CN116590677A - 光学镜头表面高透低粘附的月尘防护涂层及其制备方法 - Google Patents

光学镜头表面高透低粘附的月尘防护涂层及其制备方法 Download PDF

Info

Publication number
CN116590677A
CN116590677A CN202310405979.XA CN202310405979A CN116590677A CN 116590677 A CN116590677 A CN 116590677A CN 202310405979 A CN202310405979 A CN 202310405979A CN 116590677 A CN116590677 A CN 116590677A
Authority
CN
China
Prior art keywords
coating
optical lens
fep
protective coating
moon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310405979.XA
Other languages
English (en)
Inventor
吴晓宏
康红军
卢松涛
郭宝
秦伟
洪杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, Chongqing Research Institute of Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202310405979.XA priority Critical patent/CN116590677A/zh
Publication of CN116590677A publication Critical patent/CN116590677A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明公开了一种光学镜头表面高透低粘附的月尘防护涂层及其制备方法,属于航空航天防尘涂层材料技术领域。本发明采用射频磁控溅射技术在光学镜头的抗反射涂层、偏振涂层、紫外涂层、近红外涂层或抗刮涂层上,沉积全氟乙烯丙烯共聚物FEP涂层,最后整体进行退火处理,实现了月尘防护涂层与光学镜头已制备的涂层一体化,在光学镜头表面获得了耐磨、高透的月尘防护涂层。本发明沉积在功能涂层上的FEP涂层很薄,几乎不影响原有功能涂层的性能,且利用磁控溅射制备的涂层具有表面粗糙度的特性,以及含氟低表面能物质FEP,降低了月尘颗粒的粘附性。

Description

光学镜头表面高透低粘附的月尘防护涂层及其制备方法
技术领域
本发明涉及一种光学镜头表面高透低粘附的月尘防护涂层及其制备方法,属于航空航天防尘涂层材料技术领域。
背景技术
月尘是指在月球表面上漂浮的由微小陨石碎片和月壳物质组成的尘埃颗粒。这些颗粒的直径主要集中在30μm到1mm之间,均值约为70μm。由于月球表面的极端环境,包括强烈的辐照和微小陨石的轰击,月尘颗粒表面的电荷会极化并形成静电充电。月尘由于静电排斥力漂浮在月球表面,或被太阳辐射、月球车和宇航员的活动所推动,这些微小的颗粒会在光学镜头表面产生划痕或者粘附,导致透过率下降,成像质量降低,甚至会破坏光学镜头的外层。
现有技术中为了使地形地貌相机适应宇宙空间辐射和月表极冷极热的真空环境,以及月尘污染的影响,在光学镜头上安装了一个“屏蔽网”,作为被动防护的一种,屏蔽网减少了动力和人力消耗,但是长期使用过程中网状结构一旦卡死,防护功能就会即刻失效。因此,对光学镜头采取其他形式月尘防护措施至关重要。
现有静电排斥法是一种通过静电作用排斥月尘的方法,但是它需要额外的设备,并且只能在特定的条件下使用。而电帘除尘法则是利用电场将月尘除去,但是它需要大量的电能,不适用于长时间使用。机械清洁法需要机械装置清理月尘,但是这种方法比较复杂,需要额外的设备和维护。因此,涂层防护法成为了一种新的选择。
涂层防护的原理是在探测器表面涂上一层特殊的材料,能够阻止月尘的粘附。涂层防护法制备简单,成本低廉,不需要额外的设备,并且对探测器性能影响小。涂层的材料的种类很多,包括有机聚合物、无机氧化物、金属和碳等材料。这些材料可以通过化学合成、物理沉积、溅射等方法制备,并可以根据不同的需求进行设计和优化。但是现有涂层材料的质量和制备工艺对其光学性能影响很大,且月表极端环境因素也将影响涂层的使用寿命,这就导致现有涂层材料的光学性能不稳定,从而影响镜头的成像效果。且对于一些特殊形状的光学元件,如非球面镜头等,涂层的制备和加工会比较困难。
且对于光学镜头来讲,在其表面已经存在为了成像效果而增设的抗反射涂层、偏振涂层、紫外涂层、近红外涂层或抗刮涂层,对其进一步的月尘防护就考虑到与表面已制备涂层的匹配性问题。月尘防护涂层的制备过程可能对已有的涂层产生影响,例如会破坏表面已有涂层的结构和性能。且已有的涂层也会对月尘防护涂层的制备和性能产生影响,如影响涂层材料的附着力和稳定性。此外,涂层的成分和结构也可能影响月尘防护涂层的性能和效果,如影响透过光的波长范围和透过率等。
发明内容
本发明针对现有光学镜头表面月尘防护存在的上述问题,提供一种光学镜头表面高透低粘附的月尘防护涂层及其制备方法。
本发明的技术方案:
本发明的目的之一是提供一种光学镜头表面月尘防护涂层的制备方法,该方法具体操作过程如下:
在光学镜头的抗反射涂层、偏振涂层、紫外涂层、近红外涂层或抗刮涂层上,采用射频磁控溅射技术沉积FEP涂层,最后整体进行退火处理。
进一步限定,沉积FEP涂层得工艺条件为:氩气作为工作气体,真空度为5×10-4Pa,工作压力0.2Pa,溅射功率100W,偏压75V,基底温度为室温,沉积时间15min。
更进一步限定,沉积FEP涂层使用靶材为FEP。
进一步限定,退火在真空条件下进行,温度为300℃,时间为30min。
进一步限定,反射涂层为MgF2抗反射涂层。
更进一步限定,MgF2抗反射涂层采用射频磁控溅射技术沉积在光学镜头表面。
更进一步限定,沉积MgF2抗反射涂层的工艺条件为:氩气作为工作气体,真空度5×10-4Pa,工作压力0.4Pa,溅射功率300W,偏压50V,基底温度为室温,沉积时间30min。
进一步限定,沉积MgF2抗反射涂层的靶材为MgF2
本发明的目的之二是提供一种上述制备方法制备得到的月尘防护涂层。
本发明的目的之三是提供一种光学镜头表面高透防护涂层的制备方法,该方法具体操作过程如下:首先采用射频磁控溅射工艺在光学镜头表面沉积MgF2抗反射涂层,然后在抗反射涂层上采用射频磁控溅射工艺沉积FEP涂层,最后整体进行退火处理。
进一步限定,沉积FEP涂层得工艺条件为:氩气作为工作气体,工作压力0.2Pa,溅射功率100W,偏压75V,基底温度为室温,沉积时间15min。
更进一步限定,沉积FEP涂层使用靶材为FEP。
进一步限定,退火在真空条件下进行,温度为300℃,时间为30min。
进一步限定,沉积MgF2抗反射涂层的工艺条件为:氩气作为工作气体,真空度5×10-4Pa,工作压力0.4Pa,溅射功率300W,偏压50V,基底温度为室温,沉积时间30min。
更进一步限定,沉积MgF2抗反射涂层的靶材为MgF2
本发明采用射频磁控溅射技术在光学镜头的抗反射涂层、偏振涂层、紫外涂层、近红外涂层或抗刮涂层上,沉积全氟乙烯丙烯共聚物FEP涂层,最后整体进行退火处理,实现了月尘防护涂层与光学镜头已制备的涂层一体化,在光学镜头表面获得了耐磨、高透的月尘防护涂层。此外,本发明与现有技术相比还具有以下有益效果:
(1)本发明沉积在功能涂层(抗反射涂层、偏振涂层、紫外涂层、近红外涂层或抗刮涂层)上的FEP涂层很薄,几乎不影响原有功能涂层的性能,且利用磁控溅射制备的涂层具有表面粗糙度的特性,以及含氟低表面能物质FEP,降低了月尘颗粒的粘附性。
(2)本发明利用磁控溅射涂层制备的表面粗糙度特性,使用FEP作为一种含氟低表面能物质,降低了月尘颗粒的粘附性。
(3)本方法选择的MgF2和FEP材料均具有良好的空间稳定性,能够适应月表极端环境,兼顾了防尘效果和高透以及耐磨的要求,可用于月球探测设备的光学镜头表面防护,具有重要的应用价值和广阔的市场前景。
附图说明
图1为实施例1制备的涂层的光学镜头表面的SEM照片;
图2为对比例1制备的具有涂层的光学镜头实物照片;
图3为实施例1制备的具有涂层的光学镜头实物照片;
图4为实施例1和对比例1制备的具有涂层的光学镜头的透过率曲线图;
图5为对比例1制备的具有涂层的光学镜头在喷淋模拟月尘前后的透过率曲线对比图;
图6为实施例1制备的具有涂层的光学镜头在喷淋模拟月尘前后的透过率曲线对比图;
图7为实施例1制备的具有涂层的光学镜头在经过冷热循环测试后透过率曲线图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书实施例对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
本实施例在光学镜表面制备月尘防护涂层方法如下:
步骤1,基底前处理
石英玻璃试片依次用无水乙醇、丙酮、去离子水和无水乙醇超声清洗,每种溶剂超声清洗时间均为15min,然后置于装有无水乙醇的烧杯中备用。
步骤2,涂层的制备
首先,使用射频磁控溅射技术,在经过前处理后的石英玻璃试片表面通过物理气相沉积MgF2抗反射涂层。具体的射频磁控溅射工艺参数为:高纯度氩气(99.999%)作为工作气体,真空度为5×10-4Pa,工作压力为0.4Pa,溅射功率为300W,偏压为50V,基底温度为室温,沉积时间为30min;
然后,使用射频磁控溅射技术,在MgF2抗反射涂层表面通过物理气相沉积FEP防尘涂层,关闭MgF2溅射电源,并用挡板挡住MgF2靶材,打开FEP(FEP靶材购自北京京迈研材料科技有限公司)溅射电源,开始溅射FEP涂层。具体的射频磁控溅射工艺参数为:高纯度氩气(99.999%)作为工作气体,工作压力为0.2Pa,溅射功率为100W,偏压为70V,基底温度为室温,沉积时间为15min;
步骤3,涂层后处理
FEP防尘涂层沉积完成后,关闭FEP溅射电源,并抽真空至5×10-3Pa。然后开启基底加热功能,升温至300℃,保持温度30min,自然冷却至室温后进行充气、取样。
对比例1
本对比例在光学镜表面制备月尘防护涂层方法如下:
步骤1,石英玻璃试片依次用无水乙醇、丙酮、去离子水和无水乙醇超声清洗,每种溶剂超声清洗时间均为15min,然后置于装有无水乙醇的烧杯中备用。
步骤2,涂层的制备
使用射频磁控溅射技术,在经过前处理后的石英玻璃试片表面通过物理气相沉积MgF2抗反射涂层。具体的射频磁控溅射工艺参数为:高纯度氩气(99.999%)作为工作气体,真空度为5×10-4Pa,工作压力为0.4Pa,溅射功率为300W,偏压为50V,基底温度为室温,沉积时间为30min
效果例
(1)对本实施例1制备得到的涂层表面微观结构进行表征,SEM照片如图1所示,由图1可知,涂层在微观角度下具备一定的粗糙度,这种粗糙表面能够减少月尘颗粒与基底的接触面积,降低月尘的粘附力,从而实现月尘防护的性能。
(2)对实施例1和对比例1制备的涂层进行光学透过率性能测试,具体的通过紫外-可见-近红外分光光度计对有无防护膜的光学镜片在可见光波段(380-760nm)的透过率等参数的对比,验证月尘防护涂层对光学镜片的光学性能的影响,所得结果如图2~图4所示。由图2~图4可知,在380-760nm波段下,实施例1制备的涂层对光学镜头的光学性能影响很小,与实施例1的互相同,由此说明,实施例1制备的涂层能够实现高光透过率。
(3)对实施例1和对比例1制备的涂层进行防尘性能测试,具体的垂直放置样片,使用静电喷粉机喷淋月尘,喷淋后未粘附的月尘受重力滑落,测试表面月尘所粘附月尘对带有防护膜的光学镜片各波段的光学透过率性能影响,并通过对比有无防护膜(FEP防尘涂层)的光学镜片之间的透过率,分析光学镜片防护膜对其光学透过性能的影响,所得结果如图5和图6所示。由图5和图6可知,对比例1表面残留的月尘粘附严重,有模拟月尘粘附在表面使透过率降低20.88%。实施例1表面实现防月尘处理后,在喷淋模拟月尘时,模拟月尘无法在其表面粘附,光透过率相比未淋撒前仅损失0.27%,表现出优异的防月尘粘附性能。
(4)对实施例1制备的涂层进行冷热循环性能测试,具体的高温恒温区为160℃,低温恒温区为-196℃,温度控制精度:高温区±2℃,低温区±5℃,热循环次数为100次,试验完成后观察实施例试样有无开裂、无剥落、无变色等现象,对实施例1试样在热循环试验后的透过率进行测量,所得的结果如图7所示。由图7可知,实施例经过100次热循环后,透过率几乎没有影响。且试验完成后实施例1试样无开裂、无剥落、无变色等现象发生,表现出了类月球环境的耐候能力。
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种光学镜头表面月尘防护涂层的制备方法,其特征在于,在光学镜头的抗反射涂层、偏振涂层、紫外涂层、近红外涂层或抗刮涂层上,采用射频磁控溅射技术沉积FEP涂层,最后整体进行退火处理。
2.根据权利要求1所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,沉积FEP涂层得工艺条件为:氩气作为工作气体,真空度为5×10-4Pa,工作压力0.2Pa,溅射功率100W,偏压75V,基底温度为室温,沉积时间15min。
3.根据权利要求2所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,沉积FEP涂层使用靶材为FEP。
4.根据权利要求1所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,退火在真空条件下进行,温度为300℃,时间为30min。
5.根据权利要求1所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,反射涂层为MgF2抗反射涂层。
6.根据权利要求5所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,MgF2抗反射涂层采用射频磁控溅射技术沉积在光学镜头表面。
7.根据权利要求6所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,沉积MgF2抗反射涂层的工艺条件为:氩气作为工作气体,真空度5×10-4Pa,工作压力0.4Pa,溅射功率300W,偏压50V,基底温度为室温,沉积时间30min。
8.根据权利要求6所述的光学镜头表面月尘防护涂层的制备方法,其特征在于,沉积MgF2抗反射涂层的靶材为MgF2
9.一种权利要求1所述的制备方法得到的月尘防护涂层。
10.一种光学镜头表面高透防护涂层的制备方法,其特征在于,首先采用射频磁控溅射工艺在光学镜头表面沉积MgF2抗反射涂层,然后在抗反射涂层上采用射频磁控溅射工艺沉积FEP涂层,最后整体进行退火处理。
CN202310405979.XA 2023-04-17 2023-04-17 光学镜头表面高透低粘附的月尘防护涂层及其制备方法 Pending CN116590677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310405979.XA CN116590677A (zh) 2023-04-17 2023-04-17 光学镜头表面高透低粘附的月尘防护涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310405979.XA CN116590677A (zh) 2023-04-17 2023-04-17 光学镜头表面高透低粘附的月尘防护涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN116590677A true CN116590677A (zh) 2023-08-15

Family

ID=87598085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310405979.XA Pending CN116590677A (zh) 2023-04-17 2023-04-17 光学镜头表面高透低粘附的月尘防护涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN116590677A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264803A (ja) * 1992-03-19 1993-10-15 Olympus Optical Co Ltd 光学部材
US5958155A (en) * 1995-07-20 1999-09-28 Olympus Optical Co., Ltd. Process for producing thin film
CN106676473A (zh) * 2015-11-10 2017-05-17 中国科学院上海硅酸盐研究所 高光透过且疏水功能的聚四氟乙烯薄膜及其制备方法和应用
CN106835043A (zh) * 2017-02-03 2017-06-13 国家纳米科学中心 一种透明超疏水薄膜、其制备方法及用途
CN111045127A (zh) * 2019-12-25 2020-04-21 富泰华精密电子(郑州)有限公司 可透视覆盖件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264803A (ja) * 1992-03-19 1993-10-15 Olympus Optical Co Ltd 光学部材
US5958155A (en) * 1995-07-20 1999-09-28 Olympus Optical Co., Ltd. Process for producing thin film
CN106676473A (zh) * 2015-11-10 2017-05-17 中国科学院上海硅酸盐研究所 高光透过且疏水功能的聚四氟乙烯薄膜及其制备方法和应用
CN106835043A (zh) * 2017-02-03 2017-06-13 国家纳米科学中心 一种透明超疏水薄膜、其制备方法及用途
CN111045127A (zh) * 2019-12-25 2020-04-21 富泰华精密电子(郑州)有限公司 可透视覆盖件及其制备方法

Similar Documents

Publication Publication Date Title
JP5588135B2 (ja) 光学物品の製造方法
US20100063072A1 (en) Solid forms of pemetrexed
US4091166A (en) Boron trifluoride coatings for thermoplastic materials and method of applying same in glow discharge
US20070196633A1 (en) Durable transparent coatings for polymeric substrates
FR2550726A1 (fr) Lentilles ophtalmiques resistant a l'abrasion, antistatiques et/ou anti reflechissantes et leur procede de fabrication
JP2012027300A (ja) レンズの製造方法及びレンズ
US4390595A (en) Environmentally protected IR windows
US8128225B2 (en) Optical article and process for producing the same
TWI706921B (zh) 光學鍍膜的方法、裝置及產品
JP2010237637A (ja) 光学物品およびその製造方法
Sheikh et al. Durable silver coating for Kepler Space Telescope primary mirror
CN114019591B (zh) 一种包括增透保护膜的光学元件及其制备方法
CN116590677A (zh) 光学镜头表面高透低粘附的月尘防护涂层及其制备方法
US8512867B2 (en) Coated glass article and method for manufacturing same
JP5779317B2 (ja) 光学物品の製造方法
Guenther Coating of plastics-coatings on plastic
CN116590676A (zh) Osr表面热控、耐磨一体化月尘防护涂层及其制备方法
Atabaev et al. Correlation between the structure, specific resistance, and optical properties of ITO films grown by CVD
CN112649904B (zh) 一种真空镀膜防雾镜片及其制备方法
Lu et al. Low hydrogen content diamond-like carbon coatings of KCl optics for high power industrial CO2 lasers
Martinu et al. Optical coatings on plastics
CN109130798A (zh) 一种镀TiO2/SiO2纳米多层薄膜的PET汽车贴膜及制备方法和应用
JPH04239537A (ja) 耐擦傷性を向上させた透明樹脂基板
EP1380858A1 (en) Method for manufacturing an anti-reflective coating on a substrate for the production of a polarizer
Liou et al. Implement of Broadband Visible Antireflection Coating on Flexible Polyethersulfone Substrate Using Ion-Assisted Deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination