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/03Amine-lyases (4.3.3)
    • C12Y403/030074-Hydroxy-tetrahydrodipicolinate synthase (4.3.3.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01001Pyruvate carboxylase (6.4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及微生物工程技术领域,具体涉及修饰的棒状杆菌属微生物及其构建方法和应用。本发明提供非必需基因的弱化或失活在提高微生物的苏氨酸产量或构建生产苏氨酸的微生物中的应用;所述非必需基因为cg1507‑cg1524、Cgl1336‑Cgl1352或NCgl1281‑NCgl1298。本发明通过失活非必需基因,显著提高了菌株生产苏氨酸的能力,同时提升了菌株的生长性能。上述非必需基因的改造可用于苏氨酸的发酵生产中,具有较好的应用价值。

Description

修饰的棒状杆菌属微生物及其构建方法和应用
技术领域
本发明涉及微生物工程技术领域,具体涉及修饰的棒状杆菌属微生物及其构建方法和应用。
背景技术
L-苏氨酸(L-Threonine)的化学名称为β-羟基-α-氨基丁酸,分子式为C4H9NO3,相对分子质量为119.12。L-苏氨酸是一种必需氨基酸,主要用于医药、化学试剂、食品强化剂、饲料添加剂等领域。
谷氨酸棒状杆菌是一种重要的工业微生物。谷氨酸棒状杆菌中,由草酰乙酸生成苏氨酸需要五步催化反应,这五步反应的催化酶分别为天冬氨酸激酶(lysC编码)、天冬氨酸半醛脱氢酶(asd编码)、高丝氨酸脱氢酶(hom编码)、高丝氨酸激酶(thrB编码)以及苏氨酸合酶(thrC编码)。在产苏氨酸的谷氨酸棒状杆菌的开发中,Hermann Sahm等获得了抗反馈抑制的hom基因(Reinscheid D J,Eikmanns B J,Sahm H.Analysis of aCorynebacterium glutamicum hom gene coding for a feedback-resistanthomoserine dehydrogenase.[J].Journal of Bacteriology,1991,173(10):3228-3230.)以及lysC基因(Eikmanns B J,Eggeling L,Sahm H.Molecular aspects of lysine,threonine,and isoleucine biosynthesis in Corynebacterium glutamicum.[J].Antonie Van Leeuwenhoek,1993,64(2):145-163.)。Lothar Eggling等通过弱化苏氨酸利用途径中的编码基因glyA,同时过表达苏氨酸外运蛋白ThrE,提高了苏氨酸的产量(Simic P,Willuhn J,Sahm H,et al.Identification of glyA(Encoding SerineHydroxymethyltransferase)and Its Use Together with the Exporter ThrE ToIncrease l-Threonine Accumulation by Corynebacterium glutamicum[J].Appliedand Environmental Microbiology,2002,68(7):3321-3327.)。
目前利用谷氨酸棒状杆菌生产苏氨酸的报道主要集中在其合成路径的改造,关于非必需基因敲除的研究主要集中在敲除后菌株生长变化、是否会产生营养缺陷以及是否有利于基因改造等方面,对苏氨酸合成的影响少有报道。cg1507-cg1524是编码假定膜蛋白的基因,是谷氨酸棒状杆菌的非必需基因(Baumgart,M.;Unthan,S.;Ruckert,C.;Sivalingam,J.;Grunberger,A.;Kalinowski,J.;Bott,M.;Noack,S.;Frunzke,J.Construction of a prophage-free variant of Corynebacterium glutamicum ATCC13032for use as a platform strain for basic research and industrial biotechnology.Appl.Environ.Microbiol.2013,79,6006-6015.)。
发明内容
本发明的目的是通过失活非必需基因使菌株生产苏氨酸的能力得到提升,从而提供一种修饰的棒状杆菌属微生物及其构建方法和应用。
本发明以开发产苏氨酸的棒状杆菌属微生物为目的,在研发过程中发现敲除谷氨酸棒状杆菌中的非必需基因cg1507-cg1524(Cgl1336-Cgl1352或NCgl1281-NCgl1298)能够显著提高菌株的苏氨酸产量,同时改善菌株的生长性能。
基于上述发现,本发明提供以下技术方案:
本发明提供非必需基因的弱化或失活在提高微生物的苏氨酸产量或构建生产苏氨酸的微生物中的应用;所述非必需基因为cg1507-cg1524、Cgl1336-Cgl1352或NCgl1281-NCgl1298。
以cg1507-cg1524为例,以上所述的cg1507-cg1524为NCBI编号cg1507至cg1524对应的多个基因组成的染色体片段。
以上所述的弱化可通过以下(1)~(2)中的任意一种或两种方式实现:
(1)采用具有更低转录或翻译启动、调控活性的元件调控非必需基因的转录或翻译,使其表达量降低;
(2)对非必需基因进行突变以使其表达量降低。
上述(1)中,具有更低活性是指与非必需基因的原始转录或翻译元件相比,活性更低。
其中,转录元件包括启动子、增强子等;翻译元件包括核糖体结合位点、5’-UTR等。
上述(2)中,所述突变可为将非必需基因的起始密码子突变为除ATG以外的其它起始密码子(例如:GTG或TTG)。
以上所述的失活可通过对非必需基因进行一个或多个核苷酸的缺失、插入或替换,使得非必需基因不再表达。
优选地,以上所述的应用为通过敲除所述非必需基因实现。
以上所述的应用中,所述微生物为棒状杆菌属细菌,优选为谷氨酸棒状杆菌(Corynebacterium glutamicum)。
进一步地,本发明提供一种修饰的棒状杆菌属微生物,所述微生物相比于未修饰的微生物,其非必需基因被弱化或失活;所述非必需基因为cg1507-cg1524、Cgl1336-Cgl1352或NCgl1281-NCgl1298。
以上所述的弱化可通过以下(1)~(2)中的任意一种或两种方式实现:
(1)采用具有更低转录或翻译启动、调控活性的元件调控非必需基因的转录或翻译,使其表达量降低;
(2)对非必需基因进行突变以使其表达量降低。
上述(1)中,具有更低活性是指与非必需基因的原始转录或翻译元件相比,活性更低。
其中,转录元件包括启动子、增强子等;翻译元件包括核糖体结合位点、5’-UTR等。
上述(2)中,所述突变可为将非必需基因的起始密码子突变为除ATG以外的其它起始密码子(例如:GTG或TTG)。
以上所述的失活可通过对非必需基因进行一个或多个核苷酸的缺失、插入或替换,使得非必需基因不再表达。
优选地,所述微生物中的所述非必需基因被敲除或失活。
优选地,所述微生物相比于未修饰的微生物具有增强的苏氨酸生产能力。
本发明发现,在野生型菌株或能够积累苏氨酸的菌株中,失活所述非必需基因均能够提升苏氨酸的合成能力。相比较而言,在能够积累苏氨酸的菌株中,苏氨酸的提升幅度更大。
优选地,所述微生物与未修饰的微生物相比,以下(1)~(7)中的任意一个或多个酶的活性增强和/或解除反馈抑制:
(1)天冬氨酸激酶;
(2)天冬氨酸半醛脱氢酶;
(3)高丝氨酸脱氢酶;
(4)高丝氨酸激酶;
(5)苏氨酸外运蛋白;
(6)丙酮酸羧化酶;
(7)葡萄糖-6-磷酸脱氢酶。
上述活性增强是由选自以下1)~6),或任选的组合实现的:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强;
6)通过对编码酶的核苷酸序列进行改变而增强。
上述天冬氨酸激酶、高丝氨酸脱氢酶、天冬氨酸半醛脱氢酶、高丝氨酸激酶、丙酮酸羧化酶、葡萄糖-6-磷酸脱氢酶在NCBI上的参考序列编号分别为WP_003855724.1、WP_003854900.1、WP_011013506.1、WP_011014183.1、WP_011013816.1、NP_600790.1,或与上述参考序列相似性为90%且具有同等功能的氨基酸序列。
上述苏氨酸外运蛋白优选为大肠杆菌来源的苏氨酸外运蛋白,其在NCBI上的参考序列编号为YP_026264.1,或与上述参考序列相似性为90%且具有同等功能的氨基酸序列。
优选地,所述微生物与未修饰的微生物相比,以下(1)~(3)中的任意一个或多个酶的活性降低或丧失:
(1)二氨基庚二酸脱氢酶;
(2)4-羟基四氢吡啶二羧酸合酶;
(3)柠檬酸合成酶。
优选地,所述活性降低或丧失是通过降低编码所述酶的基因的表达或敲除内源的编码所述酶的基因来实现的。
上述二氨基庚二酸脱氢酶、4-羟基四氢吡啶二羧酸合酶、柠檬酸合成酶在NCBI上的参考序列编号分别为WP_011015254.1、WP_011014792.1、WP_011013914.1,或与上述参考序列相似性为90%且具有同等功能的氨基酸序列。
以上增强酶活性、解除反馈抑制的改造可与降低酶活性或失活的改造的基因靶点分别单独作用或联合作用,由此得到的菌株均可以不同程度地积累苏氨酸。在这些菌株中失活非必需基因均可以不同程度地提升苏氨酸的产量。
作为本发明的优选方案,所述微生物为以下任一种:
(1)非必需基因失活,且天冬氨酸激酶的酶活性增强和/或解除反馈抑制的微生物;
(2)非必需基因失活,且天冬氨酸激酶和/或天冬氨酸半醛脱氢酶的酶活性增强和/或解除反馈抑制的微生物;
(3)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶和高丝氨酸脱氢酶中的至少一个的酶活性增强和/或解除反馈抑制的微生物;
(4)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶和高丝氨酸激酶中的至少一个的酶活性增强和/或解除反馈抑制的微生物;
(5)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶、高丝氨酸激酶以及苏氨酸外运蛋白中的至少一个的酶活性增强和/或解除反馈抑制的微生物;
(6)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶、高丝氨酸激酶、苏氨酸外运蛋白以及丙酮酸羧化酶中的至少一个的酶活性增强和/或解除反馈抑制的微生物;
(7)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶、高丝氨酸激酶、苏氨酸外运蛋白、丙酮酸羧化酶以及葡萄糖-6-磷酸脱氢酶中的至少一个的酶活性增强和/或解除反馈抑制的微生物;
(8)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶、高丝氨酸激酶、苏氨酸外运蛋白、丙酮酸羧化酶以及葡萄糖-6-磷酸脱氢酶中的至少一个的酶活性增强和/或解除反馈抑制,同时,二氨基庚二酸脱氢酶的酶活性降低或丧失的微生物;
(9)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶、高丝氨酸激酶、苏氨酸外运蛋白、丙酮酸羧化酶以及葡萄糖-6-磷酸脱氢酶中的至少一个的酶活性增强和/或解除反馈抑制,同时,二氨基庚二酸脱氢酶和/或4-羟基四氢吡啶二羧酸合酶合成酶的酶活性降低或丧失的微生物;
(10)非必需基因失活,且天冬氨酸激酶、天冬氨酸半醛脱氢酶、高丝氨酸脱氢酶、高丝氨酸激酶、苏氨酸外运蛋白、丙酮酸羧化酶以及葡萄糖-6-磷酸脱氢酶中的至少一个的酶活性增强和/或解除反馈抑制,同时,二氨基庚二酸脱氢酶、4-羟基四氢吡啶二羧酸合酶合成酶和/或柠檬酸合成酶的酶活性降低或丧失的微生物。
优选地,以上所述的酶活性增强通过以下任意一种或多种方式实现:
(1)将目标基因的原始启动子替换为强启动子;
(2)将目标基因的起始密码子突变为ATG;
(3)在染色体上插入一个或多个拷贝的目标基因。
其中,所述强启动子包括Psod或PcspB。
启动子Psod、PcspB的核苷酸序列分别如SEQ ID NO.1、2所示。
优选地,天冬氨酸激酶、天冬氨酸半醛脱氢酶、丙酮酸羧化酶以及葡萄糖-6-磷酸脱氢酶的酶活性增强通过将其原始启动子替换为Psod启动子实现;
高丝氨酸脱氢酶、高丝氨酸激酶的酶活性增强通过将其原始启动子替换为PcspB启动子实现;
大肠杆菌来源的苏氨酸外运蛋白的酶活性增强通过在基因组上插入一个拷贝的大肠杆菌来源的苏氨酸外运蛋白编码基因rhtC实现。
优选地,天冬氨酸激酶的解除反馈抑制通过将天冬氨酸激酶编码基因突变,使得其编码的天冬氨酸激酶发生T311I突变实现;
高丝氨酸脱氢酶的解除反馈抑制通过将高丝氨酸脱氢酶编码基因突变,使得高丝氨酸脱氢酶发生G378E突变实现;
丙酮酸羧化酶的解除反馈抑制通过将丙酮酸羧化酶编码基因突变,使得其编码的丙酮酸羧化酶发生P458S突变实现;
葡萄糖-6-磷酸脱氢酶的解除反馈抑制通过将葡萄糖-6-磷酸脱氢酶编码基因进行突变,使得其编码的葡萄糖-6-磷酸脱氢酶发生A243T突变实现。
以上所述的失活通过将目标基因经一个或多个核苷酸的缺失、插入或替换,使得目标基因不再表达实现。
优选地,二氨基庚二酸脱氢酶编码基因被失活,4-羟基四氢吡啶二羧酸合酶合成酶编码基因和柠檬酸合成酶编码基因的起始密码子被突变为GTG。
本发明所述的微生物优选为谷氨酸棒状杆菌(Corynebacterium glutamicum)。谷氨酸棒状杆菌包括ATCC13032、ATCC13870、ATCC13869、ATCC21799、ATCC21831、ATCC14067、ATCC13287等(参见NCBI Corunebacterium glutamicum进化树https://www.ncbi.nlm.nih.gov/genome/469),更优选谷氨酸棒状杆菌ATCC 13032。
本发明还提供一种产苏氨酸菌株的构建方法,所述方法包括:弱化或失活具有氨基酸生产能力的棒状杆菌属细菌中的非必需基因,获得基因弱化菌株;所述非必需基因为cg1507-cg1524、Cgl1336-Cgl1352或NCgl1281-NCgl1298。
优选地,所述方法还包括:增强以下(1)~(7)中的任意一个或多个酶的活性和/或将其解除反馈抑制:
(1)天冬氨酸激酶;
(2)天冬氨酸半醛脱氢酶;
(3)高丝氨酸脱氢酶;
(4)高丝氨酸激酶;
(5)苏氨酸外运蛋白;
(6)丙酮酸羧化酶;
(7)葡萄糖-6-磷酸脱氢酶;
所述活性的增强是由选自以下1)~6),或任选的组合实现的:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强;
6)通过对编码酶的核苷酸序列进行改变而增强;
和/或,所述方法还包括:降低以下(1)~(3)中的任意一个或多个酶的活性或使其酶活性丧失:
(1)二氨基庚二酸脱氢酶;
(2)4-羟基四氢吡啶二羧酸合酶合成酶;
(3)柠檬酸合成酶;
优选地,所述活性的降低或丧失是通过降低编码所述酶的基因的表达或敲除内源的编码所述酶的基因来实现的。
上述有关菌株的改造方法包括基因的强化等均为本领域技术人员可知的改造方式,参见满在伟.高产L-精氨酸钝齿棒杆菌的系统途径工程改造[D].江南大学,2016;崔毅.代谢工程改造谷氨酸棒杆菌生产L-亮氨酸[D].天津科技大学.;徐国栋.L-异亮氨酸生产菌株的构建及发酵条件优化.天津科技大学,2015.
本发明提供以上所述的微生物的以下任一种应用:
(1)在发酵生产苏氨酸或其衍生物中的应用;
(2)在作为出发菌株用于构建苏氨酸或其衍生物的生产菌株中的应用;
(3)在提高苏氨酸或其衍生物的产量和/或转化率中的应用。
本发明所述的苏氨酸衍生物可为以苏氨酸为前体合成的化合物,包括异亮氨酸、甘氨酸等。
本发明还提供一种发酵生产苏氨酸或其衍生物的方法,其包括培养以上所述的微生物并从培养物中分离得到苏氨酸或其衍生物的步骤。
具体地,上述方法包括:将所述微生物接种于种子培养基中进行种子培养,得到种子液,将种子液接种于发酵培养基中培养,得到发酵液,将发酵液经分离提取得到苏氨酸或其衍生物。
优选地,所述发酵培养基包含如下组分:玉米浆45-55mL/L,葡萄糖25-35g/L,硫酸铵3-5g/L,MOPS 25-35g/L,磷酸二氢钾8-12g/L,尿素15-25g/L,生物素8-12mg/L,硫酸镁5-7g/L,硫酸亚铁0.5-1.5g/L,VB1·HCl 35-45mg/L,泛酸钙45-55mg/L,烟酰胺35-45mg/L,硫酸锰0.5-1.5g/L,硫酸锌15-25mg/L,硫酸铜15-25mg/L,pH 7.0-7.2。
本发明的有益效果在于:本发明通过失活非必需基因cg1507-cg1524,以及对天冬氨酸激酶和高丝氨酸脱氢酶等酶的强化或弱化共同作用显著提高了菌株生产苏氨酸的能力,菌株的苏氨酸产量较未经改造之前显著提高,同时提升了菌株的生长性能。非必需基因cg1507-cg1524的改造可用于苏氨酸的发酵生产中,具有较好的应用价值。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明所涉及的蛋白及其编码基因的信息如下:
非必需基因,NCBI编号:cg1507-cg1524、Cgl1336-Cgl1352、NCgl1281-NCgl1298;
天冬氨酸激酶,编码基因名称lysC,NCBI编号:cg0306、Cgl0251、NCgl0247;
天冬氨酸半醛脱氢酶,编码基因名称asd,NCBI编号:cg0307、Cgl0252、NCgl0248;
高丝氨酸脱氢酶,编码基因名称hom,NCBI编号:cg1337、Cgl1183、NCgl1136;
二氨基庚二酸脱氢酶,编码基因名称ddh,NCBI编号:cg2900、Cgl2617、NCgl2528;
丙酮酸羧化酶,编码基因名称pyc,NCBI编号:cg0791、Cgl0689、NCgl0659;
葡萄糖-6-磷酸脱氢酶,编码基因名称zwf,NCBI编号:cg1778、Cgl1576、NCgl1514;
高丝氨酸激酶,编码基因名称thrB,NCBI编号:cg1338、Cgl1184、NCgl1137;
大肠杆菌来源的苏氨酸外运蛋白,编码基因名称rhtC,NCBI编号为b3823;
4-羟基四氢吡啶二羧酸合酶,编码基因名称dapA,NCBI编号:cg2161、Cgl1971、NCgl1895;
柠檬酸合成酶,编码基因名称gltA,NCBI编号:cg0949、Cgl0829、NCgl0795。
实施例1菌株基因组改造质粒构建
1、cg1507-cg1524敲除质粒pK18mobsacB-Δcg1507-cg1524的构建
以ATCC13032基因组为模板,以PCT72/PCT73引物对进行PCR扩增得到上游同源臂up,以PCT74/PCT75引物对进行PCR扩增得到下游同源臂dn。用PCT72/PCT75引物对以up、dn片段为模板进行融合PCR获得全长片段up-dn。pK18mobsacB用BamHI/HindIII酶切。将酶切后的up-dn和pK18mobsacB用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-Δcg1507-cg1524。
2、天冬氨酸激酶表达强化质粒pK18mobsacB-Psod-lysCg1a-T311I的构建
以ATCC13032基因组为模板,以P21/P22引物对进行PCR扩增得到上游同源臂up,以P23/P24引物对进行PCR扩增得到启动子片段Psod,以P25/P26引物对进行PCR扩增得到lysCg1a-T311I,以P27/P28引物对进行PCR扩增得到下游同源臂dn。以P21/P24引物对以up、Psod为模版进行融合PCR,获得片段up-Psod。以P21/P28引物对以up-Psod、lysCg1a-T311I、dn为模板进行融合PCR获得全长片段up-Psod-lysCV1M-T311I-dn。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-Psod-lysCg1a-T311I
3、天冬氨酸氨基转移酶表达强化质粒pK18mobsacB-Psod-asd的构建
质粒构建方法参考上述2,所用引物为P1、P2、P3、P4、P5、P6。
4、高丝氨酸脱氢酶表达强化质粒pK18mobsacB-PcspB-homG378E的构建
质粒构建方法参考上述2,所用引物为P29、P30、P31、P32、P33、P34、P35、P36。
5、高丝氨酸激酶表达强化质粒pK18mobsacB-PcspB-thrB的构建
质粒构建方法参考上述2,所用引物为P7、P8、P9、P10、P11、P12。
6、大肠杆菌来源的苏氨酸外运蛋白表达强化质粒pK18mobsacB-cg2899::rhtC的构建
以ATCC13032基因组为模板,以P157/P158引物对进行PCR扩增得到上游同源臂up,以P159/P160引物对进行PCR扩增得到启动子片段Psod,以大肠杆菌MG1655基因组为模板以P161/P162引物对进行PCR扩增得到rhtC,以ATCC13032基因组为模板P163/P164引物对进行PCR扩增得到下游同源臂dn。以P157/P160引物对以up、Psod为模版进行融合PCR,获得片段up-Psod。以P157/P164引物对以up-Psod、rhtC、dn为模板进行融合PCR获得全长片段up-Psod-rhtC-dn。pK18mobsacB用BamHI/HindIII酶切。两者用无缝克隆试剂盒进行组装,转化Trans1 T1感受态细胞,获得重组质粒pK18mobsacB-Psod-rhtC。
7、丙酮酸羧化酶表达强化质粒pK18mobsacB-Psod-pycP458S的构建
质粒构建方法参考上述2,所用引物为P13、P14、P15、P16、P17、P18、P19、P20。
8、葡萄糖-6-磷酸脱氢酶表达强化质粒pK18mobsacB-Psod-zwf A243T的构建
质粒构建方法参考上述2,所用引物为P129、P130、P131、P132、P133、P134、P135、P136。
9、二氨基脱氢酶表达弱化质粒pK18mobsacB-Δddh的构建
质粒构建方法参考上述1,所用引物为P99、P100、P101、P102。
10、4-羟基四氢吡啶二羧酸合酶表达弱化质粒pK18mobsacB-dapAa1g的构建
质粒构建方法参考上述1,所用引物为P75、P76、P77、P78。
11、柠檬酸合成酶表达弱化质粒pK18mobsacB-gltAa1g的构建
质粒构建方法参考上述1,所用引物为P153、P154、P155、P156。
以上质粒构建过程中所用的引物如表1所示。
表1引物序列
实施例2基因组改造菌株的构建
1、天冬氨酸激酶强化表达菌株的构建
按照谷氨酸棒状杆菌经典方法(C.glutamicum Handbook,Charpter 23)制备ATCC13032感受态细胞。将重组质粒pK18mobsacB-Psod-lysCg1a-T311I以电穿孔方法转化该感受态细胞,并在含有15mg/L卡那霉素的选择培养基上筛选转化子,其中目的基因由于同源性被插入到染色体中。将筛得的转化子过夜培养于普通液体脑心浸液培养基中,培养温度为30℃,回转摇床220rpm振荡培养。此培养过程中,转化子发生第二次重组,通过基因交换将载体序列从基因组中除去。将培养物做连续梯度稀释(10-2连续稀释至10-4),稀释液涂布在含有10%蔗糖的普通固体脑心浸液培养基上,33℃静置培养48h。蔗糖培养基上长出的菌落的基因组中不携带插入的载体序列。通过PCR扩增目的片段并进行核苷酸测序分析,获得目的突变菌株命名为SMCT196。该菌株与ATCC13032菌株相比,lysC基因起始密码子由GTG突变为ATG,其编码氨基酸的第311位由苏氨酸变为异亮氨酸,同时lysC基因的启动子被替换为Psod启动子。
2、天冬氨酸半醛脱氢酶强化表达菌株的构建
菌株构建方法参考上述1,以SMCT196为出发菌,将质粒pK18mobsacB-Psod-asd导入菌株SMCT196中,进行天冬氨酸半醛脱氢酶表达强化的改造,获得的改造菌株命名为SMCT197,与菌株SMCT196相比,该菌株的asd基因的启动子被替换为Psod启动子。
3、高丝氨酸脱氢酶强化表达菌株的构建
菌株构建方法参考上述1,以SMCT197为出发菌,将质粒pK18mobsacB-PcspB-homG378E导入菌株SMCT197中,进行高丝氨酸脱氢酶表达强化的改造,获得的改造菌株命名为SMCT198,与菌株SMCT197相比,该菌株的hom基因发生突变导致其编码蛋白产生G378E的突变,同时hom基因的启动子被替换为菌株ATCC14067来源的PcspB启动子。
4、高丝氨酸激酶强化表达菌株的构建
菌株构建方法参考上述1,以SMCT198为出发菌,将质粒pK18mobsacB-PcspB-thrB导入菌株SMCT198中,进行高丝氨酸激酶表达强化的改造,获得的改造菌株命名为SMCT199,与菌株SMCT198相比,该菌株中,thrB基因的启动子被替换为PcspB启动子。
5、大肠杆菌来源的苏氨酸外运蛋白强化表达菌株的构建
菌株构建方法参考上述1,以SMCT199为出发菌,将质粒pK18mobsacB-cg2899::rhtC导入菌株SMCT199中,进行大肠杆菌来源的苏氨酸外运蛋白表达弱化的改造,获得的改造菌株命名为SMCT200,与菌株SMCT199相比,该菌株在cg2899基因最后一个碱基之后插入一个拷贝的rhtC基因。
6、丙酮酸羧化酶强化表达菌株的构建
菌株构建方法参考上述1,以SMCT200为出发菌,将质粒pK18mobsacB-Psod-pycP458S导入菌株SMCT200中,进行丙酮酸羧化酶强化的改造,获得的改造菌株命名为SMCT201,与菌株SMCT200相比,菌株的pyc基因发生突变导致其编码蛋白产生P458S的突变,同时pyc基因的启动子被替换为Psod启动子。
7、葡萄糖-6-磷酸脱氢酶强化表达菌株的构建
菌株构建方法参考上述1,以SMCT201为出发菌,将质粒pK18mobsacB-Psod-zwfA243T导入菌株SMCT201中,进行葡萄糖-6-磷酸脱氢酶表达强化的改造,获得的改造菌株命名为SMCT202,与菌株SMCT201相比,该菌株的zwf基因编码的氨基酸序列发生A243T的突变,同时zwf基因的启动子被替换为Psod启动子。
8、二氨基庚二酸脱氢酶弱化表达菌株的构建
菌株构建方法参考上述1,以SMCT202为出发菌,将质粒pK18mobsacB-Δddh导入菌株SMCT202中,进行二氨基庚二酸脱氢酶表达弱化的改造,获得的改造菌株命名为SMCT203,与菌株SMCT202相比,该菌株的ddh基因被敲除。
9、4-羟基四氢吡啶二羧酸合酶弱化表达菌株的构建
菌株构建方法参考上述1,以SMCT203为出发菌,将质粒pK18mobsacB-dapAa1g导入菌株SMCT203中,进行4-羟基四氢吡啶二羧酸合酶合成酶表达弱化的改造,获得的改造菌株命名为SMCT204,与菌株SMCT203相比,该菌株的dapA基因的起始密码子突变为GTG。
10、柠檬酸合成酶弱化表达菌株的构建
菌株构建方法参考上述1,以SMCT204为出发菌,将质粒pK18mobsacB-gltAa1g导入菌株SMCT204中,进行柠檬酸合成酶表达弱化的改造,获得的改造菌株命名为SMCT205,与菌株SMCT204相比,该菌株的gltA基因的起始密码子突变为GTG。
11、cg1507-cg1527失活菌株的构建
菌株构建方法参考上述1,以ATCC13032、SMCT196、SMCT197、SMCT198、SMCT199、SMCT200、SMCT201、SMCT202、SMCT203、SMCT204、SMCT205作为出发菌,分别将质粒pK18mobsacB-Δcg1507-cg1524导入上述出发菌中,进行cg1507-cg1524基因的失活,获得改造菌株SMCT206、SMCT207、SMCT208、SMCT209、SMCT210、SMCT211、SMCT212、SMCT213、SMCT214、SMCT215、SMCT216,这些改造菌与其对应的出发菌相比,基因组上的cg1507-cg1524被敲除。
以上获得的菌株的基因型信息如表2所示。
表2菌株基因型信息
/>
实施例3构建菌株的摇瓶发酵验证
对实施例2构建的各菌株进行摇瓶发酵验证,具体如下:
1、培养基
种子活化培养基:BHI 3.7%,琼脂2%,pH 7。
种子培养基:蛋白胨5/L,酵母抽提物5g/L,氯化钠10g/L,硫酸铵16g/L,尿素8g/L,磷酸二氢钾10.4g/L,磷酸氢二钾21.4g/L,生物素5mg/L,硫酸镁3g/L。葡萄糖50g/L,pH7.2。
发酵培养基:玉米浆50mL/L,葡萄糖30g/L,硫酸铵4g/L,MOPS 30g/L,磷酸二氢钾10g/L,尿素20g/L,生物素10mg/L,硫酸镁6g/L,硫酸亚铁1g/L,VB1·HCl 40mg/L,泛酸钙50mg/L,烟酰胺40mg/L,硫酸锰1g/L,硫酸锌20mg/L,硫酸铜20mg/L,pH 7.2。
2.工程菌摇瓶发酵生产L-苏氨酸
(1)种子培养:挑取ATCC13032、SMCT196、SMCT197、SMCT198、SMCT199、SMCT200、SMCT201、SMCT202、SMCT203、SMCT204、SMCT205、SMCT206、SMCT207、SMCT208、SMCT209、SMCT210、SMCT211、SMCT212、SMCT213、SMCT214、SMCT215、SMCT216斜面种子1环接至装有20mL种子培养基的500mL三角瓶中,30℃、220r/min振荡培养16h,得到种子液。
(2)发酵培养:将2mL种子液接种至装有20mL发酵培养基的500mL三角瓶中,33℃、220r/min振荡培养24h,得到发酵液。
(3)取1mL发酵液离心(12000rpm,2min),收集上清液,用HPLC检测工程菌与对照菌发酵液中的L-苏氨酸。
各菌株生产苏氨酸能力的检测结果如表3所示。
表3发酵检测结果
菌株编号 OD562 苏氨酸(g/L) 菌株编号 OD562 苏氨酸(g/L)
ATCC13032 25 - SMCT206 26 0.2
SMCT196 24 1.2 SMCT207 25 1.3
SMCT197 24 1.5 SMCT208 25 1.7
SMCT198 24 2.4 SMCT209 25 2.7
SMCT199 23 2.8 SMCT210 25 3.2
SMCT200 23 3.8 SMCT211 25 4.5
SMCT201 22 4.4 SMCT212 24 5.3
SMCT202 23 5.3 SMCT213 24 6.5
SMCT203 24 6.4 SMCT214 23 7.9
SMCT204 22 8.3 SMCT215 25 10.5
SMCT205 21 9.9 SMCT216 23 12.7
注:表3中“-”代表未检测到苏氨酸。
由表3的结果可以看出,敲除cg1507-cg1524的改造菌与未失活cg1507-cg1524的菌株相比,其苏氨酸的产量有不同幅度的提升,苏氨酸产量提高在10%-28%之间,同时,菌株的生长也有一定程度的改善。此外,当敲除cg1507-cg1524与天冬氨酸激酶、天冬氨酸半醛脱氢酶酶、高丝氨酸脱氢酶、高丝氨酸激酶、大肠杆菌来源的苏氨酸外运蛋白、丙酮酸脱羧酶、葡萄糖-6-磷酸脱氢酶至少一个表达强化、解除反馈抑制以及二氨基庚二酸脱氢酶、4-羟基四氢吡啶二羧酸合酶、柠檬酸合成酶至少一个表达弱化的改造相结合时,其苏氨酸产量有进一步提升,即:cg1507-cg1524的失活与上述位点的改造的组合同样有利于苏氨酸的生产;此外天冬氨酸激酶、天冬氨酸半醛脱氢酶酶、高丝氨酸脱氢酶、高丝氨酸激酶、大肠杆菌来源的苏氨酸外运蛋白、丙酮酸脱羧酶、葡萄糖-6-磷酸脱氢酶至少一个表达强化、解除反馈抑制以及二氨基庚二酸脱氢酶、4-羟基四氢吡啶二羧酸合酶、柠檬酸合成酶至少一个表达弱化均有利于菌株的苏氨酸生产。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 廊坊梅花生物技术开发有限公司
<120> 修饰的棒状杆菌属微生物及其构建方法和应用
<130> KHP211124937.0
<160> 70
<170> SIPOSequenceListing 1.0
<210> 1
<211> 192
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tagctgccaa ttattccggg cttgtgaccc gctacccgat aaataggtcg gctgaaaaat 60
ttcgttgcaa tatcaacaaa aaggcctatc attgggaggt gtcgcaccaa gtacttttgc 120
gaagcgccat ctgacggatt ttcaaaagat gtatatgctc ggtgcggaaa cctacgaaag 180
gattttttac cc 192
<210> 2
<211> 260
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
acctgcgttt ataaagaaat gtaaacgtga tcggatcgat ataaaagaaa cagtttgtac 60
tcaggtttga agcattttct ccaattcgcc tggcaaaaat ctcaattgtc gcttacagtt 120
tttctcaacg acaggctgct aagctgctag ttcggtggcc tagtgagtgg cgtttacttg 180
gataaaagta atcccatgtc gtgatcagcc attttgggtt gtttccatag catccaaagg 240
tttcgtcttt cgatacctat 260
<210> 3
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
agctcggtac ccggggatcc cgcatttgtg gccaatttga 40
<210> 4
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
catgttaacc ctatggctga aacgcaatag ttgcattttt ag 42
<210> 5
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ctaaaaatgc aactattgcg tttcagccat agggttaaca tg 42
<210> 6
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cgacggccag tgccaagctt gtagatgcac agttgatggg gttc 44
<210> 7
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
aattcgagct cggtacccgg ggatccgaca agtccgaagc caaagt 46
<210> 8
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
cccggaataa ttggcagcta tgtaaaacta ctcctttaaa 40
<210> 9
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
tttaaaggag tagttttaca tagctgccaa ttattccggg 40
<210> 10
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
acaactgcga tggtggtcat gggtaaaaaa tcctttcgta 40
<210> 11
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
tacgaaagga ttttttaccc atgaccacca tcgcagttgt 40
<210> 12
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gtaaaacgac ggccagtgcc aagcttcacc tgcaagacca gaaccg 46
<210> 13
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
aattcgagct cggtacccgg ggatccgctc gcgtgcaccc gactct 46
<210> 14
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
atttctttat aaacgcaggt gtcagtaaaa ttagtccctt 40
<210> 15
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
aagggactaa ttttactgac acctgcgttt ataaagaaat 40
<210> 16
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
gacgttcagt tcaattgcca tataggtatc gaaagacgaa a 41
<210> 17
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
tttcgtcttt cgatacctat atggcaattg aactgaacgt c 41
<210> 18
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
gtaaaacgac ggccagtgcc aagcttgcat actgtggctg gctctt 46
<210> 19
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
aattcgagct cggtacccgg ggatcctgac agttgctgat ctggct 46
<210> 20
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
cccggaataa ttggcagcta tagagtaatt attcctttca 40
<210> 21
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tgaaaggaat aattactcta tagctgccaa ttattccggg 40
<210> 22
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
gaagatgtgt gagtcgacac gggtaaaaaa tcctttcgta 40
<210> 23
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
tacgaaagga ttttttaccc gtgtcgactc acacatcttc 40
<210> 24
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
ggtggagcct gaaggaggtg cgagtgatcg gcaatgaatc cgg 43
<210> 25
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
ccggattcat tgccgatcac tcgcacctcc ttcaggctcc acc 43
<210> 26
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
gtaaaacgac ggccagtgcc aagcttcgcg gcagacggag tctggg 46
<210> 27
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
aattcgagct cggtacccgg ggatccagcg acaggacaag cactgg 46
<210> 28
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
cccggaataa ttggcagcta tgtgcacctt tcgatctacg 40
<210> 29
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
cgtagatcga aaggtgcaca tagctgccaa ttattccggg 40
<210> 30
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
tttctgtacg accagggcca tgggtaaaaa atcctttcgt a 41
<210> 31
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
tacgaaagga ttttttaccc atggccctgg tcgtacagaa a 41
<210> 32
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
tcggaacgag ggcaggtgaa ggtgatgtcg gtggtgccgt ct 42
<210> 33
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
agacggcacc accgacatca ccttcacctg ccctcgttcc ga 42
<210> 34
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
gtaaaacgac ggccagtgcc aagcttagcc tggtaagagg aaacgt 46
<210> 35
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
aattcgagct cggtacccgg ggatccctgc gggcagatcc ttttga 46
<210> 36
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 36
atttctttat aaacgcaggt catatctacc aaaactacgc 40
<210> 37
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 37
gcgtagtttt ggtagatatg acctgcgttt ataaagaaat 40
<210> 38
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 38
gtatatctcc ttctgcagga ataggtatcg aaagacgaaa 40
<210> 39
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 39
tttcgtcttt cgatacctat tcctgcagaa ggagatatac 40
<210> 40
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 40
tagccaattc agccaaaacc cccacgcgat cttccacatc c 41
<210> 41
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 41
ggatgtggaa gatcgcgtgg gggttttggc tgaattggct a 41
<210> 42
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 42
gtaaaacgac ggccagtgcc aagcttgctg gctcttgccg tcgata 46
<210> 43
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 43
catgattacg aattcgagct cggtacccgg ggatcccaag ccaaacaagg tttagtg 57
<210> 44
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 44
gaagaaggta accttgaact ctgtgagcac aggtttaaca gc 42
<210> 45
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 45
gctgttaaac ctgtgctcac agagttcaag gttaccttct tc 42
<210> 46
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 46
tcacgacgtt gtaaaacgac ggccagtgcc aagcttatga gtctcggttc gctttc 56
<210> 47
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 47
gagctcggta cccggggatc ctctgcaact ggcatgttgg a 41
<210> 48
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 48
tcgagctaaa ccttgttggg ctagttgtcc tccttttttc cgtagcc 47
<210> 49
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 49
ggctacggaa aaaaggagga caactagccc aacaaggttt agctcga 47
<210> 50
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 50
acgacggcca gtgccaagct tactcaacgg cgattgcgg 39
<210> 51
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 51
catgattacg aattcgagct cggtacccgg ggatccgatg aggctttggc tctgcg 56
<210> 52
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 52
agcccggaat aattggcagc tagatggtag tgtcacgatc ct 42
<210> 53
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 53
aggatcgtga cactaccatc tagctgccaa ttattccggg ct 42
<210> 54
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 54
gggtcgtgtt tgtgctcatg ggtaaaaaat cctttcgta 39
<210> 55
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 55
tacgaaagga ttttttaccc atgagcacaa acacgacccc ct 42
<210> 56
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 56
cacccaagcc aatatcttca gtcatggtga tctggacgtg gtca 44
<210> 57
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 57
tgaccacgtc cagatcacca tgactgaaga tattggcttg ggtg 44
<210> 58
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 58
tcacgacgtt gtaaaacgac ggccagtgcc aagcttcgaa tcacgatggc gttt 54
<210> 59
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 59
aattcgagct cggtacccgg ggatccttca atttctaggt tgttaa 46
<210> 60
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 60
cacgatatcc ctttcaaaca catttgttcg gaaaaaaact c 41
<210> 61
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 61
gagttttttt ccgaacaaat gtgtttgaaa gggatatcgt g 41
<210> 62
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 62
gtaaaacgac ggccagtgcc aagcttgttg ccttatcaag ctgtgc 46
<210> 63
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 63
tacgaattcg agctcggtac ccggggatcc agttaactcc accgaccggg tactgc 56
<210> 64
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 64
aagcccggaa taattggcag ctatgtcttc gctggaccaa gag 43
<210> 65
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 65
ctcttggtcc agcgaagaca tagctgccaa ttattccggg ctt 43
<210> 66
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 66
gacggtgaga aataacatca acatgggtaa aaaatccttt cgta 44
<210> 67
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 67
tacgaaagga ttttttaccc atgttgatgt tatttctcac cgtc 44
<210> 68
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 68
tgcctctttt agccttttca gagggtcacc gcgaaataat caaatgaa 48
<210> 69
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 69
ttcatttgat tatttcgcgg tgaccctctg aaaaggctaa aagaggca 48
<210> 70
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 70
gttgtaaaac gacggccagt gccaagctta aaaggcagtc cagtacaccc t 51

Claims (10)

1.非必需基因的弱化或失活在提高微生物的苏氨酸产量或构建生产苏氨酸的微生物中的应用;
所述非必需基因为cg1507-cg1524、Cgl1336-Cgl1352或NCgl1281-NCgl1298。
2.根据权利要求1所述的应用,其特征在于,所述微生物为棒状杆菌属细菌,优选为谷氨酸棒状杆菌(Corynebacterium glutamicum)。
3.一种修饰的棒状杆菌属微生物,其特征在于,所述微生物相比于未修饰的微生物,其非必需基因弱化或失活;
所述非必需基因为cg1507-cg1524、Cgl1336-Cgl1352或NCgl1281-NCgl1298。
4.根据权利要求3所述的微生物,其特征在于,所述微生物相比于未修饰的微生物具有增强的苏氨酸生产能力。
5.根据权利要求3或4所述的微生物,其特征在于,所述微生物与未修饰的微生物相比,以下(1)~(7)中的任意一个或多个酶的活性增强和/或解除反馈抑制:
(1)天冬氨酸激酶;
(2)天冬氨酸半醛脱氢酶;
(3)高丝氨酸脱氢酶;
(4)高丝氨酸激酶;
(5)苏氨酸外运蛋白;
(6)丙酮酸羧化酶;
(7)葡萄糖-6-磷酸脱氢酶;
优选地,所述活性增强是由选自以下1)~6),或任选的组合实现的:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强;
6)通过对编码酶的核苷酸序列进行改变而增强。
6.根据权利要求3~5任一项所述的微生物,其特征在于,所述微生物与未修饰的微生物相比,以下(1)~(3)中的任意一个或多个酶的活性降低或丧失:
(1)二氨基庚二酸脱氢酶;
(2)4-羟基四氢吡啶二羧酸合酶;
(3)柠檬酸合成酶;
优选地,所述活性降低或丧失是通过降低编码所述酶的基因的表达或敲除内源的编码所述酶的基因来实现的。
7.根据权利要求3~6任一项所述的微生物,其特征在于,所述微生物为谷氨酸棒状杆菌(Corynebacterium glutamicum)。
8.产苏氨酸菌株的构建方法,其特征在于,所述方法包括:弱化或失活具有氨基酸生产能力的棒状杆菌属细菌中的非必需基因,获得基因弱化菌株;所述非必需基因为cg1507-cg1524、Cgl1336-Cgl1352或NCgl1281-NCgl1298优选地,所述方法还包括:增强以下(1)~(7)中的任意一个或多个酶的活性和/或将其解除反馈抑制:
(1)天冬氨酸激酶;
(2)天冬氨酸半醛脱氢酶;
(3)高丝氨酸脱氢酶;
(4)高丝氨酸激酶;
(5)苏氨酸外运蛋白;
(6)丙酮酸羧化酶;
(7)葡萄糖-6-磷酸脱氢酶;
所述活性的增强是由选自以下1)~6),或任选的组合实现的:
1)通过导入具有所述酶的编码基因的质粒而增强;
2)通过增加染色体上所述酶的编码基因的拷贝数而增强;
3)通过改变染色体上所述酶的编码基因的启动子序列而增强;
4)通过将强启动子与所述酶的编码基因可操作地连接而增强;
5)通过对酶的氨基酸序列进行改变而增强;
6)通过对编码酶的核苷酸序列进行改变而增强;
和/或,所述方法还包括:降低以下(1)~(3)中的任意一个或多个酶的活性或使其酶活性丧失:
(1)二氨基庚二酸脱氢酶;
(2)4-羟基四氢吡啶二羧酸合酶;
(3)柠檬酸合成酶;
优选地,所述活性的降低或丧失是通过降低编码所述酶的基因的表达或敲除内源的编码所述酶的基因来实现的。
9.权利要求3~7任一项所述的微生物的以下任一种应用:
(1)在发酵生产苏氨酸或其衍生物中的应用;
(2)在作为出发菌用于构建苏氨酸或其衍生物的生产菌株中的应用;
(3)在提高苏氨酸或其衍生物的产量和/或转化率中的应用。
10.一种发酵生产苏氨酸或其衍生物的方法,其特征在于,包括培养权利要求3~7任一项所述的微生物并从培养物中分离得到苏氨酸或其衍生物的步骤。
CN202210114594.3A 2022-01-30 2022-01-30 修饰的棒状杆菌属微生物及其构建方法和应用 Pending CN116555365A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210114594.3A CN116555365A (zh) 2022-01-30 2022-01-30 修饰的棒状杆菌属微生物及其构建方法和应用
PCT/CN2022/143100 WO2023142859A1 (zh) 2022-01-30 2022-12-29 修饰的棒状杆菌属微生物及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210114594.3A CN116555365A (zh) 2022-01-30 2022-01-30 修饰的棒状杆菌属微生物及其构建方法和应用

Publications (1)

Publication Number Publication Date
CN116555365A true CN116555365A (zh) 2023-08-08

Family

ID=87470494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210114594.3A Pending CN116555365A (zh) 2022-01-30 2022-01-30 修饰的棒状杆菌属微生物及其构建方法和应用

Country Status (2)

Country Link
CN (1) CN116555365A (zh)
WO (1) WO2023142859A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395827A1 (en) * 2017-04-27 2018-10-31 Universität Bielefeld Carotenoid and amino acid biosynthesis using recombinant corynebacterium glutamicum

Also Published As

Publication number Publication date
WO2023142859A1 (zh) 2023-08-03

Similar Documents

Publication Publication Date Title
JP6679803B2 (ja) 新規プロモーター及びその用途
US8183017B2 (en) Method of producing L-lysine
US5766925A (en) Method of producing L-lysine
EP0857784A2 (en) Method for producing L-lysine
US11236374B2 (en) Modified homoserine dehydrogenase and method for producing homoserine or L-amino acid derived from homoserine using the same
EP0854189A2 (en) Method for producing L-lysine
JP7350994B2 (ja) 新規なプロモーター及びそれを用いた標的物質生産方法
CN116555365A (zh) 修饰的棒状杆菌属微生物及其构建方法和应用
US20150118720A1 (en) Process for producing amino acid
CN116555132A (zh) 一种修饰的棒状杆菌属微生物及其生产苏氨酸的应用和构建方法
KR102377745B1 (ko) 신규 프로모터 및 이의 용도
CN116555136A (zh) 一种修饰的棒状杆菌属微生物及其构建方法与应用
WO2023151406A1 (zh) 苏氨酸生产菌株的构建方法
WO2023142862A1 (zh) 一种生产苏氨酸的重组微生物及其应用
CN116555135A (zh) 高产苏氨酸基因工程菌的构建方法
CN116555134A (zh) 产苏氨酸菌株的构建方法
CN116622596A (zh) 一种修饰的棒状杆菌属微生物及其构建方法与在生产苏氨酸中的应用
US20150031101A1 (en) Bacterial cell having enhanced succinic acid production and a method for producing the succinic acid using the same
CN116536227A (zh) 一种生产苏氨酸的修饰的棒状杆菌属微生物及其构建方法与应用
CN116622599A (zh) 高产苏氨酸菌株的构建方法
CN116606786A (zh) 一种生产苏氨酸的重组微生物及其构建方法和应用
CN116606785A (zh) 一种修饰的棒状杆菌属微生物及其应用与构建方法
CN116555130A (zh) 产苏氨酸基因工程菌的构建方法
WO2008026698A1 (fr) Procédé de production d&#39;acide l-glutamique
CN116555137A (zh) 一种苏氨酸生产菌株及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination