CN116555714B - 一种TiZrV-Al磁控溅射靶材及其制备方法 - Google Patents

一种TiZrV-Al磁控溅射靶材及其制备方法 Download PDF

Info

Publication number
CN116555714B
CN116555714B CN202310235771.8A CN202310235771A CN116555714B CN 116555714 B CN116555714 B CN 116555714B CN 202310235771 A CN202310235771 A CN 202310235771A CN 116555714 B CN116555714 B CN 116555714B
Authority
CN
China
Prior art keywords
tizrv
lining pipe
target
magnetron sputtering
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310235771.8A
Other languages
English (en)
Other versions
CN116555714A (zh
Inventor
罗成
蒙峻
魏宁斐
杨建成
李长春
焦纪强
朱小荣
杨伟顺
刘建龙
柴振
万亚鹏
蔺晓建
谢文君
马向利
张喜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Modern Physics of CAS
Original Assignee
Institute of Modern Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Modern Physics of CAS filed Critical Institute of Modern Physics of CAS
Priority to CN202310235771.8A priority Critical patent/CN116555714B/zh
Publication of CN116555714A publication Critical patent/CN116555714A/zh
Application granted granted Critical
Publication of CN116555714B publication Critical patent/CN116555714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种TiZrV‑Al磁控溅射靶材及其制备方法。所述TiZrV‑Al磁控溅射靶材包括内衬管和设于内衬管外的一段或多段TiZrV‑Al靶材;TiZrV‑Al磁控溅射靶材的制备方法包括如下步骤:将TiZrV‑Al粉体填充于模具中石墨模具与纯钛内衬管之间的环腔中;石墨模具与纯钛内衬管的两端配合石墨板;将模具进行脱气,然后置于惰性气氛中进行烧制得到靶材毛坯;从模具中取出纯钛内衬管,对坯料内壁进行车削得TiZrV‑Al靶材;将一段或多段TiZrV‑Al靶材布置于内衬管上即得。本发明TiZrV‑Al薄膜对活性气体具有更大的饱和容量,具有更多的激活次数,且重新激活后吸气能力不会明显下降。

Description

一种TiZrV-Al磁控溅射靶材及其制备方法
技术领域
本发明涉及一种TiZrV-Al磁控溅射靶材及其制备方法,属于磁控溅射靶材技术领域。
背景技术
降低粒子加速器因表面出气和解吸而引起的弯转磁铁真空室(无法安装真空泵)内高的真空压力梯度,以及抑制因弯转磁铁真空室表面解吸而产生的动态真空效应是近年来粒子加速器领域主要研究的方向之一。粒子加速器领域针对此也提出了多种对应的解决方法,目前最主要的方法是在真空室内壁沉积一层NEG薄膜。由中国科学院近代物理研究所承建的强流重离子加速器(HIAF),其动态真空效应主要发生在弯转薄壁钛合金内衬真空室内,为了提供满足束流寿命要求的极高真空环境,需要在薄壁钛合金内衬真空室内沉积NEG薄膜,然而,传统的加速器真空管道NEG镀膜方式是基于螺线管磁场的磁控溅射镀膜,靶材为纯金属缠绕状,即将Ti、Zr、V等纯金属细丝缠绕在一块进行磁控溅射。该技术方案主要是针对不同截面的、具有一定长度的直管道,其溅射功率(溅射电流小于0.8A,放电电压小于600V)极低,所得薄膜抽气性能及膜-基结合力较差。然而,薄壁钛合金内衬真空室截面特性属于大尺寸异形截面,溅射能量过低,将导致薄膜厚度不均匀、薄膜内部残余应力大等问题,进而影响加速器极高真空获得。所以基于螺线管磁场的磁控溅射镀膜技术并不适用于强流加速器钛合金内衬薄壁真空室。相比于其他NEG薄膜材料(如:TiZrV、ZrVFe等),TiZrV-Al对活性气体具有更大的饱和容量,具有更多的激活次数和较低的激活温度,而且重新激活后吸气能力不会明显下降。因此,Ti-Zr-V-Al吸气剂材料更适用于粒子加速器领域。
综上所述,首次提出TiZrV-Al磁控溅射大尺寸圆柱靶材及其制备方法具有重要意义。
发明内容
本发明的目的是提供一种大尺寸TiZrV-Al磁控溅射圆柱靶材及其制备方法,用于开展钛合金内衬环表面或其他极高真空插入件NEG薄膜沉积工作。
本发明所提供的TiZrV-Al磁控溅射靶材,包括内衬管和设于所述内衬管外的一段或多段TiZrV-Al靶材。
所述内衬管优选呈圆形;
所述内衬管的内径为8~72mm,外径为12~80mm;
所述内衬管的材质为不锈钢,冷却水从所述内衬管内部采用下进上出方式,在磁控溅射过程中对靶材进行冷却。
由于非蒸散型吸气剂属于脆性材料,考虑加工工艺改进、总体尺寸变化等因素,所述TiZrV-Al靶材可分为多段,但不限于5段,可高于5段,也可低于5段。
每段所述TiZrV-Al靶材的长度为10~170mm。
所述内衬管与所述TiZrV-Al靶材之间设有0.2~0.3mm厚的铟垫,可以使所述内衬管与所述TiZrV-Al靶材紧密配合,弥补加工误差。
所述TiZrV-Al靶材的原子数比(Atomic./%)如下:
10%≤Ti≤20%,30%≤Zr≤35%,30%≤V≤35%,15%≤Al≤25%。
进一步地,所述内衬管的两端均螺纹配合一卡座,所述卡座的另一端与磁控溅射镀膜设备中的磁流体卡套以插入式的方式连接。
本发明进一步提供了所述TiZrV-Al磁控溅射靶材的制备方法,包括如下步骤:
S1、将TiZrV-Al粉体填充于模具中石墨模具与纯钛内衬管之间的环腔中;
所述石墨模具与所述纯钛内衬管的两端配合石墨板,用于密封所述石墨模具与所述纯钛内衬管之间的环腔;
S2、粉体经振动压实后,将所述模具置于热等静压设备中进行脱气,然后置于惰性气氛中进行烧制,得到靶材毛坯;
S3、从所述模具中取出所述纯钛内衬管,对坯料内壁进行车削得到所述TiZrV-Al靶材,内径尺寸公差控制在0到0.1mm范围之内;
S4、将一段或多段所述TiZrV-Al靶材布置于所述内衬管上,并配合所述卡座,即得所述TiZrV-Al磁控溅射靶材。
上述的制备方法中,所述纯钛内衬管内填充有石墨棒,目的是保证所述纯钛内衬管不产生变形。
上述的制备方法中,所述石墨模具优选由两个相同的部分组成,如由两个相同的半圆柱组成。
上述的制备方法中,步骤S2中,所述烧制的条件如下:
温度为1200~1450℃,压力为100~155MPa,时间为5~8h;
步骤S4中,在布置所述TiZrV-Al靶材之前还包括在所述内衬管上布置所述铟垫的步骤。
上述的制备方法中,步骤S1中,所述TiZrV-Al粉体由钛粉、锆粉、矾粉和铝粉经球磨得到;
各粉体的纯度均高于99.8%以上,并通过筛分设备进行筛分,在此选用400目筛网;
所述球磨的介质为氧化锆陶瓷球,所述氧化锆陶瓷球的球体配比为D15:D10:D5:D3=1:1:2:2;
所述球磨的条件如下:
转速为400~700r/min,时间为9~15h。
由于采取以上技术方案,本发明具有以下优点:
在沉积NEG薄膜的过程中,由于靶材内部布置有冷却水路,因此TiZrV-Al圆柱靶材工作电流可达25A,放电电压可达700V,较高的磁控溅射功率可以大幅度提高薄膜沉积效率,也具备大范围的功率调节能力,有利于获得不同特性的薄膜,如获得致密的膜层、获得柱状结构的膜层。
柱状结构的薄膜拥有更大的比表面积而表现出更好的抽气性能,同时孔隙的存在也为气体的扩散提供了有效的路径。除此之外,也可以解决缠绕式靶材在大尺寸异形截面真空管道内壁上沉积NEG薄膜时,因溅射能量过低,而出现的薄膜厚度不均匀,薄膜内部残余应力较大及薄膜抽气能力差等问题。
与此同时,相比于其他NEG薄膜材料,TiZrV-Al薄膜对活性气体具有更大的饱和容量,具有更多的激活次数,而且重新激活后吸气能力不会明显下降。由于TiZrV-Al薄膜激活温度低于300℃,与真空高温烘烤温度有重合区域,在其应用于加速器极高真空系统时,可以极大简化真空高温烘烤工艺程序。
附图说明
图1为本发明TiZrV-Al磁控溅射靶材的结构示意图。
图2为图1中卡座放大后的示意图。
图3为单独一组TiZrV-Al靶材的示意图。
图4为每组TiZrV-Al靶材烧制时的模具装配示意图。
图5为石墨圆板模具的示意图。
图6为两个相同的半圆柱石墨模具示意图。
图7为本发明实施例1制备的TiZrV-Al薄膜的断面SEM分析。
图8为本发明实施例1制备的TiZrV-Al薄膜的AFM分析。
图9为本发明实施例1制备的TiZrV-Al薄膜的抽气性能曲线。
图10为本发明实施例1中在钛合金环表面沉积的TiZrV-Al薄膜的照片。
图11为本发明实施例1中在氧化锆陶瓷表面沉积的TiZrV-Al薄膜的照片。
附图中各标记如下:
1-卡座;2-不锈钢内衬管;3-TiZrV-Al靶材;4-石墨圆板;5-半圆柱石墨模具;6-石墨棒;7-纯钛内衬管。
具体实施方式
下面结合附图对本发明做进一步说明,但本发明并不局限于以下实施例。
如图1及图2所示,为本发明提供的大尺寸TiZrV-Al磁控溅射圆柱靶材的结构,包括卡座1、不锈钢内衬管2、多段TiZrV-Al靶材3。由于TiZrV-Al等吸气剂材料属于脆性材料,在烧制过程中,在各个方向的不宜过大,否则容易断裂。优选地,由5段TiZrV-Al靶材3拼接在不锈钢内衬管2上,但不限于5段,可以多于5段或少于5段,每段长度为10~170mm,具体由烧制工艺、靶材总体尺寸等来确定。为了增加热传递,尽可能带走由于磁控溅射过程中靶材自身所产生的热量,在不锈钢内衬管2与TiZrV-Al靶材3之间填充具有一定厚度的铟垫(图中未示),厚度优选为0.2~0.3mm。卡座1一端与磁控溅射镀膜设备中的磁流体卡套相连,另一端通过螺纹连接的方式与不锈钢内衬管2紧密结合在一起。在磁控溅射过程中,冷却水通过不锈钢内衬管2采用下进上出的方式对靶材进行冷却,使靶材工作电流可以稳定维持在25A左右。
本发明大尺寸TiZrV-Al磁控溅射圆柱靶材中,TiZrV-Al靶材3与不锈钢内衬管2的截面形状也不限于圆形,可以是矩形、椭圆等其他形状,这取决于基底形状或沉积膜层需求。
为了确保TiZrV-Al较强的抽气能力和较高的饱和容量,靶材成分比例(Atomic./%)控制在:10%≤Ti≤20%,30%≤Zr≤35%,30%≤V≤35%,15%≤Al≤25%。
实施例1、制备大尺寸TiZrV-Al磁控溅射圆柱靶材
首先,选取优质的原材料,原材料的纯度均高于99.8%以上,并通过筛分设备进行筛分,在此选用400目,取筛下粉体,得到高纯的单质粉体。通过精确电子天平保证取样精确到0.01g进行取样,每一批次分别为:钛粉:880g,锆粉:4160g,矾粉:2240g,铝粉720g(其中,各成分原子数比例(Atomic./%)为:Ti:12.54%,Zr:34.3%,V:33.08%,Al:20.08%),合计8000g,共5批次。通过球磨机对每批次取得的8000g成品粉体进行球磨混合,球磨介质为氧化锆陶瓷球,球体配比为D15:D10:D5:D3=1:1:2:2,球磨转速为600r/min,球磨时间为12h。
图3为一组TiZrV-Al靶材的示意图,每一批次粉体需要制作一组TiZrV-Al靶材3。图4是每组TiZrV-Al靶材烧制时的模具装配示意图,将一块石墨圆板4置于烧制平台上,一组半圆柱石墨模具5(如图6所示)放置于石墨圆板4上,半圆柱石墨模具5与石墨圆板4同轴心。进一步地,将纯钛内衬管7同样放在石墨圆板4上,纯钛内衬管7与石墨圆板4、半圆柱石墨模具5保持同轴心。更进一步地,将石墨棒6插入石墨圆板4和纯钛内衬管7内,使纯钛内衬管7与石墨棒6紧密配合。石墨棒6的主要作用是在烧制过程中,防止因温度过高或压力过大,从而导致纯钛内衬管7产生变形。
将制备好的粉末,填充于纯钛内衬管7与半圆柱石墨模具5之间的间隙处。振动压实,盖上石墨圆板4。将预制的坯料装入热等静压设备进行脱气4小时,然后将温度上升至1400℃,并充入保护气体氩气,将压力控制至150MPa,进行8小时烧制工艺,得到烧制好的靶材毛坯。
通过数控加工中心对每件烧制好的坯料外壁进行车削,取出纯钛内衬管7,同时对坯料内壁进行车削,内径尺寸公差控制在0到0.1mm范围之内,由此得到成品TiZrV-Al靶材3。通过数控加工中心,加工出符合图纸要求的全尺寸不锈钢内衬管2和卡座1,全尺寸不锈钢内衬管2的内径为72mm,外径为80 mm,外径尺寸公差控制在-0.1mm到0范围之内。
将全尺寸不锈钢内衬管2上布满0.2~0.3mm厚的铟垫,然后依照顺序将5件加工好的TiZrV-Al吸气剂成品TiZrV-Al靶材3(每段长度为156mm)放入到不锈钢内衬管2上,最后将不锈钢内衬管2的两端与卡座1通过螺纹方式连接,得到大尺寸TiZrV-Al磁控溅射圆柱靶材。
图7和图8分别为本实施例制备的TiZrV-Al薄膜的断面SEM和AFM分析,可以看出,晶粒尺寸大小在15~30nm左右,表面光洁度最大为12.5nm。膜层断面平整,呈柱状结构,这说明V元素的增多有益于沉积过程中柱状晶结构的形成。
图9为本实施例制备的TiZrV-Al薄膜的抽气性能曲线,可以看出,薄膜对于H2的抽速为0.42l/s-cm2
图10为采用本发明方法在钛合金环表面沉积的TiZrV-Al薄膜的照片,可以看出,膜层颜色与靶材颜色一致,且在钛合金环表面分布均匀,部分颜色有差异的地方可能是因为钛合金环表面处理不够充分。
图11为采用本发明方法在氧化锆陶瓷表面沉积的TiZrV-Al薄膜的照片,可以看出,膜层颜色与靶材颜色完全一致,且氧化锆陶瓷表面已被完全覆盖,没有色差存在。这说明TiZrV-Al靶材能够在特定工艺下沉积在氧化锆陶瓷表面上。
实施例2、制备大尺寸TiZrV-Al磁控溅射圆柱靶材
制备步骤与实施例1基本相同,不同之处在于:采用的粉体的质量组成如下:钛粉:1403.67g,锆粉:3638.48g,矾粉:2370g,铝粉537.85g,相应地,各成分原子数比例(Atomic./%)为:Ti:20%,Zr:30%,V:35%,Al:15%,合计7950g;加工的全尺寸不锈钢内衬管2的内径为8mm,外径为12mm。
本实施例制备的TiZrV-Al圆柱靶内外表面光滑,工作稳定。
对本实施例制备的TiZrV-Al薄膜的断面SEM和AFM分析可知,晶粒尺寸大小在15~30nm左右,表面光洁度最大为12.5nm。膜层断面平整,呈柱状结构,这说明V元素的增多有益于沉积过程中柱状晶结构的形成。
对本实施例制备的TiZrV-Al薄膜的抽气性能测试可知,TiZrV-Al对氢气的抽气性能良好,TiZrV-Al常温下对氢气的抽速为0.42l/s-cm2,达到了国际先进水平,佐证了TiZrV-Al圆柱靶材以及TiZrV-Al薄膜的可用性。
实施例3、制备大尺寸TiZrV-Al磁控溅射圆柱靶材
制备步骤与实施例1基本相同,不同之处在于:采用的粉体的原子数组成如下:钛粉:701.8g,锆粉:4994.1g,矾粉:2031.4g,铝粉896.4g,相应地,各成分原子数比例(Atomic./%)为:Ti:10%,Zr:35%,V:30%,Al:25%,合计8623.7g;加工的全尺寸不锈钢内衬管2的内径为60mm,外径为68mm。
本实施例制备的TiZrV-Al圆柱靶内外表面光滑,工作稳定。
对本实施例制备的TiZrV-Al薄膜的断面SEM和AFM分析可知,晶粒尺寸大小在15~30nm左右,表面光洁度最大为12.5nm。膜层断面平整,呈柱状结构,这说明V元素的增多有益于沉积过程中柱状晶结构的形成。
对本实施例制备的TiZrV-Al薄膜的抽气性能测试可知,TiZrV-Al常温下对氢气的抽速为0.42l/s-cm2,抽气性能良好,达到了国际先进水平,佐证了TiZrV-Al圆柱靶材以及TiZrV-Al薄膜的可用性。

Claims (2)

1.一种TiZrV-Al磁控溅射靶材,包括内衬管和设于所述内衬管外的一段或多段TiZrV-Al靶材;
所述内衬管的材质为不锈钢;
所述TiZrV-Al靶材的原子数含量如下:
10%≤Ti≤20%,30%≤Zr≤35%,30%≤V≤35%,15%≤Al≤25%;
所述内衬管呈圆形;
所述内衬管的内径为8~72mm,外径为12~80mm;
每段所述TiZrV-Al靶材的长度为10~170mm;
所述内衬管与所述TiZrV-Al靶材之间设有0.2~0.3mm厚的铟垫;
所述内衬管的两端均螺纹配合一卡座,所述卡座的另一端与磁控溅射镀膜设备中的磁流体卡套以插入式的方式连接;
所述TiZrV-Al磁控溅射靶材制备过程中的烧制条件为:温度为1200~1450℃,压力为100~155MPa,时间为5~8h。
2.权利要求1所述TiZrV-Al磁控溅射靶材的制备方法,包括如下步骤:
S1、将TiZrV-Al粉体填充于模具中石墨模具与纯钛内衬管之间的环腔中;
所述石墨模具与所述纯钛内衬管的两端配合石墨板,用于密封所述石墨模具与所述纯钛内衬管之间的环腔;
所述纯钛内衬管内填充有石墨棒;
所述TiZrV-Al粉体由钛粉、锆粉、矾粉和铝粉经球磨得到;
所述球磨的介质为氧化锆陶瓷球,所述氧化锆陶瓷球的球体配比为D15:D10:D5:D3=1:1:2:2;
所述球磨的条件如下:
转速为400~700r/min,时间为9~15h;
S2、将所述模具进行脱气,然后置于惰性气氛中进行烧制,得到靶材毛坯;
所述烧制的条件如下:
温度为1200~1450℃,压力为100~155MPa,时间为5~8h;
S3、从所述模具中取出所述纯钛内衬管,对坯料内壁进行车削得到所述TiZrV-Al靶材;
S4、将一段或多段所述TiZrV-Al靶材布置于所述内衬管上,即得所述TiZrV-Al磁控溅射靶材;
在布置所述TiZrV-Al靶材之前还包括在所述内衬管上布置所述铟垫的步骤。
CN202310235771.8A 2023-03-13 2023-03-13 一种TiZrV-Al磁控溅射靶材及其制备方法 Active CN116555714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310235771.8A CN116555714B (zh) 2023-03-13 2023-03-13 一种TiZrV-Al磁控溅射靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310235771.8A CN116555714B (zh) 2023-03-13 2023-03-13 一种TiZrV-Al磁控溅射靶材及其制备方法

Publications (2)

Publication Number Publication Date
CN116555714A CN116555714A (zh) 2023-08-08
CN116555714B true CN116555714B (zh) 2023-12-29

Family

ID=87486827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310235771.8A Active CN116555714B (zh) 2023-03-13 2023-03-13 一种TiZrV-Al磁控溅射靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN116555714B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620082A (zh) * 2011-04-29 2014-03-05 普莱克斯S.T.技术有限公司 形成圆柱形溅射靶组件的方法
CN105593389A (zh) * 2013-11-20 2016-05-18 工程吸气公司 特别适用于氢气和一氧化碳吸附的非蒸散型吸气剂合金
CN111378937A (zh) * 2018-12-28 2020-07-07 米亚索乐装备集成(福建)有限公司 一种靶材的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620082A (zh) * 2011-04-29 2014-03-05 普莱克斯S.T.技术有限公司 形成圆柱形溅射靶组件的方法
CN105593389A (zh) * 2013-11-20 2016-05-18 工程吸气公司 特别适用于氢气和一氧化碳吸附的非蒸散型吸气剂合金
CN111378937A (zh) * 2018-12-28 2020-07-07 米亚索乐装备集成(福建)有限公司 一种靶材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Characterization of ZAO® sintered getter material for use in fusion applications;F. Siviero et.al.;《Fusion Engineering and Design》;第1729-1732页 *

Also Published As

Publication number Publication date
CN116555714A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
EP1997932A1 (en) Method of arc ion plating and target for use therein
CN108531877A (zh) 一种TiZrVHf四元吸气剂薄膜及其制备方法
CN110171975B (zh) 一种大尺寸高密度无粘结相碳化钨靶材及其制备方法
CN110257784A (zh) 一种高致密度钼铌合金溅射靶材的制备工艺
CN103523792A (zh) LaB6多晶体、其制备方法及包括其的LaB6 阴极
KR20110106923A (ko) ZnAl 타깃의 제조 방법
EP3219690B1 (en) Lithium cobalt sintered body and sputtering target produced by using the sintered body, production method of lithium cobalt oxide sintered body, and thin film formed from lithium cobalt oxide
JP2016536463A (ja) 導電性ターゲット材料
CN102584205B (zh) 一种钇钡铜氧靶材的制造方法
CN115745574A (zh) 高致密无开裂细晶铟锡氧化物管状靶材的制备方法
CN116555714B (zh) 一种TiZrV-Al磁控溅射靶材及其制备方法
CN103805952A (zh) 一种大尺寸高纯钨靶材及其生产方法
US12043892B2 (en) Method for producing molybdenum alloy targets
CN110465664B (zh) 用于制备梯度多孔复合材料的组合式放电等离子烧结模具
CN104245623B (zh) 含Li磷酸化合物烧结体和溅射靶,及其制造方法
CN110184519B (zh) 一种大直径异型薄壁管状钼基合金零件的制备方法
CN114622146B (zh) 一种涂层改性铌纤维增强钛铝基复合材料的制备方法
CN112030125A (zh) 一种ods金属薄膜材料的制备方法
CN1519390A (zh) 一种连续SiC纤维增强Ti合金基复合材料先驱丝的制备方法
CN113215532B (zh) 黑腔内壁低密度金转化层的制备方法
CN110004416A (zh) 一种钼靶材的制备方法
CN108723355A (zh) 放电等离子烧结制备磁性Sm2Co17/Al-Ni-Co复合材料的方法和应用
KR20170051670A (ko) 루테늄 스퍼터링 타겟 제조방법
KR20110105502A (ko) 스퍼터링 타겟용 알루미늄 소결체 제조방법
CN107109631A (zh) 圆筒形靶材的制造方法、圆筒形溅镀靶及烧制用辅助具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant