CN116499171A - 冷藏冷冻装置及其控制方法 - Google Patents

冷藏冷冻装置及其控制方法 Download PDF

Info

Publication number
CN116499171A
CN116499171A CN202210054499.9A CN202210054499A CN116499171A CN 116499171 A CN116499171 A CN 116499171A CN 202210054499 A CN202210054499 A CN 202210054499A CN 116499171 A CN116499171 A CN 116499171A
Authority
CN
China
Prior art keywords
freezing
compartment
humidity
refrigeration
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210054499.9A
Other languages
English (en)
Inventor
李涛
王铭
崔展鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Refrigerator Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Refrigerator Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Refrigerator Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Refrigerator Co Ltd
Priority to CN202210054499.9A priority Critical patent/CN116499171A/zh
Priority to PCT/CN2022/141950 priority patent/WO2023138312A1/zh
Publication of CN116499171A publication Critical patent/CN116499171A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • F25D2317/04131Control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0684Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans the fans allowing rotation in reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明涉及冷藏冷冻装置及其控制方法,包括:在冷藏冷冻装置处于冷冻间室制冷期间,获取冷冻蒸发器的蒸发器温度和冷冻间室内的间室温度;根据蒸发器温度和间室温度确定冷冻间室内的间室湿度应当具有的目标变化趋势;按照湿度传感器检测到的冷冻间室内的实测湿度统计间室湿度的实测变化趋势;若连续数次统计的实测变化趋势均与目标变化趋势不一致,则调节压缩机的运行频率,以使得冷冻间室内实际的间室湿度按照目标变化趋势变化;再次按照湿度传感器检测到的冷冻间室内的实测湿度统计间室湿度的实测变化趋势;以及若再次连续数次统计的实测变化趋势均与目标变化趋势仍然不一致,则判定湿度传感器发生故障。

Description

冷藏冷冻装置及其控制方法
技术领域
本发明涉及冷藏冷冻技术,特别是涉及一种冷藏冷冻装置及其控制方法。
背景技术
冷藏冷冻装置内湿度的高低会影响食材水分蒸发的快慢,从而影响食材的品质。当湿度过低时,食材的水分蒸发较快,会引起食材重量损失,继而造成食物储存效果差和食物保鲜期较短等问题。因此,对冷藏冷冻装置进行保湿始终是至关重要的研究课题。然而,目前的冷藏冷冻装置大多对冷藏室进行加湿保湿,很少关注冷冻室加湿保湿的问题。实际上,风冷式的冷藏冷冻装置在冷冻制冷期间普遍存在湿度波动较大的问题,湿度波动和湿度偏低,储存在冷冻间室内的食材会失水,从而影响食材的口感,而且还会造成营养的流失,影响用户体验。
现有技术中普遍采用湿度传感器检测冷冻间室内的实时湿度,以便于控制加湿。也就是说,对冷冻间室内的湿度控制是建立在湿度传感器准确地获得冷冻间室内的实时湿度的基础上。然而,若湿度传感器发生故障,冷冻间室内的湿度获取不准确,就难以对其进行准确适当的湿度控制。
发明内容
本发明第一方面的一个目的旨在克服现有技术的至少一个缺陷,提供一种能够准确地检测湿度传感器是否发生故障的冷藏冷冻装置的控制方法。
本发明第一方面的一个进一步的目的是在湿度传感器发生故障时继续对冷冻间室内的湿度进行有效控制。
本发明第二方面的目的是提供一种能够准确地检测湿度传感器是否发生故障的冷藏冷冻装置。
根据本发明的第一方面,本发明提供一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括箱体和压缩制冷系统,所述箱体内限定有冷冻间室,所述冷冻间室内设有用于检测其内的间室湿度的湿度传感器,所述压缩制冷系统包括用于压缩制冷剂的压缩机和用于为所述冷冻间室提供冷量的冷冻蒸发器;所述控制方法包括:
在所述冷藏冷冻装置处于冷冻间室制冷期间,获取所述冷冻蒸发器的蒸发器温度和所述冷冻间室内的间室温度;
根据所述冷冻蒸发器的蒸发器温度和所述冷冻间室内的间室温度确定所述冷冻间室内的间室湿度应当具有的目标变化趋势;
按照所述湿度传感器检测到的所述冷冻间室内的实测湿度统计所述冷冻间室内的间室湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势均与所述目标变化趋势不一致,则调节所述压缩机的运行频率,以使得所述冷冻间室内实际的间室湿度按照所述目标变化趋势变化;
再次按照所述湿度传感器检测到的所述冷冻间室内的实测湿度统计所述冷冻间室内的间室湿度的实测变化趋势;以及
若再次连续数次统计的所述实测变化趋势均与所述目标变化趋势仍然不一致,则判定所述湿度传感器发生故障。
可选地,若所述冷冻蒸发器的蒸发器温度小于所述冷冻间室内的间室温度,则所述冷冻间室内的间室湿度应当具有的目标变化趋势为逐渐降低;且
所述控制方法具体包括:
按照第一预设周期获取通过湿度传感器检测到的所述冷冻间室内的实测湿度;
统计所述实测湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势为逐渐升高或保持不变,则提高所述压缩机的运行频率,以使得所述冷冻间室内实际的间室湿度逐渐降低;
再次按照所述第一预设周期获取通过所述湿度传感器检测到的所述冷冻间室内的实测湿度;
再次统计通过所述实测湿度的实测变化趋势;以及
若再次连续数次统计的所述实测变化趋势为逐渐升高或保持不变,则判定所述湿度传感器发生故障。
可选地,若所述冷冻蒸发器的蒸发器温度大于所述冷冻间室内的间室温度,则所述冷冻间室内的间室湿度应当具有的目标变化趋势为逐渐升高;且
所述控制方法具体包括:
按照第二预设周期获取通过湿度传感器检测到的所述冷冻间室内的实测湿度;
统计所述实测湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势为逐渐降低或保持不变,则降低所述压缩机的运行频率,以使得所述冷冻间室内实际的间室湿度逐渐升高;
再次按照所述第二预设周期获取通过所述湿度传感器检测到的所述冷冻间室内的实测湿度;
再次统计通过所述实测湿度的实测变化趋势;以及
若再次连续数次统计的所述实测变化趋势为逐渐降低或保持不变,则判定所述湿度传感器发生故障。
可选地,所述第二预设周期小于所述第一预设周期。
可选地,所述控制方法还包括:
若连续数次统计的所述实测变化趋势与所述目标变化趋势一致,则判定所述湿度传感器正常;
若再次连续数次统计的所述实测变化趋势与所述目标变化趋势一致,则返回继续获取所述冷冻蒸发器的蒸发器温度和所述冷冻间室内的间室温度。
可选地,所述箱体内还限定有冷藏间室,所述压缩制冷系统还包括冷冻节流装置、与所述冷冻节流装置并联以用于为所述冷藏间室提供冷量的冷藏支路、以及用于选择性地导通所述冷冻节流装置或所述冷藏支路的切换阀;
在判定所述湿度传感器发生故障后,所述控制方法还包括:
当所述冷藏冷冻装置达到预设的自动关机条件时,控制所述切换阀切换至导通所述冷藏支路的状态,并将所述压缩机的运行频率调节至预设频率、控制用于为所述冷藏间室驱动送风的冷藏风机按照其设定占空比的45%~55%运行、控制用于为所述冷冻间室驱动送风的冷冻风机按照其设定占空比的45%~55%运行;
第一预设时长后停止所述压缩机、所述冷藏风机和所述冷冻风机。
可选地,所述箱体内还限定有变温间室,所述压缩制冷系统还包括与所述冷冻节流装置并联以用于为所述变温间室提供冷量的变温支路,所述切换阀用于选择性地导通所述冷冻节流装置、所述冷藏支路和所述变温支路之一;
在判定所述湿度传感器故障后,所述控制方法还包括:
在所述冷藏冷冻装置切换至冷藏间室制冷状态第二预设时长后,控制所述冷冻风机按照其设定占空比的45%~55%运行;且/或
在所述冷藏冷冻装置切换至变温间室制冷状态后,控制所述冷冻风机按照其设定占空比的65%~75%运行。
可选地,在判定所述湿度传感器发生故障后,所述控制方法还包括:
发出用于提示所述湿度传感器发生故障的报警信号。
可选地,在发出所述报警信号后,所述控制方法还包括:
继续按照所述湿度传感器检测到的所述冷冻间室内的实测湿度统计所述冷冻间室内的间室湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势与所述目标变化趋势一致,则判定所述湿度传感器恢复正常,停止发出所述报警信号。
根据本发明的第二方面,本发明还提供一种冷藏冷冻装置,包括箱体和压缩制冷系统,所述箱体内限定有冷冻间室,所述压缩制冷系统包括用于压缩制冷剂的压缩机和用于为所述冷冻间室提供冷量的冷冻蒸发器,所述冷藏冷冻装置还包括:
湿度传感器,用于获取所述冷冻间室内的间室湿度;以及
控制装置,包括处理器和存储器,所述存储器内存储有机器可执行程序,并且所述机器可执行程序被所述处理器执行时用于实现上述任一方案所述的控制方法。
本发明在冷冻间室制冷期间根据冷冻蒸发器的蒸发器温度与冷冻间室的间室温度之间的大小关系确定冷冻间室内的间室湿度应当具有的目标变化趋势,然后,通过湿度传感器检测到的冷冻间室内的实测湿度确定间室湿度的实测变化趋势,再通过多次比较实测变化趋势与目标变化趋势是否一致来判断湿度传感器是否可能发生故障。如果连续数次统计的实测变化趋势与目标变化趋势都不一致,说明湿度传感器可能发生故障。为了验证湿度传感器是否真的发生故障,本发明通过调节压缩机的运行频率,使得冷冻间室内实际的间室湿度按照目标变化趋势变化,并再次通过湿度传感器检测到的冷冻间室内的实测湿度确定间室湿度的实测变化趋势,若数次统计的间室湿度的实测变化趋势仍然与目标变化趋势不一致,说明湿度传感器发生了故障。也就是说,本发明的控制方法通过多次对比冷冻间室的间室湿度的实测变化趋势是否与目标变化趋势一致,能够准确地得出湿度传感器是否发生故障的结论,降低或防止了误判的可能性,便于及时地发现传感器故障并及时检修,以便于后续的湿度控制。
进一步地,在湿度传感器发生故障后,无法通过湿度传感器直接获取到冷冻间室的间室湿度,此时,本发明在冷藏冷冻装置达到自动关机条件时延迟关机,并通过切换至冷藏支路继续为冷藏间室制冷,将压缩机的运行频率设置成较低的预设频率,将冷藏风机和冷冻风机分别调节至各自设定占空比的45%~55%运行,一方面,可以提前为冷藏间室输送冷却气流,适当地降低冷藏间室的温度;另一方面,还可以有效地提高冷冻蒸发器的蒸发器温度,使其高于冷冻间室的间室温度,由此,冷冻间室内的水分、冷冻蒸发器上的凝霜升华产生的水分都会聚集在冷冻间室内,从而达到为冷冻间室加湿的目的。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图;
图2是根据本发明一个实施例的冷藏冷冻装置的压缩制冷系统的示意性结构框图;
图3是根据本发明一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图;
图4是根据本发明另一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图;
图5是根据本发明一个实施例的冷藏冷冻装置的示意性结构框图。
具体实施方式
本发明首先提供一种冷藏冷冻装置的控制方法,图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图,图2是根据本发明一个实施例的冷藏冷冻装置的压缩制冷系统的示意性结构框图。
参见图1和图2,本发明的冷藏冷冻装置1包括箱体10和压缩制冷系统20,箱体10内限定有冷冻间室11,冷冻间室11内设有用于检测其内的间室湿度的湿度传感器31,压缩制冷系统20包括用于压缩制冷剂的压缩机21和用于为冷冻间室11提供冷量的冷冻蒸发器22。进一步地,压缩制冷系统20还包括与压缩机21串联连接的冷冻节流装置23和冷凝器29。具体地,冷冻节流装置23可以为毛细管或节流阀等。
图3是根据本发明一个实施例的冷藏冷冻装置的控制方法的示意性流程图,参见图3,本发明的冷藏冷冻装置的控制方法包括:
步骤S10,在冷藏冷冻装置1处于冷冻间室制冷期间,获取冷冻蒸发器22的蒸发器温度和冷冻间室11内的间室温度;
步骤S20,根据冷冻蒸发器22的蒸发器温度和冷冻间室11内的间室温度确定冷冻间室11内的间室湿度应当具有的目标变化趋势;
步骤S30,按照湿度传感器31检测到的冷冻间室11内的实测湿度统计实测湿度的实测变化趋势;
步骤S40,判断连续数次统计的实测变化趋势是否均与目标变化趋势不一致,若是,则转步骤S50;
步骤S50,调节压缩机21的运行频率,以使得冷冻间室11内实际的间室湿度按照目标变化趋势变化;
步骤S60,再次按照湿度传感器31检测到的冷冻间室11内的实测湿度统计实测湿度的实测变化趋势;以及
步骤S70,判断再次连续数次统计的实测变化趋势与目标变化趋势是否仍然不一致;若是,则转步骤S80;
步骤S80,判定湿度传感器31发生故障。
本发明在冷冻间室制冷期间根据冷冻蒸发器22的蒸发器温度与冷冻间室11的间室温度之间的大小关系确定冷冻间室11内的间室湿度应当具有的目标变化趋势;然后,按照湿度传感器31检测到的冷冻间室11内的实测湿度确定间室湿度的实测变化趋势;再通过多次比较实测变化趋势与目标变化趋势是否一致来判断湿度传感器31是否可能发生故障。如果连续数次统计的实测变化趋势与目标变化趋势都不一致,说明湿度传感器31可能发生故障。为了验证湿度传感器31是否真的发生故障,本发明通过调节压缩机21的运行频率,使得冷冻间室11内实际的间室湿度按照目标变化趋势变化,并再次按照湿度传感器31检测到的冷冻间室11内的实测湿度确定间室湿度的实测变化趋势,若数次统计的间室湿度的实测变化趋势仍然与目标变化趋势不一致,说明湿度传感器31确实发生了故障。
本发明的控制方法通过多次对比冷冻间室11的间室湿度的实测变化趋势是否与目标变化趋势一致,能够准确地得出湿度传感器31是否发生故障的结论,降低或防止了误判的可能性,便于及时地发现传感器故障并及时检修,以便于后续的湿度控制。
具体地,在步骤S40和步骤S70中,连续数次可以为连续两次、连续三次、连续四次等。
在一些实施例中,本发明的控制方法还包括:
若连续数次统计的实测变化趋势与目标变化趋势一致,则转步骤S90:判定湿度传感器31正常;
若再次连续数次统计的实测变化趋势与目标变化趋势一致,则返回继续获取冷冻蒸发器22的蒸发器温度和冷冻间室11内的间室温度。
也就是说,在步骤S40的判断结果为否时转步骤S90:判定湿度传感器31正常。在步骤S70的判断结果为否时返回步骤S10,以继续获取冷冻蒸发器22的蒸发器温度和冷冻间室11内的间室温度。
可以理解的是,在冷冻间室制冷期间的中后期,冷冻蒸发器22的蒸发器温度必然小于冷冻间室11内的间室温度,才具有对冷冻间室11进行降温的能力。而水汽通常会在温度更低的位置聚集、凝结。因此,当冷冻蒸发器22的蒸发器温度小于冷冻间室11内的间室温度时,冷冻间室11内的水分会在冷冻蒸发器22处凝结,冷冻间室11内的湿度必然降低。也就是说,当冷冻蒸发器22的蒸发器温度小于冷冻间室11内的间室温度时,冷冻间室11内的间室湿度应当具有的目标变化趋势为逐渐降低。此时,本发明的控制方法具体可包括:
按照第一预设周期获取通过湿度传感器检测到的冷冻间室11内的实测湿度;
统计实测湿度的实测变化趋势;
若连续数次统计的实测变化趋势为逐渐升高或保持不变,则提高压缩机21的运行频率,以使得冷冻间室11内实际的间室湿度逐渐降低;
再次按照第一预设周期获取通过湿度传感器31检测到的冷冻间室11内的实测湿度;
再次统计通过实测湿度的实测变化趋势;以及
若再次连续数次统计的实测变化趋势为逐渐升高或保持不变,则判定湿度传感器31发生故障。
当冷冻蒸发器22的蒸发器温度小于冷冻间室11内的间室温度时,若提高压缩机21的运行频率,则冷冻蒸发器22的蒸发器温度会进一步降低,冷冻间室11内的水分会更多更快地凝结在冷冻蒸发器22上,冷冻间室11内实际的间室湿度应该进一步逐渐减小,即目标变化趋势为逐渐减小。若实测变化趋势仍然与目标变化趋势不符,则可以确定湿度传感器31发生了故障。
当箱体10内限定有非冷冻间室,例如冷藏间室和/或冷冻间室时,冷冻间室制冷通常在非冷冻间室制冷之后进行。因此,当冷藏冷冻装置1刚刚由非冷冻间室制冷状态切换为冷冻间室制冷状态时,冷冻蒸发器22的蒸发器温度会大于冷冻间室11内的间室温度。另外,在冷冻蒸发器22化霜结束后再进行冷冻间室制冷时,冷冻蒸发器22的蒸发器温度也可能会大于冷冻间室11内的间室温度。也就是说,在冷冻间室制冷期间,也会存在冷冻蒸发器22的蒸发器温度会大于冷冻间室11内的间室温度的情况。此时,水汽通常会在温度更低的冷冻间室11内聚集、凝结,冷冻间室11内的湿度通常会上升。也就是说,当冷冻蒸发器22的蒸发器温度大于冷冻间室11内的间室温度时,冷冻间室11内的间室湿度应当具有的目标变化趋势为逐渐升高。此时,本发明的控制方法具体可包括:
按照第二预设周期获取通过湿度传感器检测到的冷冻间室11内的实测湿度;
统计实测湿度的实测变化趋势;
若连续数次统计的实测变化趋势为逐渐降低或保持不变,则降低压缩机21的运行频率,以使得冷冻间室11内实际的间室湿度逐渐升高;
再次按照第二预设周期获取通过湿度传感器31检测到的冷冻间室11内的实测湿度;
再次统计通过实测湿度的实测变化趋势;以及
若再次连续数次统计的实测变化趋势为逐渐降低或保持不变,则判定湿度传感器31发生故障。
当冷冻蒸发器22的蒸发器温度大于冷冻间室11内的间室温度时,若降低压缩机21的运行频率,则冷冻蒸发器22的蒸发器温度会进一步升高,冷冻蒸发器22上的凝霜升华形成的水分以及冷冻间室11内的水分会更多更快地聚集在冷冻间室11内,冷冻间室11内实际的间室湿度应该进一步逐渐增大,即目标变化趋势为逐渐升高。若实测变化趋势仍然与目标变化趋势不符,则可以确定湿度传感器31发生了故障。
可以理解的是,在冷冻间室制冷期间,冷冻蒸发器22的蒸发器温度大于冷冻间室11内的间室温度这一现象持续的时间并不长,为了确保判断结果的准确性,需要确保上述判断湿度传感器31是否发生了故障的步骤是在冷冻蒸发器22的蒸发器温度大于冷冻间室11内的间室温度期间进行。也就是说,上述故障判断步骤的时间不能够持续的太长。为此,本发明将第二预设周期设置成小于第一预设周期。也就是说,在冷冻蒸发器22的蒸发器温度大于冷冻间室11内的间室温度时,通过湿度传感器检测冷冻间室11内的实测湿度的时间周期较短,频率较快,以尽可能地缩短整个故障判断步骤的时长。
具体地,第二预设周期可以为3~7s之间的任一时长值。第一预设周期可以为25~35s之间的任一时长值。
在湿度传感器发生故障后,无法通过湿度传感器31准确获取到冷冻间室11的间室湿度,因此无法根据冷冻间室11的实测湿度进行湿度控制,需要通过其他方式对冷冻间室11内的湿度进行控制。
为此,在一些实施例中,箱体10内还限定有冷藏间室12,压缩制冷系统20还包括冷冻节流装置23、与冷冻节流装置23并联以用于为冷藏间室12提供冷量的冷藏支路、以及用于选择性地导通冷冻节流装置23或冷藏支路的切换阀24。具体地,冷藏支路可包括串联连接的冷藏蒸发器25和冷藏节流装置26,冷藏节流装置26可以为毛细管或节流阀等。
在这些实施例中,在判定湿度传感器31发生故障后,本发明的控制方法还包括:
当冷藏冷冻装置1达到预设的自动关机条件时,控制切换阀24切换至导通冷藏支路的状态,并将压缩机21的运行频率调节至预设频率、控制用于为冷藏间室12驱动送风的冷藏风机按照其设定占空比的45%~55%运行、控制用于为冷冻间室11驱动送风的冷冻风机按照其设定占空比的45%~55%运行;
第一预设时长后停止压缩机21、冷藏风机和冷冻风机。
也就是说,本发明在冷藏冷冻装置1达到自动关机条件时延迟关机,并通过切换至冷藏支路继续为冷藏间室12制冷,将压缩机21的运行频率设置成较低的预设频率,将冷藏风机和冷冻风机分别调节至各自设定占空比的45%~55%运行,一方面,可以提前为冷藏间室12输送冷却气流,适当地降低冷藏间室12的温度;另一方面,还可以有效地提高冷冻蒸发器22的蒸发器温度,使其高于冷冻间室11的间室温度,由此,冷冻间室11内的水分、冷冻蒸发器22上的凝霜升华产生的水分都会聚集在冷冻间室11内,从而达到为冷冻间室11加湿的目的。
具体地,上述预设频率设置成使得冷冻蒸发器22的蒸发器温度高于冷冻间室11内的间室温度。例如,预设频率可以设置成40~50赫兹之间。
具体地,冷藏风机可按照其设定占空比的45%、46%、47%、48%、49%、50%、51%、52%、53%、54%或55%运行。
具体地,冷冻风机可按照其设定占空比的45%、46%、47%、48%、49%、50%、51%、52%、53%、54%或55%运行。
具体地,第一预设时长可以为4~6min之间的任一时长值。
具体地,上述自动关机条件为冷藏冷冻装置1的每个储物间室的温度均达到其各自的设定温度。具体地,若冷藏冷冻装置1除了包括冷冻间室11之外,还包括至少一个非冷冻间室,比如还包括冷藏间室12和变温间室13,则自动关机条件为冷藏间室12达到冷藏设定温度,变温间室13达到变温设定温度,冷冻间室11达到冷冻设定温度。
在一些实施例中,箱体10内还限定有变温间室13,压缩制冷系统20还包括与冷冻节流装置23并联以用于为变温间室13提供冷量的变温支路,切换阀24用于选择性地导通冷冻节流装置23、冷藏支路和变温支路之一。具体地,变温支路可包括串联的变温蒸发器27和变温节流装置28,变温节流装置28具体可以为毛细管或节流阀等。
在这些实施例中,在判定湿度传感器31发生故障后,本发明的控制方法还包括:
在冷藏冷冻装置1切换至冷藏间室制冷状态第二预设时长后,控制冷冻风机按照其设定占空比的45%~55%运行;且/或
在冷藏冷冻装置1切换至变温间室制冷状态后,控制冷冻风机按照其设定占空比的65%~75%运行。
可以理解的是,在冷藏间室启动制冷之前,冷藏冷冻装置通常处于停机状态,冷冻蒸发器22的温度较高。本发明在冷藏间室制冷第二预设时长后,即冷藏间室已经制冷运行一段时间再启动冷冻风机,此时冷冻蒸发器22的温度降低到一定程度,此时控制冷冻风机按照其设定占空比的45%~55%运行,能够为冷冻间室11输送温度较低的冷却气流,从而抑制冷冻间室11在冷藏间室制冷期间的温升。
当冷藏间室制冷结束后,立即转为变温间室制冷,因此,变温间室制冷时,冷冻蒸发器22的温度已经比较低,本发明在变温间室制冷开始时即控制冷冻风机按照其设定占空比的65%~75%运行,能够为冷冻间室11输送温度较低的冷却气流,从而抑制冷冻间室11在冷藏间室制冷期间和变温间室制冷期间的温升。
具体地,当冷藏冷冻装置1切换至冷藏间室制冷状态第二预设时长后,冷冻风机可按照其设定占空比的45%、46%、47%、48%、49%、50%、51%、52%、53%、54%或55%运行。
具体地,在冷藏冷冻装置1切换至变温间室制冷状态后,冷冻风机可按照其设定占空比的65%、66%、67%、68%、69%、70%、71%、72%、73%、74%或75%运行。
图4是根据本发明另一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图。在一些实施例中,在判定湿度传感器31发生故障后,本发明的控制方法还包括:
步骤S100,发出用于提示湿度传感器31发生故障的报警信号,以便于用户及时知晓湿度传感器31的故障情况,从而及时地更换或检修。
进一步地,在发出报警信号后,本发明的控制方法还包括:
步骤S110,继续按照湿度传感器31检测到的冷冻间室11内的实测湿度统计冷冻间室11内的间室湿度的实测变化趋势;
步骤S120,判断连续数次统计的实测变化趋势是否与目标变化趋势一致,若是,则转步骤S130;若否,返回步骤S100,继续发送报警信号。
步骤S130,判定湿度传感器31恢复正常,停止发出报警信号。
本发明还提供一种冷藏冷冻装置,图5是根据本发明一个实施例的冷藏冷冻装置的示意性结构框图。参见图1、图2和图5,本发明的冷藏冷冻装置1包括箱体10和压缩制冷系统20,箱体10内限定有冷冻间室11,压缩制冷系统20包括用于压缩制冷剂的压缩机21和用于为冷冻间室11提供冷量的冷冻蒸发器22。
特别地,冷藏冷冻装置1还包括湿度传感器31和控制装置40。湿度传感器31用于获取冷冻间室11内的间室湿度。控制装置40包括处理器41和存储器42,存储器42内存储有机器可执行程序43,并且机器可执行程序43被处理器41执行时用于实现上述任一实施例所描述的控制方法。
具体地,压缩机21和湿度传感器31均与控制装置40相连。
具体地,处理器41可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器41通过通信接口收发数据。存储器44用于存储处理器41执行的程序。存储器44是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器的组合。上述机器可执行程序43可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载到计算机或外部存储设备。
本发明的冷藏冷冻装置1通过多次对比冷冻间室11的间室湿度的实测变化趋势是否与目标变化趋势一致,能够准确地得出湿度传感器31是否发生故障的结论,降低或防止了误判的可能性,便于及时地发现传感器故障并及时检修,以便于后续的湿度控制。
本领域技术人员应理解,本发明的冷藏冷冻装置1也可以不限制为图1所示的三开门冰箱,其还可以为单开门冰箱、双开门冰箱或其他具有冷冻间室的冰箱。
本领域技术人员还应理解,本发明的冷藏冷冻装置1不但包括冰箱,而且还包括冷柜、冰柜或其他至少具有冷冻功能的冷藏冷冻装置。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

1.一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括箱体和压缩制冷系统,所述箱体内限定有冷冻间室,所述冷冻间室内设有用于检测其内的间室湿度的湿度传感器,所述压缩制冷系统包括用于压缩制冷剂的压缩机和用于为所述冷冻间室提供冷量的冷冻蒸发器;所述控制方法包括:
在所述冷藏冷冻装置处于冷冻间室制冷期间,获取所述冷冻蒸发器的蒸发器温度和所述冷冻间室内的间室温度;
根据所述冷冻蒸发器的蒸发器温度和所述冷冻间室内的间室温度确定所述冷冻间室内的间室湿度应当具有的目标变化趋势;
按照所述湿度传感器检测到的所述冷冻间室内的实测湿度统计所述冷冻间室内的间室湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势均与所述目标变化趋势不一致,则调节所述压缩机的运行频率,以使得所述冷冻间室内实际的间室湿度按照所述目标变化趋势变化;
再次按照所述湿度传感器检测到的所述冷冻间室内的实测湿度统计所述冷冻间室内的间室湿度的实测变化趋势;以及
若再次连续数次统计的所述实测变化趋势均与所述目标变化趋势仍然不一致,则判定所述湿度传感器发生故障。
2.根据权利要求1所述的控制方法,其中,
若所述冷冻蒸发器的蒸发器温度小于所述冷冻间室内的间室温度,则所述冷冻间室内的间室湿度应当具有的目标变化趋势为逐渐降低;且
所述控制方法具体包括:
按照第一预设周期获取通过湿度传感器检测到的所述冷冻间室内的实测湿度;
统计所述实测湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势为逐渐升高或保持不变,则提高所述压缩机的运行频率,以使得所述冷冻间室内实际的间室湿度逐渐降低;
再次按照所述第一预设周期获取通过所述湿度传感器检测到的所述冷冻间室内的实测湿度;
再次统计通过所述实测湿度的实测变化趋势;以及
若再次连续数次统计的所述实测变化趋势为逐渐升高或保持不变,则判定所述湿度传感器发生故障。
3.根据权利要求2所述的控制方法,其中,
若所述冷冻蒸发器的蒸发器温度大于所述冷冻间室内的间室温度,则所述冷冻间室内的间室湿度应当具有的目标变化趋势为逐渐升高;且
所述控制方法具体包括:
按照第二预设周期获取通过湿度传感器检测到的所述冷冻间室内的实测湿度;
统计所述实测湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势为逐渐降低或保持不变,则降低所述压缩机的运行频率,以使得所述冷冻间室内实际的间室湿度逐渐升高;
再次按照所述第二预设周期获取通过所述湿度传感器检测到的所述冷冻间室内的实测湿度;
再次统计通过所述实测湿度的实测变化趋势;以及
若再次连续数次统计的所述实测变化趋势为逐渐降低或保持不变,则判定所述湿度传感器发生故障。
4.根据权利要求3所述的控制方法,其中,
所述第二预设周期小于所述第一预设周期。
5.根据权利要求1所述的控制方法,还包括:
若连续数次统计的所述实测变化趋势与所述目标变化趋势一致,则判定所述湿度传感器正常;
若再次连续数次统计的所述实测变化趋势与所述目标变化趋势一致,则返回继续获取所述冷冻蒸发器的蒸发器温度和所述冷冻间室内的间室温度。
6.根据权利要求1所述的控制方法,所述箱体内还限定有冷藏间室,所述压缩制冷系统还包括冷冻节流装置、与所述冷冻节流装置并联以用于为所述冷藏间室提供冷量的冷藏支路、以及用于选择性地导通所述冷冻节流装置或所述冷藏支路的切换阀;
在判定所述湿度传感器发生故障后,所述控制方法还包括:
当所述冷藏冷冻装置达到预设的自动关机条件时,控制所述切换阀切换至导通所述冷藏支路的状态,并将所述压缩机的运行频率调节至预设频率、控制用于为所述冷藏间室驱动送风的冷藏风机按照其设定占空比的45%~55%运行、控制用于为所述冷冻间室驱动送风的冷冻风机按照其设定占空比的45%~55%运行;
第一预设时长后停止所述压缩机、所述冷藏风机和所述冷冻风机。
7.根据权利要求6所述的控制方法,所述箱体内还限定有变温间室,所述压缩制冷系统还包括与所述冷冻节流装置并联以用于为所述变温间室提供冷量的变温支路,所述切换阀用于选择性地导通所述冷冻节流装置、所述冷藏支路和所述变温支路之一;
在判定所述湿度传感器故障后,所述控制方法还包括:
在所述冷藏冷冻装置切换至冷藏间室制冷状态第二预设时长后,控制所述冷冻风机按照其设定占空比的45%~55%运行;且/或
在所述冷藏冷冻装置切换至变温间室制冷状态后,控制所述冷冻风机按照其设定占空比的65%~75%运行。
8.根据权利要求1所述的控制方法,在判定所述湿度传感器发生故障后,所述控制方法还包括:
发出用于提示所述湿度传感器发生故障的报警信号。
9.根据权利要求8所述的控制方法,在发出所述报警信号后,所述控制方法还包括:
继续按照所述湿度传感器检测到的所述冷冻间室内的实测湿度统计所述冷冻间室内的间室湿度的实测变化趋势;
若连续数次统计的所述实测变化趋势与所述目标变化趋势一致,则判定所述湿度传感器恢复正常,停止发出所述报警信号。
10.一种冷藏冷冻装置,包括箱体和压缩制冷系统,所述箱体内限定有冷冻间室,所述压缩制冷系统包括用于压缩制冷剂的压缩机和用于为所述冷冻间室提供冷量的冷冻蒸发器,所述冷藏冷冻装置还包括:
湿度传感器,用于获取所述冷冻间室内的间室湿度;以及
控制装置,包括处理器和存储器,所述存储器内存储有机器可执行程序,并且所述机器可执行程序被所述处理器执行时用于实现根据权利要求1-9中任一所述的控制方法。
CN202210054499.9A 2022-01-18 2022-01-18 冷藏冷冻装置及其控制方法 Pending CN116499171A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210054499.9A CN116499171A (zh) 2022-01-18 2022-01-18 冷藏冷冻装置及其控制方法
PCT/CN2022/141950 WO2023138312A1 (zh) 2022-01-18 2022-12-26 冷藏冷冻装置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210054499.9A CN116499171A (zh) 2022-01-18 2022-01-18 冷藏冷冻装置及其控制方法

Publications (1)

Publication Number Publication Date
CN116499171A true CN116499171A (zh) 2023-07-28

Family

ID=87327153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210054499.9A Pending CN116499171A (zh) 2022-01-18 2022-01-18 冷藏冷冻装置及其控制方法

Country Status (2)

Country Link
CN (1) CN116499171A (zh)
WO (1) WO2023138312A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391250B2 (ja) * 2011-09-28 2014-01-15 日立アプライアンス株式会社 冷蔵庫および冷凍庫
JP2017040432A (ja) * 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 冷蔵庫
CN105627668B (zh) * 2015-12-25 2018-05-29 青岛海尔股份有限公司 冰箱
CN110173947B (zh) * 2019-05-09 2021-04-23 青岛海尔电冰箱有限公司 制冷装置及其防凝露控制方法
CN110645767A (zh) * 2019-08-15 2020-01-03 长虹美菱股份有限公司 一种基于冰箱的故障判定与提醒系统
CN210625740U (zh) * 2019-11-27 2020-05-26 四川虹美智能科技有限公司 制冷设备的故障报警装置及制冷系统

Also Published As

Publication number Publication date
WO2023138312A1 (zh) 2023-07-27

Similar Documents

Publication Publication Date Title
US20210055035A1 (en) Air-cooled refrigerator, and control method, control system and controller for defrosting thereof
US7617695B2 (en) Control method for variable capacity compressors
CN110953792B (zh) 冰箱及其控制方法
CN116499171A (zh) 冷藏冷冻装置及其控制方法
WO2023138319A1 (zh) 冷藏冷冻装置及其控制方法
CN115265048B (zh) 冰箱及其控制方法
JP3413047B2 (ja) 冷凍サイクル
CN115265046A (zh) 冰箱及其控制方法
CN113758119A (zh) 一种控制化霜的方法、相关装置及制冷设备
CN116481230A (zh) 冷藏冷冻装置及其控制方法
CN114812035B (zh) 冰箱及其控制方法
WO2023134541A1 (zh) 冷藏冷冻装置及其控制方法
WO2022267772A1 (zh) 冷藏冷冻装置的控制方法及冷藏冷冻装置
CN114264110B (zh) 陈列柜控制方法、装置及陈列柜
CN115574531A (zh) 冷藏冷冻装置的控制方法、冷藏冷冻装置
CN116481231A (zh) 冷藏冷冻装置及其控制方法
CN116481232A (zh) 冷藏冷冻装置及其控制方法
WO2022267773A1 (zh) 冷藏冷冻装置的控制方法及冷藏冷冻装置
CN116538736A (zh) 冷藏冷冻装置及其控制方法
WO2023138318A1 (zh) 冷藏冷冻装置及其控制方法
WO2023138377A1 (zh) 冷藏冷冻装置及其控制方法
EP4361535A1 (en) Refrigerating and freezing apparatus control method, and refrigerating and freezing apparatus
CN113330262B (zh) 制冷器具和用于初始化制冷器具中的除霜过程的方法
WO2022267776A1 (zh) 冷藏冷冻装置的控制方法及冷藏冷冻装置
CN117308504A (zh) 冰箱控温方法、装置、系统及冰箱

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination