CN116511535A - 一种难加工TiAl合金叶片高精度机加工方法 - Google Patents

一种难加工TiAl合金叶片高精度机加工方法 Download PDF

Info

Publication number
CN116511535A
CN116511535A CN202310590197.8A CN202310590197A CN116511535A CN 116511535 A CN116511535 A CN 116511535A CN 202310590197 A CN202310590197 A CN 202310590197A CN 116511535 A CN116511535 A CN 116511535A
Authority
CN
China
Prior art keywords
blade
blank
melting
alloy
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310590197.8A
Other languages
English (en)
Inventor
卢东
陈琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Original Assignee
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd filed Critical Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority to CN202310590197.8A priority Critical patent/CN116511535A/zh
Publication of CN116511535A publication Critical patent/CN116511535A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/02Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/42Heat treatment by hot isostatic pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明公开了一种难加工TiAl合金叶片高精度机加工方法,对合金叶片三维结构增材设计,叶片两端向外各延伸设计一个凸台,凸台中心线与叶片中轴线重合,在两端凸台面上与中心线同轴向内各设计一埋头顶尖沉孔,获得毛坯模型;将该模型采用电子束选区熔融3D打印机制备叶片坯料,通过热处理对叶片坯料进行组织调控,获得待精加工坯料;在五轴数控中心上完成坯料叶身部位的铣削加工,采用低熔点合金在叶身部位制作出包裹叶身的固定台,台面稳定夹持固定在加工中心上,完成叶片两端榫头和叶冠结构的精加工;再将低熔点合金熔化去除,获得高精度合金叶片零件。该方法适用于强度高、脆性大、难加工零件的高精度机加工,具有效率高、精度高的特点。

Description

一种难加工TiAl合金叶片高精度机加工方法
技术领域
本发明属于金属增材制造技术领域,具体涉及一种难加工TiAl合金叶片高精度机加工方法。
背景技术
TiAl金属间化合物因其优异的高温性能而在过去二十年中得到了广泛的研究,在700-850℃范围内,TiAl合金的比强度显著高于普通钛合金和镍基高温合金等材料,主要应用于航空发动机压气机叶片和低压涡轮等零件。目前,CJ1000A、CJ2000等国产长江系列商用航空发动机对TiAl合金低压涡轮叶片提出迫切需求。TiAl叶片重量比原镍基高温合金叶片降低50%,显著提高发动机性能和降低15%的燃油消耗。由于TiAl合金表现出非常低的断裂韧性和室温延展性,目前传统方法如挤压和锻造、铸造和粉末冶金等方法制造力学性能优异、形状结构复杂的TiAl合金零件较为困难,且生产成本较高。
作为一种难加工材料,TiAl叶片毛坯在机加工时具有一定的难度。为了解决TiAl合金叶片传统加工方法存在的诸多问题,引入增材设计及增材制造技术。增材制造又称为3D打印,是一种先进制造技术,它通过“自下而上”堆积材料的方式来制造零件,具有材料利用率高、加工效率高、能加工复杂零件等特点,且3D打印零件晶粒细小、组织均匀、力学性能优良,在制造梯度/难熔/难加工材料、薄壁/点阵/复杂结构零件时具有明显优势,尤其在发动机制造领域得到越来越多的应用。在增材制造领域中,由于TiAl合金材料的本征脆性,激光3D打印设备的基板无法获得高温预热,因此不适合TiAl合金材料的加工。而电子束选区熔化技术(Electronbeammelting,EBM)可实现加工仓内1000℃以上的高温预热处理,可有效抑制TiAl合金在打印过程中产生裂纹,且制备的TiAl合金零件晶粒细小,组织成分均匀,能有效解决传统的精密铸造、锻造、机加工制备TiAl材料时存在的成分偏析、力学性能退化、加工周期长、成品率低等问题,具有生产流程短、生产效率高的优势。
发明内容
为了克服上述现有技术存在的缺陷,本发明针对传统精密铸造、锻造、机加工制备TiAl材料时存在的成分偏析、力学性能退化、加工周期长、成品率低等技术问题,通过采用增材设计和电子束3D打印方法快速高效制备出带工艺台的TiAl合金叶片坯料,能够在五轴数控加工中心上分步实现叶片高精度数控加工,制备出高精度的TiAl合金叶片零件。
为了实现上述发明目的,本发明提供了一种难加工TiAl合金叶片高精度机加工方法,所述方法包括如下步骤:
对TiAl叶片模型进行增材设计,获得带工艺台的叶片毛坯模型;对所述叶片毛坯模型进行电子束3D打印,制备出TiAl合金叶片坯料;通过热处理对所述坯料进行组织调控,获得待精加工坯料。
对所述待精加工坯料叶身部位进行精密机加工,然后再对其两端榫头和叶冠结构进行精密机加工,获得TiAl合金叶片成品零件。
上述技术方案中,进一步的,所述的TiAl叶片模型增材设计、增材制造和热处理包括:对TiAl合金叶片模型进行加工余量设计,并在叶片的两端向外各延伸设计出一个沿叶片中轴线走向的凸台,所述凸台的中心线与叶片中轴线重合;在两端凸台面上与中心线同轴向内各设计一个锥形埋头顶尖沉孔,用于机床顶尖夹持,设计完成获得带工艺台的叶片毛坯模型;将所述叶片毛坯模型采用电子束选区熔融3D打印机制备出TiAl合金叶片坯料;并通过热处理对所述TiAl合金叶片坯料进行组织调控,获得待精加工坯料。
进一步的,所述的TiAl叶片的精密机加工包括:在五轴数控加工中心上,将所述叶片坯料两端的工艺台和顶尖沉孔位置夹持固定到位,开展叶身部位的精密铣削加工,实现叶身部位高精度成形;然后将获得的工件固定在设计好的不锈钢定位模具中,浇入低熔点合金,使低熔点合金凝固后紧密包覆在叶身部位,制作出固定台,所述固定台的台面可以稳定的夹持在五轴加工中心上,并具有定位功能;然后将具有固定台的工件固定到五轴数控加工中心上,完成两端榫头和叶冠结构的精密机加工;最后将低熔点合金熔化去除,最终获得高精度TiAl合金叶片零件。
进一步的,所使用的3D打印机为电子束选区熔融设备,主要工艺参数为:加工仓的真空度≤0.3Pa,设置切片厚度为0.03~0.3mm,对基板的扫描尺寸设置为边长90~200mm正方形平面,设置预热温度为1000~1300℃,设置预热循环次数为3~15次,设置电子束聚焦电流为12~48mA。所使用的球形TiAl合金粉末粒径分布为:0.045~0.2mm。
进一步的,所述的热处理的特征为:先采用0~1次热等静压处理,工艺为:包套处理后,压力50~200MPa,温度950~1350℃,保温保压1~5h,传压介质为惰性气体。再采用1~9次普通热处理循环,工艺为:炉体真空度≤1×10-2Pa,升/降温速率5~25℃/min,保温温度800~1350℃,保温时间1~8h,降至室温,获得合金成分均匀的TiAl合金材料。
进一步的,所述工艺台的特征为:尺寸为A×B×C,其中A、B、C的取值范围是10~25mm,如图2-(d)所示。所述工艺台上的埋头顶尖沉孔特征为:孔径3~4mm,埋头直径5~8mm,埋头角度35~65°,孔深5~10mm,顶锥角100~140°。
进一步的,所述的精密机加工主要工艺参数为:切削速度为600~1500r/min、进给量为350~950mm/min、切宽为4~10mm、切深为0.1~0.5mm。所使用的刀具为带涂层专用钛合金铣削刀具,涂层材料为TiN。
进一步的,所述的低熔点合金特征为:熔点低于200℃,成分组成主要是铋、镉、锡、铅、镝、铟等元素的搭配组合,所述低熔点合金的材料成分不与TiAl合金材料发生反应,从所述叶片上熔化去除后无残留,最终获得高精度TiAl合金叶片零件。
一种上述方法制得的难加工TiAl合金叶片。
进一步的,所述的TiAl叶片材料的原子百分比为:铝42%~55%,铌0~10%,X0~10%,Y0~5%,Z0~1%,Re0~0.5%,其中,X为Cr、V、Mn、Ta中的一种或多种元素,Y为W、Mo、Zr中的一种或多种元素,Z为C、B、Si、N中的一种或多种元素,Re为稀土元素,余量为Ti和不可避免的杂质,百分比为0表示不含该元素。
与现有技术相比,本发明的有益效果:
本发明通过采用增材设计和电子束3D打印方法快速高效制备出带工艺台的TiAl合金叶片坯料,能够在五轴数控加工中心上分步实现叶片高精度数控加工,制备出高精度的TiAl合金叶片零件。通过该方法解决了传统铸造、锻造、机加工方法在制备TiAl零件时存在的成分偏析、力学性能退化、成品率低等问题,具有生产流程短、生产效率高的优势。
附图说明
图1为本发明一种难加工TiAl合金叶片高精度机加工方法的流程图;
图2为本发明高精度机加工方法各步骤中的TiAl合金叶片图;其中,(a)为叶片模型,(b)为叶片与毛坯透视图,(c)和(d)为叶片毛坯模型。
具体实施方式
以下结合具体实施例对本发明作进一步说明,但不以任何方式限制本发明。为免赘述,以下实施例中的原材料若无特别说明则均为市购;所用方法若无特别说明则均为常规方法。
一种难加工TiAl合金叶片高精度机加工方法,包括以下步骤:
对TiAl叶片模型进行增材设计,获得带工艺台的叶片毛坯模型;对所述叶片毛坯模型进行电子束3D打印,制备出TiAl合金叶片坯料;通过热处理对所述坯料进行组织调控,获得待精加工坯料。
对所述待精加工坯料叶身部位进行精密机加工,然后再对其两端榫头和叶冠结构进行精密机加工,获得TiAl合金叶片成品零件。
上述技术方案中,进一步的,所述的TiAl叶片模型增材设计、增材制造和热处理包括:对TiAl合金叶片模型进行加工余量设计,并在叶片的两端向外各延伸设计出一个沿叶片中轴线走向的凸台,所述凸台的中心线与叶片中轴线重合;在两端凸台面上与中心线同轴向内各设计一个锥形埋头顶尖沉孔,用于机床顶尖夹持,设计完成获得带工艺台的叶片毛坯模型;将所述叶片毛坯模型采用电子束选区熔融3D打印机制备出TiAl合金叶片坯料;并通过热处理对所述TiAl合金叶片坯料进行组织调控,获得待精加工坯料。
进一步的,所述的对TiAl叶片的精密机加工包括:在五轴数控加工中心上,将所述叶片坯料两端的工艺台和顶尖沉孔位置夹持固定到位,开展叶身部位的精密铣削加工,实现叶身部位高精度成形;然后将获得的工件固定在设计好的不锈钢定位模具中,浇入低熔点合金,使低熔点合金凝固后紧密包覆在叶身部位,制作出固定台,所述固定台的台面可以稳定的夹持在五轴加工中心上,并具有定位功能;将具有固定台的工件固定到五轴数控加工中心上,完成两端榫头和叶冠结构的精密机加工;最后将低熔点合金熔化去除,最终获得高精度TiAl合金叶片零件。
进一步的,所使用的3D打印机为电子束选区熔融设备,主要工艺参数为:加工仓的真空度≤0.3Pa,设置切片厚度为0.03~0.3mm,对基板的扫描尺寸设置为边长90~200mm正方形平面,设置预热温度为1000~1300℃,设置预热循环次数为3~15次,设置电子束聚焦电流为12~48mA。所使用的球形TiAl合金粉末粒径分布为:0.045~0.2mm。
进一步的,所述TiAl合金热处理的特征为:先采用0~1次热等静压处理,工艺为:包套处理后,压力50~200MPa,温度950~1350℃,保温保压1~5h,传压介质为惰性气体。再采用1~9次普通热处理循环,工艺为:炉体真空度≤1×10-2Pa,升/降温速率5~25℃/min,保温温度800~1350℃,保温时间1~8h,降至室温,获得合金成分均匀的TiAl合金材料。
进一步的,所述叶片毛坯上工艺台的特征为:尺寸为A×B×C,其中A、B、C的取值范围使10~25mm,如图2-(d)所示。所述工艺台上的埋头顶尖沉孔特征为:孔径3~4mm,埋头直径5~8mm,埋头角度35~65°,孔深5~10mm,顶锥角100~140°。
进一步地,3D打印TiAl叶片坯料精密机加工主要工艺参数为:切削速度为600~1500r/min、进给量为350~950mm/min、切宽为4~10mm、切深为0.1~0.5mm。所使用的刀具为带涂层专用钛合金铣削刀具,涂层材料为TiN。
进一步地,所使用的低熔点合金为:熔点低于200℃,成分组成主要是铋、镉、锡、铅、镝、铟等元素的搭配组合,所述低熔点合金的材料成分不与TiAl合金材料发生反应,从所述叶片上熔化去除后无残留。
一种上述方法制得的难加工TiAl合金叶片。
进一步的,所述的TiAl叶片材料的原子百分比为:铝42%~55%,铌0~10%,X0~10%,Y0~5%,Z0~1%,Re0~0.5%;其中,X为Cr、V、Mn、Ta中的一种或多种元素,Y为W、Mo、Zr中的一种或多种元素,Z为C、B、Si、N中的一种或多种元素,Re为稀土元素,余量为Ti和不可避免的杂质,百分比为0表示不含该元素。
实施例
优选的,下面通过具体实施例对本发明作进一步说明。一种难加工TiAl合金叶片高精度机加工方法,如图1所示的流程图,包括以下步骤:
首先,根据如图2-(a)所示的零件模型叶片的原始模型数据,采用UGNX12三维模型设计软件给叶片周身添加1.5mm的加工余量;如图2-(b)所示,b图为毛坯透视图,图中橙色所示为叶片模型,可见,毛坯与零件存在加工余量的关系。然后,在叶片的两端向外各延伸设计出一个沿叶片中轴线走向的凸台,凸台的中心线与叶片中轴线重合,凸台的尺寸为15×15×15mm;在两端凸台面上与中心线同轴向内各设计一个锥形埋头顶尖沉孔,顶尖埋头沉孔特征为:孔径3.5mm,埋头直径6.5mm,埋头角度55°,孔深8mm,顶锥角120°,完成设计后获得带工艺台的叶片毛坯模型,如图2-(c)、图2-(d)所示的不同旋转角度的叶片毛坯模型渲染图。将该模型导入电子束选区熔融3D打印机ArcamA2X,所使用的球形TiAl合金粉末的成分为Ti45Al8Nb,其粒径分布为0.045~0.150mm,平均粒度为0.091mm。实施3D打印,制备出TiAl合金叶片坯料。其中,电子束3D打印主要工艺参数为:加工仓的真空度≤0.3Pa,模型切片厚度为0.09mm,对基板的扫描尺寸为边长150mm正方形平面,设置预热温度为1050℃,预热循环次数为8次,电子束聚焦电流为45mA。TiAl合金叶片坯料采用1次热等静压+6次普通热处理循环的方案进行组织调控,其中热等静压处理工艺为:对TiAl叶片坯料包套处理后,采用压力150MPa,温度1230℃,保温保压3.5h,传压介质为惰性气体Ar气。完成热等静压处理后开展6次普通热处理循环,每次普通热处理工艺为:炉体真空度≤1×10-2Pa,升温速率10℃/min,保温温度1270℃,保温时间1h,以15℃/min降至室温。最终获得合金成分均匀、晶粒细小的全片层TiAl合金待精加工坯料。
在五轴数控加工中心上,将叶片坯料两端的工艺台和顶尖沉孔位置夹持固定到位,开展叶身部位的精密铣削加工,实现叶身部位高精度成形,机加工主要工艺参数为:切削速度750r/min、进给量600mm/min、切宽6mm、切深0.3mm。所使用的刀具为带涂层专用钛合金铣削刀具,涂层材料为TiN。然后将获得的工件固定在设计好的不锈钢定位模具中,浇入低熔点合金,使低熔点合金凝固后紧密包覆在叶身部位,制作出固定台,台面可以稳定的夹持固定在五轴加工中心上,并具有定位功能;所使用的低熔点合金为铋锡合金,其熔点低于200℃,该材料熔化后不与TiAl合金材料发生反应,从叶片上熔化去除后无残留。将工件固定到五轴加工中心上,完成两端榫头和叶冠结构的精密机加工;最后将低熔点合金熔化去除,清洁叶片周身,最终获得高精度TiAl合金叶片零件。
经三维扫描仪AtosCore185对精密机加工后的TiAl合金叶片零件进行三维尺寸检测,并将检测结果与原零件模型进行对比分析,显示成品叶片尺寸与理论模型的尺寸偏差在0.002~0.005mm,因此,该方法在制备难加工TiAl合金叶片时可获得较高的尺寸精度。
对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种难加工TiAl合金叶片高精度机加工方法,其特征在于,所述方法包括如下步骤:
对TiAl叶片模型进行增材设计,获得带工艺台的叶片毛坯模型;对所述叶片毛坯模型进行电子束3D打印,制备出TiAl合金叶片坯料;通过热处理对所述坯料进行组织调控,获得待精加工坯料;
对所述待精加工坯料叶身部位进行精密机加工,然后再对其两端榫头和叶冠结构进行精密机加工,获得TiAl合金叶片成品零件。
2.根据权利要求1所述的方法,其特征在于,所述的TiAl叶片模型增材设计、增材制造和热处理包括:对TiAl合金叶片模型进行加工余量设计,并在叶片的两端向外各延伸设计出一个沿叶片中轴线走向的凸台,所述凸台的中心线与叶片中轴线重合;在两端凸台面上与中心线同轴向内各设计一个锥形埋头顶尖沉孔,设计完成获得带工艺台的叶片毛坯模型;将所述叶片毛坯模型采用电子束选区熔融3D打印机制备出TiAl合金叶片坯料;并通过热处理对所述TiAl合金叶片坯料进行组织调控,获得待精加工坯料。
3.根据权利要求2所述的方法,其特征在于,所述的TiAl叶片的精密机加工包括:在五轴数控加工中心上,将所述叶片坯料两端的工艺台和顶尖沉孔位置夹持固定到位,开展叶身部位的精密铣削加工,实现所述叶身部位高精度成形;然后将获得的工件固定在设计好的不锈钢定位模具中,浇入低熔点合金,使低熔点合金凝固后紧密包覆在叶身部位,制作出具有定位功能的固定台;将所述工件固定台的台面稳定夹持固定到五轴数控加工中心上,完成两端榫头和叶冠结构的精密机加工;最后将低熔点合金熔化去除,最终获得高精度TiAl合金叶片零件。
4.根据权利要求3所述的方法,其特征在于:所使用的3D打印机为电子束选区熔融设备,主要工艺参数为:加工仓的真空度≤0.3Pa,设置切片厚度为0.03~0.3mm,对基板的扫描尺寸设置为边长90~200mm正方形平面,设置预热温度为1000~1300℃,设置预热循环次数为3~15次,设置电子束聚焦电流为12~48mA;所使用的球形TiAl合金粉末粒径分布为:0.045~0.2mm。
5.根据权利要求4所述的方法,其特征在于:所述的热处理的特征为:先采用0~1次热等静压处理,工艺为:包套处理后,压力50~200MPa,温度950~1350℃,保温保压1~5h,传压介质为惰性气体;再采用1~9次普通热处理循环,工艺为:炉体真空度≤1×10-2Pa,升/降温速率5~25℃/min,保温温度800~1350℃,保温时间1~8h,降至室温,获得合金成分均匀的TiAl合金材料。
6.根据权利要求5所述的方法,其特征在于:所述工艺台的特征为:尺寸为A×B×C,其中A、B、C的取值范围是10~25mm;所述工艺台上的埋头顶尖沉孔特征为:孔径3~4mm,埋头直径5~8mm,埋头角度35~65°,孔深5~10mm,顶锥角100~140°。
7.根据权利要求6所述的方法,其特征在于:所述的精密机加工工艺参数为:切削速度为600~1500r/min、进给量为350~950mm/min、切宽为4~10mm、切深为0.1~0.5mm;所使用的刀具为带涂层专用钛合金铣削刀具,涂层材料为TiN。
8.根据权利要求7所述的方法,其特征在于:所述的低熔点合金特征为:熔点低于200℃,成分组成是铋、镉、锡、铅、镝、铟等元素的搭配组合,所述低熔点合金的材料成分不与TiAl合金材料发生反应,从所述叶片上熔化去除后无残留,最终获得高精度TiAl合金叶片零件。
9.一种如权利要求1-8任一方法制得的难加工TiAl合金叶片。
10.根据权利要求9所述的难加工TiAl合金叶片,其特征在于:所述的TiAl合金叶片材料的原子百分比为:铝42~55%,铌0~10%,X0~10%,Y0~5%,Z0~1%,Re0~0.5%;其中,X为Cr、V、Mn、Ta中的一种或多种元素,Y为W、Mo、Zr中的一种或多种元素,Z为C、B、Si、N中的一种或多种元素,Re为稀土元素,余量为Ti和不可避免的杂质。
CN202310590197.8A 2023-05-23 2023-05-23 一种难加工TiAl合金叶片高精度机加工方法 Pending CN116511535A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310590197.8A CN116511535A (zh) 2023-05-23 2023-05-23 一种难加工TiAl合金叶片高精度机加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310590197.8A CN116511535A (zh) 2023-05-23 2023-05-23 一种难加工TiAl合金叶片高精度机加工方法

Publications (1)

Publication Number Publication Date
CN116511535A true CN116511535A (zh) 2023-08-01

Family

ID=87404735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310590197.8A Pending CN116511535A (zh) 2023-05-23 2023-05-23 一种难加工TiAl合金叶片高精度机加工方法

Country Status (1)

Country Link
CN (1) CN116511535A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118321573A (zh) * 2024-06-13 2024-07-12 西安赛隆增材技术股份有限公司 一种TiAl合金叶片的增材制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118321573A (zh) * 2024-06-13 2024-07-12 西安赛隆增材技术股份有限公司 一种TiAl合金叶片的增材制造方法

Similar Documents

Publication Publication Date Title
CN109385589B (zh) Ni基合金部件的制备方法
CN109439962B (zh) 一种选区激光熔化成形镍基高温合金的方法
CN112008079B (zh) 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN112589115B (zh) 一种gh4099镍基合金构件的激光选区熔化成形工艺
WO2022042204A1 (zh) 一种预防选区激光熔融镍基高温合金开裂的方法
CN104368814B (zh) 一种激光金属直接成形高熵合金涡轮发动机热端部件的方法
CN110747377B (zh) 一种高铬镍基高温合金及其制备方法与应用
CN110116202B (zh) 一种用于增材制造的铜合金粉末及其制备方法和应用
US20210331239A1 (en) Method for Manufacturing Nickel-Based Alloy Repaired Member
CN108339984B (zh) 基于丝材3d打印的铸锻件表面生长复杂结构的方法
CN112139650A (zh) 基于增材制造方法原位增材制备金属间化合物构件的方法
CN113020598B (zh) 一种选区激光熔化成形镍基高温合金及其制备方法
CN116511535A (zh) 一种难加工TiAl合金叶片高精度机加工方法
EP4123044B1 (en) High-temperature alloy having low stacking fault energy, structural member and application thereof
CN113305285A (zh) 用于增材制造的镍基高温合金金属粉末
CN112191845A (zh) 一种改善增材制造镍基高温合金组织均匀性的热加工方法
CN105671545A (zh) 一种高硬度单相高熵合金涂层及其制备方法和用途
US20210222275A1 (en) Bulk metallic glass-based alloys for additive manufacturing
CN105642892A (zh) 激光增材制造in718合金成形固溶强化方法
CN108274000B (zh) 一种激光增材制造CrNiV系列低合金钢的工艺方法
CN108176848B (zh) 一种激光增材制造用低合金钢所用粉料及制备方法
CN107116217A (zh) 选择性激光熔化成形法制备TiC增强镍基复合材料的方法
CN116652206A (zh) 一种具有骨架增强结构的钛铝合金零件及其制备方法
KR20200086725A (ko) 가스 터빈 용도를 위한, 우수한 산화 내성을 갖는 합금
CN114934211B (zh) 镍基高温合金、镍基高温合金粉末和镍基高温合金构件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination