CN116540332A - 一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法 - Google Patents

一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法 Download PDF

Info

Publication number
CN116540332A
CN116540332A CN202310466468.9A CN202310466468A CN116540332A CN 116540332 A CN116540332 A CN 116540332A CN 202310466468 A CN202310466468 A CN 202310466468A CN 116540332 A CN116540332 A CN 116540332A
Authority
CN
China
Prior art keywords
film layer
film
chalcogenide glass
glass lens
dlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310466468.9A
Other languages
English (en)
Other versions
CN116540332B (zh
Inventor
崔丁方
钱海东
李俊仪
聂文斌
杨康
陈琳
陈建红
陈梦凡
金海涛
子光平
缪彦美
崔海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Chihong International Germanium Industry Co ltd
Original Assignee
Yunnan Chihong International Germanium Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Chihong International Germanium Industry Co ltd filed Critical Yunnan Chihong International Germanium Industry Co ltd
Priority to CN202310466468.9A priority Critical patent/CN116540332B/zh
Publication of CN116540332A publication Critical patent/CN116540332A/zh
Application granted granted Critical
Publication of CN116540332B publication Critical patent/CN116540332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明涉及一种红外硫系玻璃镜片及其制备方法,属于光学材料领域。本发明以硫系玻璃镜片为基底,基底的正面由内至外依次设置第一层Ge膜层、第一层ZnSe膜层、第二层Ge膜层、第一层ZnS膜层、第三层Ge膜层、DLC膜层,基底的反面由内至外依次设置第一层Ge膜层、第一层ZnS膜层、第二层Ge膜层、第二层ZnS膜层、第一层YbF3膜层、第三层ZnS膜层。本发明有效提高了硫系玻璃镜片表面的耐摩擦性能、耐腐蚀性能和表面硬度,该硫系玻璃镜片两面镀膜后在8‑12μm波段平均透过率≥92.5%,能通过膜强度环境测试和像质测试,可投入到车载红外镜头应用中,满足使用要求。

Description

一种AR/DLC复合镀膜的红外硫系玻璃镜片及其制备方法
技术领域
本发明属于光学材料领域,具体的说,涉及一种AR/DLC复合镀膜的红外硫系玻璃镜片及其制备方法。
背景技术
在众多红外光学材料中,硫系玻璃相比于Ge、Si、ZnS、ZnSe等红外光学晶体材料具有更宽的透过范围、更好的消色差、更优异消热差等性能,被视为新一代温度自适应红外光学系的核心透镜材料,在红外镜头的工程化、无热化设计等方面有着明显优势,在非制冷红外光学系统中具有广阔的运用前景。
虽然硫系玻璃凭借其优异的光学性能现已在红外光学材料领域占比巨大,并长期持续保持增长态势,但由于硫系玻璃本身材料特性限制,对硫系玻璃表面沉积的光学薄膜存在残余应力大、附着力差、难以通过高强度测试的问题,这些问题导致镀膜的硫系玻璃镜片容易脱落或破损,从而限制了它们在复杂严苛的使用环境中的应用。
现有文献“CN107746187A-一种镀DLC膜的红外硫系玻璃镜片及其制备方法”其过渡层为YF3与Ge搭配,YF3膜层沉积后会呈现较大的张应力,膜层沉积后存在较大膜层脱落风险,且YF3在10.5μm波段以后存在较大的吸收,不利于膜层透过率的提升。
发明内容
本发明致力提供一种AR/DLC复合镀膜的红外硫系玻璃镜片及其制备方法,有效提高了硫系玻璃镜片表面的耐摩擦性能、耐腐蚀性能和表面硬度,该硫系玻璃镜片两面镀膜后在8-12μm波段平均透过率≥92.5%,该硫系玻璃镜片能通过膜强度环境测试和像质测试,可投入到车载红外镜头应用中,满足使用要求。
为实现上述目的,本发明是通过如下技术方案实现的:
本发明提供了一种AR/DLC复合镀膜的红外硫系玻璃镜片,以硫系玻璃镜片为基底,基底的正反两面分别镀有AR+DLC膜膜系结构和反面AR膜膜系结构;
正面AR+DLC膜膜系为:
硫系玻璃基底/0.792 H/0.2413 M/0.641 H/0.844 L/1.355 H/2.6 N/空气;
反面AR膜膜系为:
硫系玻璃基底/1.0656 H/0.0844 L/2.56H/0.844 L/1.355 I/2.6 L/空气;
式中,H表示一个λ0/4光学厚度的Ge膜层;M表示一个λ0/4光学厚度的ZnSe膜层;L表示一个λ0/4光学厚度的ZnS膜层;N表示一个λ0/4光学厚度的DLC膜层;I表示一个λ0/4光学厚度的YbF3膜层;λ0为中心波长;H、M、L、N和I前的数字均为膜层的厚度比例系数。
本发明还提供了一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,包括以下步骤:
步骤1:正面AR膜镀制:以硫系玻璃镜片为基底依次镀制第一层Ge膜层、第一层ZnSe膜层、第二层Ge膜层、第一层ZnS膜层、第三层Ge膜层;
步骤2:正面DLC膜镀制:以镀好AR膜的红外硫系玻璃镜片为基底镀制DLC膜层;
步骤3:反面AR膜镀制:以镀好DLC膜硫系玻璃镜片为基底,在其另外一面依次镀第一层Ge膜层、第一层ZnS膜层、第二层Ge膜层、第二层ZnS膜层、第一层YbF3膜层、第三层ZnS膜层。
进一步优选,硫系玻璃基底的倒角部分斜面与其正反面一样,经过单点金刚石车床车削形成。而非超精密加工倒角形成。
进一步优选,步骤1中,镀膜时硫系玻璃基底镀膜装夹方式是用高温胶带粘接在镀膜盘内进行镀膜,确保整个硫系玻璃镜片基底正面包括倒角斜面均镀上AR膜,以此增加后续镀制DLC膜的附着力和减少后续镀制DLC膜的残余应力。
进一步优选,步骤1或3中,Ge膜层采用电子束蒸发的方式进行蒸镀,其中电子束流为180-200mA,Ge膜层沉积速率为0.3nm/s。
进一步优选,步骤1或3中,ZnS膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为550-580A,ZnS膜层沉积速率为0.8nm/s。
进一步优选,步骤1中,ZnSe膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为570-600A,ZnSe膜层沉积速率为1.0nm/s。
进一步优选,步骤3中,YbF3膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为1100-1200A,YbF3膜层沉积速率为0.5nm/s。
进一步优选,步骤1与步骤3中,镀膜前使用霍尔离子源进行清洁清洁时间为300-500s,其中离子源阳极电压为150V,阳极电流为0.5A,发射级电流为1A,维持级电压为23-25V,维持级电流为1500mA。
进一步优选,步骤1与步骤3中,镀前恒温温度与镀膜温度均为80℃,其中恒温时间为25-35min,镀膜开启真空度条件≤0.0008Pa。
进一步优选,步骤1与步骤3中,蒸镀过程中使用霍尔离子源助镀,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。
进一步优选,步骤1与步骤3中,蒸镀结束后使用霍尔离子源对膜层表面进行轰击,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。
进一步优选,步骤1与步骤3中,镀膜过程中膜层沉积速率及膜层厚度采用石英晶体控制仪控。
进一步优选,步骤2中,镀膜时将硫系玻璃镜片基底放在导电环内进行镀膜;所述的导电环材质为A6061,其为圆环面为直角三角形截面圆环,内圆环直径为硫系玻璃镜片基底直径(+0.1mm~+0.15mm),直角三角形截面竖直高度尺寸为硫系玻璃镜片基底柱面高度(-0.05mm~-0.1mm),直角三角形截面水平高度尺寸为其直角三角形截面竖直高度尺寸的1.5~2倍。
进一步优选,步骤2中,镀膜前在硬碳镀膜机中进行离子清洗,离子清洗清洗时射频电源功率为400W,时间为300s~400s;所用辅助气体为氩气,氩气纯度≥99.99%,氩气充气流量为50sccm;清洗时控制真空腔内温度≤90℃。
进一步优选,步骤2中,镀膜时所用的辅助气体为氩气和正丁烷(C4H10);氩气纯度≥99.99%,氩气充气流量为20sccm;正丁烷纯度≥99.99%,氩气充气流量为45sccm。
进一步优选,步骤2中,镀膜时真空度为6Pa;镀膜时射频电源功率为450W,镀膜时间为1547s。
进一步优选,步骤2中,镀膜结束后需待30min后方可取件。
硫系玻璃转变温度低,传统的DLC膜沉积方法会导致硫系玻璃基体变形、烧蚀,只能在低温环境下沉积DLC膜,且硫系玻璃基体材料都不易与碳形成化学键,与碳的硬度和热膨胀系数差别很大,直接在硫系玻璃基底基体上沉积的DLC薄膜的结合性能极差,在膜层沉积过程中就会出现大面积脱落现象。本发明在沉积DLC薄膜前在基体表面制备一层过渡层,过渡层的热膨胀系数、硬度和弹性模量介于碳和硫系玻璃基底基体之间,可以缓冲沉积DLC薄膜过程中所产生的生长应力及冷却过程中的热应力,提供足够的承载力,协调变形,减弱基体的影响。
本发明过渡层采用ZnSe、ZnS和Ge搭配,Ge热膨胀系数、硬度和弹性模量介于碳和硫系玻璃基底基体之间且均能与硫系玻璃基底、DLC膜层、ZnSe、ZnS很好结合,过渡层第一层与最后一层均为Ge,将ZnSe、ZnS置于Ge膜层中间包络起来起到保护作用,有利于提高膜层足够的承载力度;同时ZnSe与ZnS相比,ZnSe热膨胀系数、硬度和弹性模量与硫系玻璃基底最接近,ZnS热膨胀系数、硬度和弹性模量与DLC膜最接近,为此将ZnSe膜层贴近于硫系玻璃基底,ZnS膜层贴近于DLC膜层,有利于热膨胀系数、硬度和弹性模量更好的过渡和协调变形减少膜层内应力提高膜层硬度。
本发明采用膜层沉积后不产生内应力且8-12μm波段内无吸收,ZnSe、ZnS和Ge搭配有利于提升膜层牢固度和镀膜后镜片的红外透过率,有效提高了硫系玻璃镜片表面的耐摩擦性能、耐腐蚀性能和表面硬度,该硫系玻璃镜片两面镀膜后在8-12μm波段平均透过率≥92.5%,该硫系玻璃镜片能通过膜强度环境测试和像质测试,可投入到车载红外镜头应用中,满足使用要求。
附图说明
图1是本发明的红外硫系玻璃镜片的红外透过率检测图谱;
图2是附着力试验示意图;
图3是中度摩擦试验示意图;
图4是高低温试验示意图;
图5是盐雾试验示意图;
图6是像质测试试验示意图;其中,a.膜镜片组装图;b.成像效果图。
具体实施方式
为了使本发明的目的、技术方案和有益效果更加清楚,下面将对本发明的优选实施例进行详细的说明,以方便技术人员理解。
一种AR/DLC复合镀膜的红外硫系玻璃镜片,以硫系玻璃镜片为基底,基底的正反两面分别镀有AR+DLC膜膜系结构和反面AR膜膜系结构;
正面AR+DLC膜膜系为:
硫系玻璃基底/0.792 H/0.2413 M/0.641 H/0.844 L/1.355 H/2.6 N/空气;
反面AR膜膜系为:
硫系玻璃基底/1.0656 H/0.0844 L/2.56H/0.844 L/1.355 I/2.6 L/空气;
式中,H表示一个λ0/4光学厚度的Ge膜层;M表示一个λ0/4光学厚度的ZnSe膜层;L表示一个λ0/4光学厚度的ZnS膜层;N表示一个λ0/4光学厚度的DLC膜层;I表示一个λ0/4光学厚度的YbF3膜层;λ0为中心波长;H、M、L、N和I前的数字均为膜层的厚度比例系数。
AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,包括以下步骤:
步骤1:正面AR膜镀制:以硫系玻璃镜片为基底依次镀制第一层Ge膜层、第一层ZnSe膜层、第二层Ge膜层、第一层ZnS膜层、第三层Ge膜层。硫系玻璃基底其倒角部分斜面与其正反面一样,经过单点金刚石车床车削形成,而非超精密加工倒角形成。镀膜时硫系玻璃基底镀膜装夹方式为用高温胶带粘接在镀膜盘内进行镀膜,而非放在镀膜环内进行镀膜,以此使整个硫系玻璃镜片基底正面包括倒角斜面均能镀上AR膜,以此增加后续镀制DLC膜的附着力和减少后续镀制DLC膜的残余应力。
Ge膜层采用电子束蒸发的方式进行蒸镀,其中电子束流为180-200mA,Ge膜层沉积速率为0.3nm/s。ZnS膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为550-580A,ZnS膜层沉积速率为0.8nm/s。ZnSe膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为570-600A,ZnSe膜层沉积速率为1.0nm/s。YbF3膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为1100-1200A,YbF3膜层沉积速率为0.5nm/s。
镀膜前使用霍尔离子源进行清洁清洁时间为300-500s,其中离子源阳极电压为150V,阳极电流为0.5A,发射级电流为1A,维持级电压为23-25V,维持级电流为1500mA。镀前恒温温度与镀膜温度均为80℃,其中恒温时间为25-35min,镀膜开启真空度条件≤0.0008Pa。镀膜过程中膜层沉积速率及膜层厚度采用石英晶体控制仪控。蒸镀过程中使用霍尔离子源助镀,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。
蒸镀结束后使用霍尔离子源对膜层表面进行轰击,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。
步骤2:正面DLC膜镀制:以镀好AR膜的红外硫系玻璃镜片为基底镀制DLC膜层。镀膜前在硬碳镀膜机中进行离子清洗,离子清洗清洗时射频电源功率为400W,时间为300s~400s;所用辅助气体为氩气,氩气纯度≥99.99%,氩气充气流量为50sccm;清洗时控制真空腔内温度≤90℃。镀膜时将硫系玻璃镜片基底放在导电环内进行镀膜;所述的导电环材质为A6061,其为圆环面为直角三角形截面圆环,内圆环直径为硫系玻璃镜片基底直径(+0.1mm~+0.15mm),直角三角形截面竖直高度尺寸为硫系玻璃镜片基底柱面高度(-0.05mm~-0.1mm),直角三角形截面水平高度尺寸为其直角三角形截面竖直高度尺寸的1.5~2倍。镀膜时所用的辅助气体为氩气和正丁烷(C4H10);氩气纯度≥99.99%,氩气充气流量为20sccm;正丁烷纯度≥99.99%,氩气充气流量为45sccm。镀膜时真空度为6Pa;镀膜时射频电源功率为450W,镀膜时间为1547s。镀膜结束后需待30min后方可取件。
步骤3:反面AR膜镀制:以镀好DLC膜硫系玻璃镜片为基底,在其另外一面依次镀第一层Ge膜层、第一层ZnS膜层、第二层Ge膜层、第二层ZnS膜层、第一层YbF3膜层、第三层ZnS膜层。
Ge膜层采用电子束蒸发的方式进行蒸镀,其中电子束流为180-200mA,Ge膜层沉积速率为0.3nm/s。ZnS膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为550-580A,ZnS膜层沉积速率为0.8nm/s。YbF3膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为1100-1200A,YbF3膜层沉积速率为0.5nm/s。
镀膜前使用霍尔离子源进行清洁清洁时间为300-500s,其中离子源阳极电压为150V,阳极电流为0.5A,发射级电流为1A,维持级电压为23-25V,维持级电流为1500mA。镀前恒温温度与镀膜温度均为80℃,其中恒温时间为25-35min,镀膜开启真空度条件≤0.0008Pa。蒸镀过程中使用霍尔离子源助镀,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。镀膜过程中膜层沉积速率及膜层厚度采用石英晶体控制仪监控。蒸镀结束后使用霍尔离子源对膜层表面进行轰击,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。
使用傅里叶光谱仪检测AR/DLC复合镀膜的红外硫系玻璃镜片的透过率,如图1所示,8-12um波段内平均透过率大于92.5%。
对上述所得AR/DLC复合镀膜元件进行如下性能测试,测试参照GJB2485-95光学薄膜通用规范,具体如下:
(1)附着力试验
使用2cm宽剥离强度不低于2.74N/cm的透明胶带纸牢牢地粘在膜层表面,然后以垂直于膜层表面方向的力迅速拉起,清洁其表面试验10次,无脱膜起皱现象,测试如图2所示。
(2)湿热试验
镜片放入湿热箱内,温度升到50℃,然后调节湿度到95%~100%,保待24h,取出镜片,清洁其表面后拉膜10次,无脱膜起皱现象。
(3)中度摩擦试验
中度摩擦试验在湿热试验后一小时内进行。用手持式擦拭具(浮石-橡皮摩擦头,摩擦头是由优质橡皮加浮石填料组成,洛氏硬度为75±5度,橡胶重量是填料重量的(45%~55%)的摩擦头,外裹叠层厚度为6层的清洁干燥脱脂布,保持与垂直的压力4.9N,对膜层进行摩擦,行程长度约为摩擦头直径的2倍,沿同一轨迹摩擦50次(25个来回), 清洁其表面后拉膜10次,无脱膜起皱现象,测试如图3所示。
(4)高低温试验
把试验样品放入高低温箱,由室温降到-40±2℃. 温度的变化速率不大于2℃/min.保持12h,取出试验样品,放置到室温清洁其表面后拉膜10次。把试验样品放如高低温箱,由室温升到70±2℃,温度的变化速率不大于2℃/min,保持 12h,取出试验样品,放置到室温,清洁其表面后拉膜10次,无脱膜起皱现象,测试如图3所示。
(5)耐溶性和清擦性试验
将试样品按顺序浸泡在温度16~32℃的三氯乙烯 (AR级)、丙酮(AR级)和无水乙醇(AR级)溶剂中各l0min。在每种溶剂中取出后,应让其溶剂充分挥发后,再放入下一种溶剂中,最后从无水乙醇中取出挥发于后,用脱脂布蘸无水乙醇,清洁其表面后拉膜10次,无脱膜起皱现象。
(6)盐雾试验
在温度为35±2℃的盐雾箱内,经浓度为4.9%~5.1% 、PH值为6.5~7.2的氯化钠溶液连续喷雾24h,清洁其表面后拉膜10次,无脱膜起皱现象,测试如图4所示。
(7)像质试验
将18mm无热化镜头中头片镜片镀镀制AR、DLC膜后组装于镜头中,与384红外机芯、显示器等配件连接后,红外热成像画面清晰无暗影、虚影等不良现象,测试如图5所示。
最后说明的是,以上优选实施例仅用于说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (10)

1.一种AR/DLC复合镀膜的红外硫系玻璃镜片,其特征在于:以硫系玻璃镜片为基底,基底的正反两面分别镀有AR+DLC膜膜系结构和反面AR膜膜系结构;
正面AR+DLC膜膜系为:
硫系玻璃基底/0.792 H/0.2413 M/0.641 H/0.844 L/1.355 H/2.6 N/空气;
反面AR膜膜系为:
硫系玻璃基底/1.0656 H/0.0844 L/2.56H/0.844 L/1.355 I/2.6 L/空气;
式中,H表示一个λ0/4光学厚度的Ge膜层;M表示一个λ0/4光学厚度的ZnSe膜层;L表示一个λ0/4光学厚度的ZnS膜层;N表示一个λ0/4光学厚度的DLC膜层;I表示一个λ0/4光学厚度的YbF3膜层;λ0为中心波长;H、M、L、N和I前的数字均为膜层的厚度比例系数。
2.根据权利要求1所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:包括以下步骤:
步骤1:正面AR膜镀制:以硫系玻璃镜片为基底依次镀制第一层Ge膜层、第一层ZnSe膜层、第二层Ge膜层、第一层ZnS膜层、第三层Ge膜层;
步骤2:正面DLC膜镀制:以镀好AR膜的红外硫系玻璃镜片为基底镀制DLC膜层;
步骤3:反面AR膜镀制:以镀好DLC膜硫系玻璃镜片为基底,在其另外一面依次镀第一层Ge膜层、第一层ZnS膜层、第二层Ge膜层、第二层ZnS膜层、第一层YbF3膜层、第三层ZnS膜层。
3.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:硫系玻璃基底的倒角部分斜面与其正反面一样,经过单点金刚石车床车削形成。
4.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤1中,镀膜时硫系玻璃基底镀膜装夹方式是用高温胶带粘接在镀膜盘内进行镀膜,确保整个硫系玻璃镜片基底正面包括倒角斜面均镀上AR膜。
5.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤1或3中,Ge膜层采用电子束蒸发的方式进行蒸镀,其中电子束流为180-200mA,Ge膜层沉积速率为0.3nm/s;步骤1或3中,ZnS膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为550-580A,ZnS膜层沉积速率为0.8nm/s;步骤1中,ZnSe膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为570-600A,ZnSe膜层沉积速率为1.0nm/s;步骤3中,YbF3膜层采用电阻加热蒸发的方式进行蒸镀,其中阻蒸电流为1100-1200A,YbF3膜层沉积速率为0.5nm/s。
6.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤1与步骤3中,镀膜前使用霍尔离子源进行清洁清洁时间为300-500s,其中离子源阳极电压为150V,阳极电流为0.5A,发射级电流为1A,维持级电压为23-25V,维持级电流为1500mA;镀前恒温温度与镀膜温度均为80℃,其中恒温时间为25-35min,镀膜开启真空度条件≤0.0008Pa;蒸镀过程中使用霍尔离子源助镀,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A;蒸镀结束后使用霍尔离子源对膜层表面进行轰击,其中离子源阳极电压为80V,阳极电流为0.5A,发射级电流为1A。
7.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤2中,镀膜时将硫系玻璃镜片基底放在导电环内进行镀膜;所述的导电环材质为A6061,其为圆环面为直角三角形截面圆环,内圆环直径为硫系玻璃镜片基底直径(+0.1mm~+0.15mm),直角三角形截面竖直高度尺寸为硫系玻璃镜片基底柱面高度(-0.05mm~-0.1mm),直角三角形截面水平高度尺寸为其直角三角形截面竖直高度尺寸的1.5~2倍。
8.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤2中,镀膜前在硬碳镀膜机中进行离子清洗,离子清洗清洗时射频电源功率为400W,时间为300s~400s;所用辅助气体为氩气,氩气纯度≥99.99%,氩气充气流量为50sccm;清洗时控制真空腔内温度≤90℃。
9.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤2中,镀膜时所用的辅助气体为氩气和正丁烷(C4H10);氩气纯度≥99.99%,氩气充气流量为20sccm;正丁烷纯度≥99.99%,氩气充气流量为45sccm。
10.根据权利要求2所述的一种AR/DLC复合镀膜的红外硫系玻璃镜片的制备方法,其特征在于:步骤2中,镀膜时真空度为6Pa;镀膜时射频电源功率为450W,镀膜时间为1547s。
CN202310466468.9A 2023-04-26 2023-04-26 一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法 Active CN116540332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310466468.9A CN116540332B (zh) 2023-04-26 2023-04-26 一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310466468.9A CN116540332B (zh) 2023-04-26 2023-04-26 一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法

Publications (2)

Publication Number Publication Date
CN116540332A true CN116540332A (zh) 2023-08-04
CN116540332B CN116540332B (zh) 2024-05-31

Family

ID=87453540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310466468.9A Active CN116540332B (zh) 2023-04-26 2023-04-26 一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法

Country Status (1)

Country Link
CN (1) CN116540332B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135808A (en) * 1990-09-27 1992-08-04 Diamonex, Incorporated Abrasion wear resistant coated substrate product
CN2146493Y (zh) * 1992-12-27 1993-11-17 广东真空设备厂 有机玻璃真空镀膜机
US20110244224A1 (en) * 2010-04-02 2011-10-06 Fujifilm Corporation Anti-reflection film and infrared optical element
CN203683726U (zh) * 2014-01-20 2014-07-02 福建科彤光电技术有限公司 一种晶体镀膜夹具
CN106517818A (zh) * 2016-10-27 2017-03-22 宁波舜宇红外技术有限公司 一种硫系镜片及其制备方法
CN107217259A (zh) * 2016-03-22 2017-09-29 杨阳 红外硫系玻璃表面镀类金刚石薄膜的制备方法
CN107227460A (zh) * 2017-07-13 2017-10-03 南京波长光电科技股份有限公司 一种以硫系红外玻璃为基底的增透dlc膜及其制备方法
CN107746187A (zh) * 2017-09-20 2018-03-02 湖北森浤光学有限公司 一种镀dlc膜的红外硫系玻璃镜片及其制备方法
CN110863188A (zh) * 2019-12-03 2020-03-06 中国建筑材料科学研究总院有限公司 类石墨含氢碳膜、制备方法及光学薄膜
CN110989053A (zh) * 2019-11-21 2020-04-10 天津津航技术物理研究所 一种硫系玻璃基底低剩余反射率减反射薄膜及其制备方法
CN111722307A (zh) * 2020-08-21 2020-09-29 上海米蜂激光科技有限公司 一种以非球面硫系玻璃为基底的红外增透膜及其制备方法
CN115421226A (zh) * 2022-08-05 2022-12-02 有研国晶辉新材料有限公司 一种硫系玻璃光学元件及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135808A (en) * 1990-09-27 1992-08-04 Diamonex, Incorporated Abrasion wear resistant coated substrate product
CN2146493Y (zh) * 1992-12-27 1993-11-17 广东真空设备厂 有机玻璃真空镀膜机
US20110244224A1 (en) * 2010-04-02 2011-10-06 Fujifilm Corporation Anti-reflection film and infrared optical element
CN203683726U (zh) * 2014-01-20 2014-07-02 福建科彤光电技术有限公司 一种晶体镀膜夹具
CN107217259A (zh) * 2016-03-22 2017-09-29 杨阳 红外硫系玻璃表面镀类金刚石薄膜的制备方法
CN106517818A (zh) * 2016-10-27 2017-03-22 宁波舜宇红外技术有限公司 一种硫系镜片及其制备方法
CN107227460A (zh) * 2017-07-13 2017-10-03 南京波长光电科技股份有限公司 一种以硫系红外玻璃为基底的增透dlc膜及其制备方法
CN107746187A (zh) * 2017-09-20 2018-03-02 湖北森浤光学有限公司 一种镀dlc膜的红外硫系玻璃镜片及其制备方法
CN110989053A (zh) * 2019-11-21 2020-04-10 天津津航技术物理研究所 一种硫系玻璃基底低剩余反射率减反射薄膜及其制备方法
CN110863188A (zh) * 2019-12-03 2020-03-06 中国建筑材料科学研究总院有限公司 类石墨含氢碳膜、制备方法及光学薄膜
CN111722307A (zh) * 2020-08-21 2020-09-29 上海米蜂激光科技有限公司 一种以非球面硫系玻璃为基底的红外增透膜及其制备方法
CN115421226A (zh) * 2022-08-05 2022-12-02 有研国晶辉新材料有限公司 一种硫系玻璃光学元件及其制备方法

Also Published As

Publication number Publication date
CN116540332B (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN114200552B (zh) 一种锗基底8-12um红外波段窗口片及其制备方法
CN101776778B (zh) 适用于槽式太阳能热发电的耐侯银镜的制备方法
CN112505803A (zh) 一种ZnSe基底7.7-9.5μm波段高耐用性减反膜及制备方法
CN112859208B (zh) 一种红外窗口增透保护膜
CN107746187B (zh) 一种镀dlc膜的红外硫系玻璃镜片及其制备方法
TWI496917B (zh) 殼體及其製作方法
CN110484869A (zh) 一种防霉防潮光学薄膜及其制备方法
CN115421226A (zh) 一种硫系玻璃光学元件及其制备方法
CN115368031A (zh) 硫系玻璃8-12um波段高耐久性增透膜的制备方法
CN114019591B (zh) 一种包括增透保护膜的光学元件及其制备方法
CN116540332B (zh) 一种ar/dlc复合镀膜的红外硫系玻璃镜片及其制备方法
CN114114475B (zh) 一种用于硒化锌基片的高附着力高表面质量的增透膜及其制备方法和应用
CN116540333A (zh) 一种8~12μm波段高透过率膜系及其制备方法以及应用
CN107881469B (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN112501557B (zh) 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN112553585B (zh) 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法
CN114107890A (zh) 一种用于红外光学窗口表面的高硬度SiCN增透保护薄膜及其制备方法
CN210237752U (zh) 一种耐高温的co2激光增透膜
JP2002148407A (ja) 赤外線レーザ用光学部品とその製造方法
US20070092641A1 (en) Optical mirror for lenses
CN221056698U (zh) 模压硫系玻璃镜片
CN215560681U (zh) 一种二氧化碳激光超硬膜
CN115846899B (zh) 一种cvd金刚石片的加工工艺
CN113913822A (zh) 一种镀加硬膜的硫系化合物玻璃镜片及其加工工艺
CN113917573B (zh) 无定形红外膜系结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant