CN116585622B - 光动力药片及其制备方法、抗肿瘤模型的构建方法及系统 - Google Patents

光动力药片及其制备方法、抗肿瘤模型的构建方法及系统 Download PDF

Info

Publication number
CN116585622B
CN116585622B CN202310850855.2A CN202310850855A CN116585622B CN 116585622 B CN116585622 B CN 116585622B CN 202310850855 A CN202310850855 A CN 202310850855A CN 116585622 B CN116585622 B CN 116585622B
Authority
CN
China
Prior art keywords
photodynamic
power supply
tablet
wireless power
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310850855.2A
Other languages
English (en)
Other versions
CN116585622A (zh
Inventor
陈梅华
邹坪金
薛欣宇
郎锦义
邢丽丽
林睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Cancer Hospital
Original Assignee
Sichuan Cancer Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Cancer Hospital filed Critical Sichuan Cancer Hospital
Priority to CN202310850855.2A priority Critical patent/CN116585622B/zh
Publication of CN116585622A publication Critical patent/CN116585622A/zh
Application granted granted Critical
Publication of CN116585622B publication Critical patent/CN116585622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0688Cells from the lungs or the respiratory tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation
    • C12N2529/10Stimulation by light

Abstract

本发明公开了一种光动力药片及其制备方法、抗肿瘤模型的构建方法及系统,属于癌症物理治疗技术领域,药片包括无线供电单元、电路单元、微米级LED阵列,以及用于包裹的柔性透明生物相容性封装,其用于植入人体肿瘤附近对肿瘤细胞进行照射,通过一定波长的光线促进产生脂质过氧化物,配合铁死亡诱导剂诱导肿瘤细胞铁死亡。利用超声波无线自供能动力药片对肿瘤细胞进行PDT;PDT产生的ROS促进肿瘤细胞产生脂质过氧化物,诱导细胞铁死亡,加强铁死亡诱导剂疗效;肿瘤细胞铁死亡导致二价铁离子蓄积,基于芬顿反应促进氧气产生,为光动力提供氧补充;本发明通过铁死亡诱导剂联合光动力治疗,解决了单独应用铁死亡诱导剂抗肿瘤疗效差的问题。

Description

光动力药片及其制备方法、抗肿瘤模型的构建方法及系统
技术领域
本发明属于癌症物理治疗技术领域,尤其涉及一种光动力药片及其制备方法、基于该光动力药品的抗肿瘤模型的构建方法及系统。
背景技术
尽管在诊断和治疗方面取得了重大突破,但癌症仍然是造成人类死亡的主要原因。目前癌症治疗的主要方案包括手术、化疗、放疗、靶向治疗和免疫治疗。然而,由于癌症患者出现的先天和后天耐药性是有效治疗的一个重要障碍。
细胞铁死亡(Ferroptosis)是一种由脂质过氧化引发的程序性细胞死亡(Programmed cell death,PCD)的新形式。铁死亡可通过外源性或内源性途径诱发。外源性途径是通过抑制细胞膜转运蛋白启动的。内源性途径是通过阻断细胞内抗氧化酶激活的。对细胞凋亡产生抗性的癌症,无论是由于其高度间质状态还是由于化疗的结果,都具有凋亡抗性,但是对铁死亡却具有高度的敏感性。选择性地用铁死亡诱导剂(Ferroptosisinducer,FIN)诱导肿瘤细胞铁死亡可以恢复其对常规治疗的敏感性,是一种有潜力的肿瘤治疗方式。
目前,已知的铁死亡诱导剂包括临床前研究中的小分子药物erastin,RSL3和FINO2,以及临床中使用的药物偶氮磺胺吡啶,顺铂,他汀类药物及青蒿素等等。但是这些小分子药物存在副作用大,无靶向性及溶解性差等缺点,严重影响了抗肿瘤疗效。而通过纳米合成技术改进的药物制剂,如利用外泌体等,则具有产量低,生产不稳定及成本高等不足。
为了增加铁死亡诱导剂的抗肿瘤效应,往往需要和其他的治疗方式联合使用。而与这些传统的放化疗的治疗方式联用,对正常组织和器官存在损伤,靶向性较差,同时存在明显的耐药机制,又可能大大的增加其毒副作用,影响抗肿瘤效果。
发明内容
针对现有技术中的上述不足,本发明提供的一种光动力药片及其制备方法、抗肿瘤模型的构建方法及系统,通过光动力疗法PDT产生的活性氧ROS,促进肿瘤细胞产生脂质过氧化物,进而诱导细胞铁死亡,加强现有铁死亡诱导剂疗效,解决了目前单独应用铁死亡诱导剂抗肿瘤疗效差的问题。
为了达到上述发明目的,本发明采用的技术方案为:
本发明提供一种无线自供能光动力药片,包括无线供电单元、与无线供电单元电性连接的电路单元、与电路单元电性连接的微米级LED阵列,以及包裹无线供电单元、电路单元和微米级LED阵列的柔性透明生物相容性封装;
所述无线供电单元,用于接收超声波能量,并将超声波能量转化为电能;
所述电路单元,用于将无线供电单元产生的电能整流为直流电,并稳定传输至微米级LED阵列;
所述微米级LED阵列,用于接收直流电,并发射设定波长的光线促进肿瘤细胞产生脂质过氧化物,配合铁死亡诱导剂诱导肿瘤细胞铁死亡。
本发明的有益效果为:
(1)、本发明通过无线供电单元将超声波能量转化为电能,并通过电路单元将电能转化为稳定的直流电,为微米级LED阵列发射一定波长的光线进行PDT提供基础,用适当波长的光照射肿瘤部位的光敏剂,在有氧的情况下产生活性氧ROS促进肿瘤细胞产生脂质过氧化物,脂质过氧化物配合铁死亡诱导剂诱导肿瘤细胞铁死亡,可以恢复其对常规治疗的敏感性,铁死亡诱导剂联合光动力治疗缓解了对正常组织和器官的损伤,提高了靶向性,克服了明显的耐药,减小了毒副作用;PDT受到肿瘤乏氧微环境及治疗深度的影响,但铁死亡诱导剂在诱导了细胞发生铁死亡后,会导致细胞内二价铁离子的积蓄,从而利用芬顿反应促进氧气的产生,改善肿瘤乏氧微环境,为PDT提供很好的氧补充,实现双向互补协同抗肿瘤;
(2)、通过柔性透明生物相容性封装,极大地增强了药片的生物相容性,避免了对正常组织产生热效应等危害,同时透明材质便于微米级LED阵列进行PDT时的光线照射。进一步地,所述无线供电单元为由锆钛酸铅压电陶瓷制成的正方形板状压电陶瓷。
采用上述进一步方案的有益效果为:通过压电陶瓷接收超声波后表面形成的微小形变,使超声中存在的机械能通过压电效应转化为电能,正方形板状结构能够使无线供电单元充分接收。
进一步地,所述无线自供能光动力药片的长、宽、高分别为8mm、5mm、3mm;所述无线自供能光动力药片的重量为0.44g;
所述正方形板状压电陶瓷的长和宽均为4mm,高为1mm;
所述微米级LED阵列中的LED的长为1mm,宽和高均为0.5mm。
采用上述进一步方案的有益效果为:通过以上尺寸,使药片易于植入生物体内,且创口小,并且可以使无线自供能光动力药片更能深入抵达肿瘤细胞位置进行精准的PDT,且防止了更小的尺寸易存在超声波接收不足或微米级LED阵列照射不充分,导致PDT治疗效果不足。
并配合铁死亡诱导剂,进行联合抗肿瘤。
进一步地,所述电路单元包括整流桥,及与整流桥连接的稳压电容;
所述整流桥包括第一肖特基二极管、第二肖特基二极管、第三肖特基二极管和第四肖特基二极管;
所述第一肖特基二极管的正极作为整流桥的正极,分别与第三肖特基二极管的正极、稳压电容的一端和微米级LED阵列的负极连接;所述第一肖特基二极管的负极分别与第二肖特基二极管的正极和无线供电单元的一端连接;所述第二肖特基二极管的负极作为整流桥的负极,分别与第四肖特基二极管的负极、稳压电容的另一端和微米级LED阵列的正极连接;所述第三肖特基二极管的负极分别与第四肖特基二极管的正极和无线供电单元的另一端连接;所述整流桥用于将无线供电单元产生的交流电整流为直流电;所述稳压电容用于将直流电稳定传输至微米级LED阵列。
采用上述进一步方案的有益效果为:通过整流桥和稳压电容将无线供电单元产生的电能转化为稳定的直流电,供微米级LED阵列进行PDT,整流桥采用的肖特基二极管的反向恢复速度快,仅需几纳秒,还具有低功耗、大电流的特点,用在高频场合不易发生反向漏电或二极管严重发热烧毁的情况。
为实现上述技术效果,本发明还提供一种无线自供能光动力药片的制备方法,包括如下步骤:
使用乙醇和去离子水对无线供电单元进行预清洁,并在烘箱中干燥;
将无线供电单元和电路单元焊接至电路板的一侧,并使无线供电单元与电路单元电性连接;
将微米级LED阵列焊接至电路板的另一侧,并使电路单元与微米级LED阵列电性连接;
将焊接好的无线供电单元、电路单元和微米级LED阵列用柔性透明生物相容性封装进行密封包裹并风干。
本发明的有益效果为:提供无线自供能光动力药片的制备方法,通过在电路板的一侧设置无线供电单元和电路单元,另一侧设置微米级LED阵列,既有效减少了药片体积,又保证了一侧接收超声波时,另一侧实时发射一定波长光线进行PDT。
为实现上述技术效果,本发明还提供一种基于无线自供能光动力药片的治疗系统,包括所述无线自供能光动力药片,以及用于向无线自供能光动力药片发射超声波的超声波探头。
本发明的有益效果为:通过超声波探头向无线自供能光动力药片发射超声波,为药片的电能获取提供基础,能够同时实现无线供电和治疗的控制,便于深度治疗。
为实现上述技术效果,本发明还提供一种用于构建抗肿瘤模型的系统,包括底座,所述底座上安装有细胞培养装置,所述底座上还外接有用于发射超声波的超声波探头;还包括所述无线自供能光动力药片,用于向细胞培养装置发射设定波长的光线以促进肿瘤细胞产生脂质过氧化物,配合铁死亡诱导剂诱导肿瘤细胞铁死亡。
本发明的技术效果为:基于构建抗肿瘤模型的系统,提供超声波无线驱动药片自供能发射一定波长光线进行PDT的抗肿瘤模型,并为PDT联合铁死亡诱导剂实现抗肿瘤提供基础。
进一步地,所述细胞培养装置与底座的上表面之间设置有超声透射凝胶层。
采用上述进一步方案的有益效果为:通过在细胞培养装置与底座上表面间设置超声透射凝胶,有效防止多余的空气空间,提升超声波能量的利用效率。
进一步地,所述细胞培养装置为透明材质制得的多孔板;所述无线自供能光动力药片设置于超声透射凝胶层内。
采用上述进一步方案的有益效果为:透明材质的多孔板可用于做对比抗肿瘤研究,减少因环境影响带来的误差,透明材质更容易对PDT进行反应,也便于设置其中的药片成功发射一定波长的光线,实现深度治疗。
为实现上述技术,本发明提供一种基于无线自供能光动力药片的抗肿瘤模型构建方法,基于用于构建抗肿瘤模型的系统实现,包括如下步骤:
向细胞培养装置孔内的培养基接种若干肿瘤细胞,并使其贴壁生长;
避光条件下移除孔内的培养基;
向孔内加入含有光敏剂二氢卟吩的无血清培养基,并在避光条件下培养;
避光条件下移除孔内的培养基;
向孔内加入含有铁死亡诱导剂的新鲜完全培养基,并用无线自供能光动力药片在超声波激发下产生的光线照射新鲜完全培养基,得到基于无线自供能光动力药片的抗肿瘤模型。
本发明的有益效果为:本发明提供的无线自供能光动力药片的抗肿瘤模型构建方法,通过更换光敏剂、铁死亡诱导剂和培养基,使得PDT联合铁死亡诱导剂,双向互补协同抗肿瘤得以实现。
针对于本发明还具有的其他优势将在后续的实施例中进行更细致的分析。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1中一种无线自供能光动力药片未封装时的平面一侧示意图。
图2为本发明实施例1中一种无线自供能光动力药片未封装时的平面另一侧示意图。
图3为本发明实施例1中一种无线自供能光动力药片封装时侧面示意图。
图4为本发明实施例1中一种无线自供能光动力药片的电路原理示意图。
图5为本发明实施例2中一种基于无线自供能光动力药片的抗肿瘤模型的示意图。
图6为本发明实施例2中用于构建抗肿瘤模型的系统的示意图。
其中:1、无线供电单元;2、电路单元;201、整流桥;202、稳压电容;3、微米级LED阵列;4、柔性透明生物相容性封装;5、底座;6、细胞培养装置;7、超声波探头;8、无线自供能光动力药片;9、超声透射凝胶层;D1、第一肖特基二极管;D2、第二肖特基二极管;D3、第三肖特基二极管;D4、第四肖特基二极管;LED1、第一发光二极管;LED2、第二发光二极管。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1和图2所示,在本发明的一个实施例中,本发明提供一种无线自供能光动力药片8,包括无线供电单元1、与无线供电单元1电性连接的电路单元2、与电路单元2电性连接的微米级LED阵列3,以及包裹无线供电单元1、电路单元2和微米级LED阵列3的柔性透明生物相容性封装4;
所述无线自供能光动力药片8的长、宽、高分别为8mm、5mm、3mm;所述无线自供能光动力药片8的重量为0.44g;
所述无线供电单元1,用于接收超声波能量,并将超声波能量转化为电能;
所述无线供电单元1为由锆钛酸铅压电陶瓷制成的正方形板状压电陶瓷,并通过电路单元2与微米级LED阵列3电性连接;所述正方形板状压电陶瓷的长和宽均为4mm,高为1mm,能够全方位接收超声波能量并将其转化为电能。
所述电路单元2,用于将无线供电单元1产生的电能整流为直流电,并稳定传输至微米级LED阵列3。
如图1和图3所示,所述电路单元2包括整流桥201,及与整流桥201连接的稳压电容202;
如图4所示,所述整流桥201包括第一肖特基二极管D1、第二肖特基二极管D2、第三肖特基二极管D3和第四肖特基二极管D4;
所述第一肖特基二极管D1的正极作为整流桥201的正极,分别与第三肖特基二极管D3的正极、稳压电容202的一端和微米级LED阵列3的负极连接;所述第一肖特基二极管D1的负极分别与第二肖特基二极管D2的正极和无线供电单元1的一端连接;所述第二肖特基二极管D2的负极作为整流桥201的负极,分别与第四肖特基二极管D4的负极、稳压电容202的另一端和微米级LED阵列3的正极连接;所述第三肖特基二极管D3的负极分别与第四肖特基二极管D4的正极和无线供电单元1的另一端连接;所述整流桥201用于将无线供电单元1产生的交流电整流为直流电;所述稳压电容202用于将直流电稳定传输至微米级LED阵列3。
所述微米级LED阵列3,用于接收直流电,并发射设定波长的光线促进肿瘤细胞产生脂质过氧化物,配合铁死亡诱导剂诱导肿瘤细胞铁死亡;所述微米级LED阵列3中的LED的长为1mm,宽和高均为0.5mm。本实施例中,超声波能够同时激活微米级LED阵列3中的两个并联的微米级660nm波长的第一发光二极管LED1和第二发光二极管LED2作为光源,用于PDT的光传输。
本实施例中无线自供能光动力药片8的制备方法,包括如下步骤:
使用乙醇和去离子水对无线供电单元1进行预清洁,并在烘箱中干燥;
如图1和图2所示,将无线供电单元1和电路单元2焊接至电路板的一侧,并使无线供电单元1与电路单元2电性连接;所述无线供电单元1采用能将超声波能量转换为电能到材料制得;本实施例中采用由锆钛酸铅压电陶瓷制成的正方形板状压电陶瓷作为无线供电单元1;
将微米级LED阵列3焊接至电路板的另一侧,并使电路单元2与微米级LED阵列3电性连接;
将焊接好的无线供电单元1、电路单元2和微米级LED阵列3用柔性透明生物相容性封装4进行密封包裹并风干。
本实施例将质量比为10:1的交联剂的液态二甲基硅氧烷(PDMS)混合物在真空环境下处理5分钟以消除气泡;再将无线自供能光动力药片8用PDMS混合物封装并风干。
实施例2
如图5所示,本实施例中提供一种基于无线自供能光动力药片8的抗肿瘤模型构建方法,基于用于构建抗肿瘤模型的系统实现,包括如下步骤:
向细胞培养装置6孔内的培养基接种若干肿瘤细胞,并使其贴壁生长;
避光条件下移除孔内的培养基;
向孔内加入含有光敏剂二氢卟吩的无血清培养基,并在避光条件下培养6h;
避光条件下移除孔内的培养6h后含有光敏剂二氢卟吩的无血清培养基;
向孔内加入含有铁死亡诱导剂的新鲜完全培养基,并用无线自供能光动力药片8在超声波激发下产生的光线照射新鲜完全培养基24h,得到基于无线自供能光动力药片8的抗肿瘤模型。
PDT受到肿瘤乏氧微环境及治疗深度的影响;铁死亡诱导剂在诱导了细胞发生铁死亡后,会导致细胞内二价铁离子的积蓄,从而利用芬顿反应促进氧气的产生,改善肿瘤乏氧微环境,为光动力提供很好的氧补充。
如图6所示,本实施例中的提供的一种基于无线自供能光动力药片8的抗肿瘤模型构建方法通过用于构建抗肿瘤模型的系统实现,所述系统包括底座5,所述底座5上安装有细胞培养装置6,所述底座5上还外接有用于发射超声波的超声波探头7;还包括所述无线自供能光动力药片8,用于向细胞培养装置6发射设定波长的光线以促进肿瘤细胞产生脂质过氧化物,配合铁死亡诱导剂诱导肿瘤细胞铁死亡。
用于构建抗肿瘤模型的系统是基于无线自供能光动力药片8的治疗系统实现,所述治疗系统包括所述无线自供能光动力药片8,以及用于向无线自供能光动力药片8发射超声波的超声波探头7。
当超声波探头7开启后,发射源传出频率为500KHz的超声波,当超声波抵达无线自供能光动力药片8的植入部位后,由具有压电效应的压电陶瓷(锆钛酸铅)制成的无线供电单元1接收到超声波;超声波在压电陶瓷材料的表面形成微小形变;超声波中存在的机械能通过压电效应转化为电能,并通过导线从无线供电单元1中输出交流电。无线供电单元1输出的交流电通过由肖特基二极管组成的整流桥201后,并在稳压电容202的作用下,形成稳定的直流电,输入微米级LED阵列3;微米级LED阵列3中的第一发光二极管LED1和第二发光二极管LED2被激发后发出波长为660nm的红光,用于光动力治疗。
本实施例中,所述细胞培养装置6与底座5的上表面之间设置有超声透射凝胶层9(超声波耦合剂),能够起到减少声阻差的作用,有利于无线自供能光动力药片8的驱动以及对肿瘤细胞的充分红光照射。
所述细胞培养装置6为透明材质制得的多孔板;所述无线自供能光动力药片8设置于超声透射凝胶层9内。多孔板内可以同时进行多个肿瘤细胞液培养,并通过同一超声波源和无线自供能光动力药片8照射,建立多个具有可比性的无线自供能光动力药片8的抗肿瘤模型,便于进行对照分析。
本实施例基于人肺癌细胞A549,H1299和小鼠肺癌细胞LLC构建基于无线自供能光动力药片8的抗肿瘤模型为例进行详细说明:
准备人肺癌细胞A549,H1299和小鼠肺癌细胞LLC,分别在96孔板中每孔接种8,000个细胞,使其贴壁生长24小时,将其分为对照组(Ctrl),铁死亡诱导剂(IKE)组,光动力治疗(PDT)组和铁死亡诱导剂联合光动力治疗(IKE+PDT)组。移除培养基,对PDT组和IKE+PDT组分别加入100μL含有8μM光敏剂二氢卟吩e6(Ce6)的无血清培养基,Ctrl组及IKE组更换为无血清培养基,避光条件下继续培养6h。紧接着,再次置换培养基,对于IKE组和IKE+PDT组更换为含有10μM 铁死亡诱导剂(IKE)的新鲜完全培养基,Ctrl组和PDT组则为完全培养基。对PDT组和IKE+PDT组进行光动力治疗20分钟。培养24小时后进行细胞毒性测试,使用CCK-8试剂盒检测细胞活力。每个实验重复三次并进行统计学分析。结果表明,单独运用铁死亡诱导剂,细胞活性较对照组仅下降了22.4%,26.0%,30.3%,而铁死亡诱导剂联合光动力治疗组较对照组的细胞活性显著下降,三个细胞系分别下降了83.2%,91.0%,91.1%。证明了联合治疗具有更为显著的抗肿瘤能力。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,可用于治疗的癌症包括但不限于肺癌,铁死亡诱导剂包括但不限于本实施例中所提及的铁死亡诱导剂IKE,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种无线自供能光动力药片,其特征在于,包括无线供电单元、与无线供电单元电性连接的电路单元、与电路单元电性连接的微米级LED阵列,以及包裹无线供电单元、电路单元和微米级LED阵列的柔性透明生物相容性封装;
所述电路单元包括整流桥,及与整流桥连接的稳压电容;
所述整流桥包括第一肖特基二极管、第二肖特基二极管、第三肖特基二极管和第四肖特基二极管;
所述第一肖特基二极管的正极作为整流桥的正极,分别与第三肖特基二极管的正极、稳压电容的一端和微米级LED阵列的负极连接;所述第一肖特基二极管的负极分别与第二肖特基二极管的正极和无线供电单元的一端连接;所述第二肖特基二极管的负极作为整流桥的负极,分别与第四肖特基二极管的负极、稳压电容的另一端和微米级LED阵列的正极连接;所述第三肖特基二极管的负极分别与第四肖特基二极管的正极和无线供电单元的另一端连接;所述整流桥用于将无线供电单元产生的交流电整流为直流电;所述稳压电容用于将直流电传输至微米级LED阵列;
无线供电单元和电路单元焊接至电路板的一侧,无线供电电源与电路单元电性连接;微米级LED阵列焊接至电路板的另一侧,电路单元与微米级LED阵列电性连接;
所述无线供电单元,用于接收超声波能量,并将超声波能量转化为电能;
所述电路单元,用于将无线供电单元产生的电能整流为直流电,并传输至微米级LED阵列;
所述微米级LED阵列,用于接收直流电,并发射设定波长的光线促进肿瘤细胞产生脂质过氧化物,配合铁死亡诱导剂诱导肿瘤细胞铁死亡;
所述无线供电单元为由锆钛酸铅压电陶瓷制成的正方形板状压电陶瓷;
所述无线自供能光动力药片的长、宽、高分别为8mm、5mm、3mm;所述无线自供能光动力药片的重量为0.44g;
所述正方形板状压电陶瓷的长和宽均为4mm,高为1mm;
所述微米级LED阵列中的LED的长为1mm,宽和高均为0.5mm。
2.一种如权利要求1所述的无线自供能光动力药片的制备方法,其特征在于,包括如下步骤:
使用乙醇和去离子水对无线供电单元进行预清洁,并在烘箱中干燥;
将无线供电单元和电路单元焊接至电路板的一侧,并使无线供电单元与电路单元电性连接;
将微米级LED阵列焊接至电路板的另一侧,并使电路单元与微米级LED阵列电性连接;
将焊接好的无线供电单元、电路单元和微米级LED阵列用柔性透明生物相容性封装进行密封包裹并风干。
3.基于无线自供能光动力药片的抗肿瘤模型构建方法,其特征在于,包括如下步骤:
向细胞培养装置孔内的培养基接种若干肿瘤细胞,并使其贴壁生长;
避光条件下移除孔内的培养基;
向孔内加入含有光敏剂二氢卟吩的无血清培养基,并在避光条件下培养;
避光条件下移除孔内的培养基;
向孔内加入含有铁死亡诱导剂的新鲜完全培养基,并用权利要求1所述的无线自供能光动力药片在超声波激发下产生的光线照射新鲜完全培养基,得到基于无线自供能光动力药片的抗肿瘤模型。
4.用于构建抗肿瘤模型的系统,包括底座,其特征在于,所述底座上安装有细胞培养装置,所述底座上还外接有用于发射超声波的超声波探头;还包括如权利要求1所述的无线自供能光动力药片,用于向细胞培养装置发射设定波长的光线。
5.根据权利要求4所述的用于构建抗肿瘤模型的系统,其特征在于,所述细胞培养装置与底座的上表面之间设置有超声透射凝胶层。
6.根据权利要求5所述的用于构建抗肿瘤模型的系统,其特征在于,所述细胞培养装置为透明材质制得的多孔板;所述无线自供能光动力药片设置于超声透射凝胶层内。
CN202310850855.2A 2023-07-12 2023-07-12 光动力药片及其制备方法、抗肿瘤模型的构建方法及系统 Active CN116585622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310850855.2A CN116585622B (zh) 2023-07-12 2023-07-12 光动力药片及其制备方法、抗肿瘤模型的构建方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310850855.2A CN116585622B (zh) 2023-07-12 2023-07-12 光动力药片及其制备方法、抗肿瘤模型的构建方法及系统

Publications (2)

Publication Number Publication Date
CN116585622A CN116585622A (zh) 2023-08-15
CN116585622B true CN116585622B (zh) 2023-10-10

Family

ID=87594024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310850855.2A Active CN116585622B (zh) 2023-07-12 2023-07-12 光动力药片及其制备方法、抗肿瘤模型的构建方法及系统

Country Status (1)

Country Link
CN (1) CN116585622B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767291A (zh) * 2015-04-08 2015-07-08 重庆医科大学 基于超声波的无线充电系统
CN106237533A (zh) * 2016-08-24 2016-12-21 中国医学科学院生物医学工程研究所 一种无创可控的微型人体内腔光动力治疗系统
WO2017044701A1 (en) * 2015-09-11 2017-03-16 Memorial Sloan Kettering Cancer Center Methods and compositions for cancer treatment
WO2018232163A1 (en) * 2017-06-16 2018-12-20 Rogers Sciences, Inc. Devices and methods fore treating subjects
JP2019092532A (ja) * 2017-11-17 2019-06-20 学校法人早稲田大学 生体埋め込み型の無線給電型発光システム
CN111053905A (zh) * 2020-01-17 2020-04-24 福州大学 一种无线供电光动力药物缓释系统
CN111741794A (zh) * 2018-01-24 2020-10-02 新加坡国立大学 光动力疗法装置、系统以及方法
CN112451680A (zh) * 2020-11-24 2021-03-09 吉林化工学院 一种具有协同诱导光动力治疗和铁死亡的ros敏感性纳米试剂及其制备方法
CN114656398A (zh) * 2022-04-25 2022-06-24 郑州大学 一种聚集诱导发光光敏剂在制备铁死亡诱导剂中的应用
CN114904014A (zh) * 2022-04-21 2022-08-16 山东大学 一种自产氧型仿生光动力/铁死亡/免疫抑制微环境调节纳米平台及其制备和应用
CN114949623A (zh) * 2022-06-24 2022-08-30 四川省肿瘤医院 一种无线无电池光声动力混合治疗丸及其制备方法、应用
CN115089723A (zh) * 2022-06-29 2022-09-23 中山大学 一种谷胱甘肽和过氧化氢敏感的锰基纳米颗粒及其制备方法和应用
CN116115617A (zh) * 2022-12-30 2023-05-16 昆明医科大学第一附属医院 一种抗肺癌的药物及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375790A (zh) * 2007-08-28 2009-03-04 娄世亮 应用于光动力诊断与治疗的感应装置
US9649504B2 (en) * 2012-11-07 2017-05-16 Rogers Sciences, Inc. Implantable CLIPT illumination system
US11077316B2 (en) * 2016-04-25 2021-08-03 Immunolight, Llc Insertion devices and systems for production of emitted light internal to a medium and methods for their use
WO2021050490A1 (en) * 2019-09-13 2021-03-18 The Trustees Of Columbia University In The City Of New York Methods of enhancing radiotherapy using ferroptosis inducers as radiosensitizers

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767291A (zh) * 2015-04-08 2015-07-08 重庆医科大学 基于超声波的无线充电系统
WO2017044701A1 (en) * 2015-09-11 2017-03-16 Memorial Sloan Kettering Cancer Center Methods and compositions for cancer treatment
CN106237533A (zh) * 2016-08-24 2016-12-21 中国医学科学院生物医学工程研究所 一种无创可控的微型人体内腔光动力治疗系统
WO2018232163A1 (en) * 2017-06-16 2018-12-20 Rogers Sciences, Inc. Devices and methods fore treating subjects
JP2019092532A (ja) * 2017-11-17 2019-06-20 学校法人早稲田大学 生体埋め込み型の無線給電型発光システム
CN111741794A (zh) * 2018-01-24 2020-10-02 新加坡国立大学 光动力疗法装置、系统以及方法
CN111053905A (zh) * 2020-01-17 2020-04-24 福州大学 一种无线供电光动力药物缓释系统
CN112451680A (zh) * 2020-11-24 2021-03-09 吉林化工学院 一种具有协同诱导光动力治疗和铁死亡的ros敏感性纳米试剂及其制备方法
CN114904014A (zh) * 2022-04-21 2022-08-16 山东大学 一种自产氧型仿生光动力/铁死亡/免疫抑制微环境调节纳米平台及其制备和应用
CN114656398A (zh) * 2022-04-25 2022-06-24 郑州大学 一种聚集诱导发光光敏剂在制备铁死亡诱导剂中的应用
CN114949623A (zh) * 2022-06-24 2022-08-30 四川省肿瘤医院 一种无线无电池光声动力混合治疗丸及其制备方法、应用
CN115089723A (zh) * 2022-06-29 2022-09-23 中山大学 一种谷胱甘肽和过氧化氢敏感的锰基纳米颗粒及其制备方法和应用
CN116115617A (zh) * 2022-12-30 2023-05-16 昆明医科大学第一附属医院 一种抗肺癌的药物及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Nicholas Thomas Blum.When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments.《IEEE Nanotechnology Magazine 》.2021,全文. *
X.S. Li.Detection of ROS in Cell During Photodynamic Therapy Applying Fluorescence Microscopy.《2007 IEEE/ICME International Conference on Complex Medical Engineering》.2007,全文. *
李超群 ; 汤红霞 ; 张悦 ; 宋倩倩 ; 陈凤英 ; 费伟东 ; .铁死亡诱导型纳米药物的构建及抗肿瘤研究进展.药学学报.(09),全文. *

Also Published As

Publication number Publication date
CN116585622A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
KR200407524Y1 (ko) 양자치료기용 방사기
CN107206250B (zh) 使用连续光进行皮肤处理的设备和方法
De Castro et al. The effect of laser therapy on the proliferation of oral KB carcinoma cells: an in vitro study
US20150217142A1 (en) Method and device for treatment with combination ultrasound-phototherapy transducer
US20240123253A1 (en) Photodynamic therapy devices, systems and methods
CN103170064A (zh) 诊疗一体探头
CN110694174A (zh) 一种多功能光电刺激生发帽
CN102488973B (zh) 一种用于生发育发的辐照装置
KR20210090630A (ko) 세포-대-세포 통신을 측정 및 유도하기 위한 방법, 장치 및 조성물, 및 이의 치료적 용도
Guan et al. Implantable self-powered therapeutic pellet for wireless photodynamic/sonodynamic hybrid therapy of cancer recurrence inhibition and tumor regression
CN116585622B (zh) 光动力药片及其制备方法、抗肿瘤模型的构建方法及系统
CN106902468B (zh) 一种用于直肠癌光动力治疗的直肠栓led光源
CN202070020U (zh) 一种led光动力治疗仪
CN114949623B (zh) 一种无线无电池光声动力混合治疗丸及其制备方法
US20130190844A1 (en) Photo-stimulation method and device with light mixture
CN201283071Y (zh) 激光辐照穴位体表复合能量玉石拔罐仪
CN104208820B (zh) 单点式祛痘装置
RU2723881C2 (ru) Способ инициации гибели опухолевых клеток аскорбиновой и янтарной кислотами и ВЧ- и СВЧ-энергией волнового излучения
CN211962813U (zh) 一种复合频谱光电量子理疗仪
CN204302166U (zh) 一种验证发光二极管杀灭牙周炎致病菌效果的装置
CN101862507A (zh) 大功率紫绿红led光诊断治疗仪
RU2724326C2 (ru) Способ инициации гибели опухолевых клеток натриевыми солями хлорина-e6, хлорина-p6 и пурпурина-5 и ВЧ- и СВЧ-энергией волнового излучения
RU2723488C2 (ru) Способ инициации гибели опухолевых клеток гидрозидом 3-аминофталевой кислотой и ВЧ и СВЧ энергией волнового излучения
CN203577153U (zh) 受损皮肤修复仪
CN203507324U (zh) 一种多频谱光波肿瘤治疗仪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant