WO2022267772A1 - 冷藏冷冻装置的控制方法及冷藏冷冻装置 - Google Patents
冷藏冷冻装置的控制方法及冷藏冷冻装置 Download PDFInfo
- Publication number
- WO2022267772A1 WO2022267772A1 PCT/CN2022/093870 CN2022093870W WO2022267772A1 WO 2022267772 A1 WO2022267772 A1 WO 2022267772A1 CN 2022093870 W CN2022093870 W CN 2022093870W WO 2022267772 A1 WO2022267772 A1 WO 2022267772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compartment
- refrigerated
- freezing
- humidity
- refrigerating
- Prior art date
Links
- 238000007710 freezing Methods 0.000 title claims abstract description 212
- 230000008014 freezing Effects 0.000 title claims abstract description 207
- 238000005057 refrigeration Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000001816 cooling Methods 0.000 claims description 54
- 230000015654 memory Effects 0.000 claims description 9
- 230000003020 moisturizing effect Effects 0.000 description 15
- 239000004615 ingredient Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 239000003507 refrigerant Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000013461 design Methods 0.000 description 7
- 238000000859 sublimation Methods 0.000 description 6
- 230000008022 sublimation Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 238000009920 food preservation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000009246 food effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
Definitions
- the invention relates to refrigeration and freezing technology, in particular to a control method of a refrigeration and freezing device and the refrigeration and freezing device.
- the level of humidity in the refrigerating and freezing device will affect the speed of moisture evaporation of the ingredients, thereby affecting the quality of the ingredients.
- the humidity is too low, the water in the ingredients evaporates quickly, which will cause the weight loss of the ingredients, which in turn leads to problems such as poor food storage effect and short food preservation period. Therefore, moisturizing the refrigerated freezer is always a crucial research topic.
- most of the current refrigerating and freezing devices humidify and moisturize the refrigerator compartment, and pay little attention to the problem of humidifying and moisturizing the freezer compartment.
- the humidity in the freezer is low, and the moisture loss of meat and other ingredients stored in the freezer for a long time is serious, and the storage effect is poor, which will not only affect the taste of the ingredients, but also cause the loss of nutrition of the ingredients and affect the user experience.
- An object of the first aspect of the present invention is to overcome at least one defect of the prior art, and provide a control method of a refrigerating and freezing device capable of reasonably humidifying or moisturizing the freezing compartment.
- a further object of the first aspect of the invention is to increase the efficiency of humidification of the refrigerated compartment.
- the object of the second aspect of the present invention is to provide a refrigerator-freezer capable of reasonably humidifying or moisturizing the freezing compartment.
- the present invention provides a method for controlling a refrigerating and freezing device
- the refrigerating and freezing device includes a box body and a refrigeration system, the box body defines a freezing compartment and at least one non-refrigerating compartment, so
- the refrigeration system includes a compressor, a condenser, a solenoid valve, a refrigerated capillary, and a refrigerated evaporator that are connected in series in sequence, and at least A non-freezing branch circuit, each of the non-freezing branch circuits includes a series non-freezing capillary and a non-freezing evaporator;
- the control method includes:
- the operating frequency of the compressor If the humidity of the compartment is less than the preset minimum humidity threshold, reduce the operating frequency of the compressor so that the temperature of the evaporator of the refrigerated evaporator is higher than the temperature of the compartment in the refrigerated compartment; if the compartment If the room humidity is greater than or equal to the preset minimum humidity threshold, the operating frequency of the compressor is kept unchanged.
- the refrigerating and freezing device further includes a refrigeration fan for urging the cooling airflow generated by the freezing evaporator to flow to the freezing compartment when the freezing compartment is cooling; and the control method further includes:
- the freezing fan is controlled to stop.
- the rotation speed of the refrigeration fan is lower than the set rotation speed of the refrigeration fan when the refrigerating and freezing apparatus is in the cooling state of the freezing compartment.
- control method further includes:
- the preset minimum humidity threshold is any relative humidity value between 45% and 55%; and/or
- the preset maximum humidity threshold is any relative humidity value between 80% and 100%.
- control method also includes:
- the electromagnetic The valve is switched to the cooling state of the freezing compartment, and the operating frequency of the compressor is restored to a preset operating frequency for cooling the freezing compartment.
- the operating frequency of the compressor is at the lowest operating frequency of the compressor and the compressor is in the freezing state of the refrigerating and freezing device. Between the set operating frequencies in the compartment cooling state.
- the at least one non-refrigerated compartment comprises a refrigerated compartment
- the at least one non-refrigerated branch comprises a refrigerated branch
- the non-refrigerated capillary comprises a refrigerated capillary
- the non-refrigerated evaporator comprises a refrigerated evaporator
- the at least one non-refrigerated compartment includes a variable temperature compartment
- the at least one non-refrigerated branch includes a variable temperature branch
- the non-refrigerated capillary includes a variable temperature capillary
- the non-refrigerated evaporator includes a variable temperature evaporator.
- the present invention also provides a refrigerating and freezing device, comprising:
- a cabinet defining a refrigerated compartment and at least one non-refrigerated compartment
- the refrigeration system includes a compressor, a condenser, a solenoid valve, a refrigerated capillary and a refrigerated evaporator connected in series in sequence, and at least a non-refrigerated branch each comprising a non-refrigerated capillary and a non-refrigerated evaporator in series; and
- the control device includes a processor and a memory, where a machine-executable program is stored in the memory, and when the machine-executable program is executed by the processor, it is used to implement the control method according to any of the above schemes.
- the refrigerated freezer also includes:
- a refrigeration fan configured to prompt the cooling airflow generated by the refrigeration evaporator to flow toward the refrigeration compartment when the refrigeration compartment is refrigerated, and configured so that when the humidity of the compartment in the refrigeration compartment is less than a preset minimum humidity threshold start, and keep closed when the humidity of the compartment is greater than or equal to the preset minimum humidity threshold.
- the refrigerating and freezing device of the present invention first obtains the compartment humidity in the freezing compartment during the cooling period of the non-refrigerating compartment, and only reduces the operating frequency of the compressor when the compartment humidity in the freezing compartment is lower than the preset minimum humidity threshold to improve the freezing rate.
- the evaporator temperature of the evaporator makes the evaporator temperature of the refrigerated evaporator higher than the compartment temperature in the refrigerated compartment under the condition of meeting the cooling demand of the non-refrigerated compartment.
- the refrigerated evaporator is connected in series with any non-refrigerated evaporator, and that during cooling of the non-refrigerated compartment, the refrigerant flows through the non-refrigerated evaporator and then through the refrigerated evaporator, and the refrigerant flows through the non-refrigerated
- the temperature of the refrigerant flowing out of the non-refrigerated evaporator is higher than that of the refrigerant at the non-refrigerated evaporator.
- the temperature may have been close to or higher than the temperature in the freezer compartment.
- the refrigerating and freezing device further includes a refrigerating fan for urging the cooling airflow generated by the refrigerating evaporator to flow to the refrigerating compartment when the refrigerating compartment is refrigerated.
- a refrigerating fan for urging the cooling airflow generated by the refrigerating evaporator to flow to the refrigerating compartment when the refrigerating compartment is refrigerated.
- the refrigerating fan is usually stopped.
- the refrigerating fan is set to run when the humidity of the compartment in the refrigerated compartment is less than the preset minimum humidity threshold, and to stop when the compartment humidity in the refrigerated compartment is greater than or equal to the preset minimum humidity threshold.
- the refrigeration fan is started only when the humidity of the compartment in the freezing compartment is lower than the preset minimum humidity threshold, so that the water vapor formed by the partial frost sublimation on the surface of the freezing evaporator enters the freezing compartment with a lower temperature to improve the freezing efficiency.
- Humidification rate of the compartment When the humidity of the compartment in the freezer is greater than or equal to the preset minimum humidity threshold, there is no need to adjust the humidity of the compartment.
- the refrigeration fan stops to avoid blowing the airflow with a slightly higher temperature at the freezer evaporator into the freezer compartment and cause The temperature of the freezer compartment is excessively high, and the scheme design is more reasonable.
- Fig. 1 is a schematic structural diagram of a refrigerating and freezing device according to one embodiment of the present invention
- Fig. 2 is a schematic structural block diagram of a refrigeration system of a refrigerator-freezer according to an embodiment of the present invention
- Fig. 3 is the schematic flowchart of the control method of the refrigerating and freezing device according to a specific embodiment of the present invention
- Fig. 4 is a schematic flowchart of a control method of a refrigerating and freezing device according to another specific embodiment of the present invention.
- Fig. 5 is a schematic flowchart of a control method of a refrigerating and freezing device according to yet another specific embodiment of the present invention.
- Fig. 6 is a schematic structural block diagram of a refrigeration system according to another embodiment of the present invention.
- Fig. 7 is a schematic structural block diagram of a refrigeration system according to yet another embodiment of the present invention.
- Fig. 8 is a schematic structural block diagram of a refrigerating and freezing device according to an embodiment of the present invention.
- the present invention firstly provides a control method for a refrigerating and freezing device
- Fig. 1 is a schematic structural diagram of a refrigerating and freezing device according to an embodiment of the present invention
- Fig. 2 is a schematic diagram of a refrigeration system of a refrigerating and freezing device according to an embodiment of the present invention sex structure diagram.
- the refrigerating and freezing device 1 includes a box body 10 and a refrigeration system 20 , and the box body 10 defines a freezer compartment 11 and at least one non-freeze compartment.
- the freezer compartment 11 is used as a frozen storage compartment
- the non-freezer compartment is used as a non-freezing storage compartment.
- the non-freezer compartment can be used as a storage room for refrigeration or variable temperature room. Normally, the temperature in the non-refrigerated compartment is higher than the temperature in the refrigerated compartment 11 .
- the refrigeration system 20 includes a compressor 21, a condenser 22, a solenoid valve 23, a refrigerated capillary 24, and a refrigerated evaporator 25 that are connected in series in sequence, and two ends of the refrigerated capillary 24 are connected in parallel to provide refrigeration for the above-mentioned at least one non-refrigerated compartment respectively.
- At least one non-refrigerated branch of the quantity, each non-refrigerated branch includes a non-refrigerated capillary and a non-refrigerated evaporator connected in series.
- the series connection and parallel connection mentioned in the present invention respectively refer to the physical series connection and parallel connection of the refrigerant flow paths, rather than the series connection and parallel connection of the circuit structure.
- the state of the solenoid valve 23 is set to communicate with the non-refrigerating branch corresponding to the condenser 22 and the non-refrigerating compartment.
- the refrigerant flowing out from the compressor 21 It passes through the condenser 22, the electromagnetic valve 23, the non-refrigerating evaporator and the non-refrigerating capillary of the non-refrigerating branch, and the freezing evaporator 25 in turn, and finally returns to the compressor 21.
- the state of the electromagnetic valve 23 is set to communicate with the condenser 22 and the freezing capillary 24.
- the refrigerant flowing out from the compressor 21 passes through the condenser 22 and the electromagnetic valve 23 in sequence. , the freezing capillary 24 and the freezing evaporator 25, and finally return to the compressor 21.
- the freezer compartment 11 is not an absolutely closed compartment.
- the air carrying moisture from the outside will enter the freezer compartment 11 through the door seal of the freezer compartment 11; the unfrozen ingredients inside the freezer compartment 11 will volatilize a certain amount of moisture; after the ingredients in the freezer compartment 11 are frozen, the ingredients
- the moisture on the surface has a small amount of sublimation; the frost formed on the surface of the freezing evaporator 25 also has a small amount of sublimation.
- the refrigerating-freezing device 1 originally has a variety of moisture sources that can be used for moisturizing or humidifying the freezing compartment 11 . If these moisture can be effectively used as moisturizing or humidifying the freezing compartment 11, then there is no need to arrange any other humidifying devices.
- frost condensation rarely occurs in the storage compartment, and frost condensation basically occurs on the evaporator. This is because the temperature of the evaporator is generally lower than that of the storage compartment. That is to say, water vapor usually gathers and condenses in places with lower temperatures. Then, if the compartment temperature in the freezing compartment 11 is lower than the evaporator temperature at the freezing evaporator 25, water vapor will gather in the freezing compartment 11, which can effectively moisturize the freezing compartment 11 or improve the cooling capacity of the freezing compartment. Indoor humidity.
- the present invention particularly proposes a kind of control method of refrigeration freezer, and this control method comprises:
- the compartment humidity in the freezing compartment 11 is less than the preset minimum humidity threshold, then reduce the operating frequency of the compressor 21, so that the evaporator temperature of the freezing evaporator 25 is higher than the compartment temperature in the freezing compartment 11; If the compartment humidity in the compartment 11 is greater than or equal to the preset minimum humidity threshold, the operating frequency of the compressor 21 remains unchanged.
- the refrigerating and freezing device 1 of the present invention first acquires the compartment humidity in the freezing compartment 11 during cooling of the non-refrigerating compartment, and only reduces the compressor 21 when the compartment humidity in the freezing compartment 11 is lower than the preset minimum humidity threshold.
- the operating frequency of the refrigerated evaporator 25 is increased to increase the evaporator temperature of the refrigerated evaporator 25, so that the evaporator temperature of the refrigerated evaporator 25 is higher than the temperature of the compartment in the refrigerated compartment 11 under the condition of meeting the cooling demand of the non-refrigerated compartment. This is because the applicant recognizes that the refrigerated evaporator 25 is connected in series with any non-refrigerated evaporator.
- the temperature of container 25 When passing through the non-refrigerated evaporator, it will absorb external heat, so the temperature of the refrigerant flowing out of the non-refrigerated evaporator is higher than that of the refrigerant at the non-refrigerated evaporator. When the refrigerant that has absorbed heat flows through the frozen evaporator, the refrigerant evaporates The temperature of container 25 may have been close to or higher than the temperature in freezer compartment 11.
- the external water vapor entering the freezer compartment through the door seal and the moisture in the freezer compartment (such as the volatilized moisture of the ingredients, the sublimated moisture on the surface of the frozen ingredients, etc.) Condensation occurs in chamber 11 rather than at refrigerated evaporator 25 .
- the moisture content in the refrigerated compartment 11 is increased to increase the humidity in the refrigerated compartment 11, and it is avoided to directly adjust the operating frequency of the compressor 21 to affect the cooling of the non-refrigerated compartment, and the scheme design is more reasonable.
- the present invention realizes the effect of humidifying and moisturizing the freezing compartment 11 by controlling the operating frequency of the compressor 21 on the basis of the original structure of the refrigerating and freezing device 1, and does not need to add any auxiliary structure. Therefore, it will not affect the refrigerating and freezing device 1 It will not have any impact on the original structure and storage capacity, which is convenient for practical application.
- the scheme of the present invention for realizing the humidification and moisturizing of the frozen compartment 11 is completely different from the scheme adopted in the prior art. The design idea is very novel, and the effect is remarkable, and the prospect of practical application is good.
- Fig. 3 is a schematic flow chart of a control method of a refrigerating and freezing device according to a specific embodiment of the present invention.
- the control method of the present invention includes:
- Step S10 obtaining the current state of the refrigerating and freezing device 1;
- Step S20 judging whether the refrigerating-freezing device 1 is in the cooling state of the non-freezing compartment; if so, then go to step S30, if not, then return to step S10; and
- Step S30 obtaining the compartment humidity in the freezer compartment 11;
- Step S40 judging whether the humidity of the compartment in the freezer compartment 11 is lower than the preset minimum humidity threshold, if yes, go to step S50, if not, go to step S60;
- Step S50 reducing the operating frequency of the compressor 21, so that the temperature of the evaporator of the refrigerated evaporator 25 is higher than the temperature of the compartment in the refrigerated compartment 11;
- Step S60 keeping the operating frequency of the compressor 21 unchanged.
- the refrigerating-freezing device 1 further includes a freezing fan 30 for urging the cooling airflow generated by the freezing evaporator 25 to flow to the freezing compartment 11 when the freezing compartment 11 is cooling.
- the control method of the present invention also includes:
- the freezing fan 30 is controlled to be in the running state
- the freezing fan 30 is controlled to stop.
- the refrigerating fan 30 when the non-refrigerated compartment is being refrigerated, the refrigerating fan 30 is usually stopped.
- the refrigeration fan 30 is set to run when the humidity of the compartment in the freezer compartment 11 is lower than the preset minimum humidity threshold, and to stop when the compartment humidity in the freezer compartment 11 is greater than or equal to the preset minimum humidity threshold. That is to say, only when the humidity of the compartment in the freezing compartment 11 is less than the preset minimum humidity threshold, the freezing fan 30 is started, so that the water vapor formed by partial frosting and sublimation on the surface of the freezing evaporator 25 enters the freezing compartment with a lower temperature. 11, to increase the humidification rate of the freezer compartment 11. That is to say, the moisture content in the freezer compartment 11 can be increased simultaneously from multiple aspects, thereby efficiently increasing the humidity in the freezer compartment 11 .
- Fig. 4 is a schematic flowchart of a control method for a refrigerating and freezing device according to another specific embodiment of the present invention.
- the control method of the present invention includes:
- Step S10 obtaining the current state of the refrigerating and freezing device 1;
- Step S20 judging whether the refrigerating-freezing device 1 is in the cooling state of the non-freezing compartment; if so, then go to step S30, if not, then return to step S10; and
- Step S30 obtaining the compartment humidity in the freezer compartment 11;
- Step S40 judging whether the humidity of the compartment in the freezer compartment 11 is lower than the preset minimum humidity threshold, if yes, go to step S50', if not, go to step S60';
- Step S50' reducing the operating frequency of the compressor 21, so that the evaporator temperature of the refrigerating evaporator 25 is higher than the temperature of the compartment in the refrigerating compartment 11, and controlling the refrigerating fan 30 to be in an operating state;
- Step S60' keep the operating frequency of the compressor 21 unchanged, and control the refrigeration fan 30 to stop.
- step S50' the operation frequency of the compressor 21 can be lowered before controlling the operation of the refrigeration fan 30, or the operation of the refrigeration fan 30 can be controlled while reducing the operation frequency of the compressor 21.
- Fig. 5 is the schematic flowchart of the control method of the refrigerating and freezing device according to another specific embodiment of the present invention, referring to Fig. 5, after reducing the operating frequency of the compressor 21 and starting the refrigerating fan 30, the control method of the present invention also includes :
- Step S70 acquiring the compartment humidity in the freezing compartment 11 again;
- Step S80 judge whether the humidity of the compartment in the frozen compartment 11 obtained again is greater than the preset maximum humidity threshold; if yes, go to step S90; Whether the humidity of the compartment is less than the preset minimum humidity threshold;
- Step S90 keep the operating frequency of the compressor 21 unchanged, and stop the refrigeration fan 30 until the temperature in the non-refrigeration compartment in the refrigeration state reaches its set temperature.
- the refrigerating fan 30 will not start again, and the operating frequency of the compressor will not change. .
- the refrigerating fan 30 is started again.
- the operating frequency of the compressor 21 can be flexibly adjusted according to the state of the refrigerating and freezing device 1. For example, when any compartment does not need refrigeration, the compressor 21 stop running; when any room needs cooling, the compressor 21 runs at the preset operating frequency.
- the humidity in the refrigerating compartment 11 gradually increases.
- the compartment humidity in the freezer compartment 11 is greater than or equal to the preset minimum humidity threshold, the compartment humidity in the freezer compartment 11 is already suitable for high-quality preservation of food materials, and there is no need to quickly humidify the freezer compartment 11.
- Stopping the freezing fan 30 can prevent the slightly higher temperature airflow from the freezing evaporator 25 from continuing to blow into the freezing compartment 11 and cause the temperature of the freezing compartment 11 to rise excessively. It can be seen that the scheme design of the present invention is more reasonable.
- the operating frequency of the compressor 21 remains unchanged, that is, the compressor 21 still operates at a reduced operating frequency to ensure that the freezing evaporator 25
- the evaporator temperature is higher than the compartment temperature in the freezing compartment 11.
- the external water vapor entering the freezing compartment 11 through the door seal and the moisture in the freezing compartment 11 will still condense in the freezing compartment 11 with a lower temperature, and the humidity in the freezing compartment 11 will increase slowly or continue to maintain, ensuring This ensures that there is always a high humidity in the freezing compartment 11, which improves the preservation effect of food materials.
- the preset maximum humidity threshold may be any relative humidity value between 80% and 100%.
- the preset maximum humidity threshold may be 80%, 85%, 90%, 95% or 100%.
- the humidity in the freezing compartment 11 is not yet saturated, close to saturated or just saturated, the water vapor in the freezing compartment 11 will not or is not easy to condense, the moisturizing or humidifying effect is better, and the food preservation effect is better.
- stopping the freezer fan 30 at this time can reduce the influence on the temperature in the freezer compartment 11 by slowing down the speed of the humidity in the freezer compartment 11. It does not affect the preservation effect of the ingredients in the freezer compartment 11, nor does it greatly affect the freezing effect in the freezer compartment 11.
- the preset maximum humidity threshold is too high, it will cause the refrigeration fan 30 to run continuously, not only will not continue to improve the moisturizing effect or humidification effect, but will also seriously affect the temperature in the freezing compartment 11 . If the preset maximum humidity threshold is too small, the freezing fan 30 will be stopped when the humidity in the freezing compartment 11 does not meet the requirement, resulting in low humidification efficiency of the freezing compartment 11 .
- the preset minimum humidity threshold is any relative humidity value between 45% and 55%.
- the preset minimum humidity threshold may be 45%, 47%, 50%, 53% or 55%.
- the humidity in the freezer compartment 11 is not yet saturated, but it barely affects the quality of the ingredients. If the preset minimum humidity threshold is too large, the compressor 21 will easily reach the condition of reducing the operating frequency, causing the compressor 21 to run at the normal frequency for too short a time, thereby seriously reducing the cooling efficiency of the non-refrigerated compartment 11 .
- the condition for reducing the operating frequency of the compressor 21 may still not be achieved when the humidity of the compartment in the freezer compartment 11 is very low, resulting in that the freezer compartment 11 cannot be substantially, Long-term moisturizing and humidifying operation.
- control method of the present invention also includes:
- the solenoid valve 23 is controlled to switch. To cool the freezer compartment 11, and restore the operating frequency of the compressor 21 to the preset operating frequency for cooling the freezer compartment 11, so that the freezer compartment 11 reaches the set temperature quickly.
- the rotational speed of the freezing fan 30 does not need to be relatively high.
- the rotational speed of the freezing fan 30 is lower than the setting of the freezing fan 30 when the refrigerating and freezing device 1 is in the cooling state of the freezing compartment. Fixed speed. In this way, the water vapor formed by the sublimation of part of the frost on the freezing evaporator 25 can be sent into the freezing compartment 11 quickly, and it can also prevent too much air flow with a relatively high temperature from entering the freezing compartment 11 and causing the freezing in the freezing compartment 11. The temperature rises more and affects the freezing effect of the freezing compartment 11 .
- the cooling demand of the non-freezing compartment needs to be met. Therefore, the operating frequency of the compressor 21 cannot be too low.
- the operating frequency of the compressor 21 is at the lowest operating frequency of the compressor 21 and the compressor 21 is in the freezing state of the refrigerating and freezing device 1. Between the set operating frequencies in the compartment cooling state. In this way, the cooling demand of the non-freezing compartment can be met, and the temperature of the evaporator of the freezing evaporator 25 can be appropriately higher than the temperature of the compartment in the freezing compartment 11, so as to realize moisturizing or humidification of the freezing compartment 11 the goal of.
- the operating frequency of the compressor 21 when the humidity in the freezing compartment 11 is lower than the preset minimum humidity threshold, the operating frequency of the compressor 21 is higher than the setting of the compressor 21 when the refrigerating and freezing device 1 is in the cooling state of the freezing compartment.
- the operating frequency is 3-17 Hz lower. That is to say, as long as the operating frequency of the compressor 21 is appropriately reduced so that the evaporator temperature of the refrigerated evaporator 25 is slightly higher than the temperature in the refrigerated compartment 11, the refrigerating efficiency and refrigerating efficiency of the non-refrigerated compartment are maximized. Refrigeration effect, and to the greatest possible extent avoid the temperature in the freezing compartment 11 from rising too much.
- the operating frequency of the compressor 21 may be 3 Hz, 5 Hz, 7 Hz, or lower than the operating frequency of the compressor 21 during cooling of the freezer compartment. 9 Hz, 11 Hz, 13 Hz, 15 Hz or 17 Hz.
- the operating frequency of the compressor 21 is 8-12 Hz lower than the above-mentioned set operating frequency of the compressor 21 . Therefore, the cooling efficiency and cooling effect of the non-freezing compartment, and the moisturizing and humidifying effect in the freezing compartment 11 are all better.
- the at least one non-refrigerated compartment may include a refrigerated compartment 12, the at least one non-refrigerated branch may include a refrigerated branch 201, the non-refrigerated capillary may include a refrigerated capillary 26, and the non-refrigerated evaporator may include A refrigerated evaporator 27 is included.
- the refrigerated compartment 11 is moisturized or humidified by reducing the operating frequency of the compressor 21 .
- Fig. 6 is a schematic structural block diagram of a refrigeration system according to another embodiment of the present invention.
- the above-mentioned at least one non-refrigerated compartment may include a variable temperature compartment 13
- the above-mentioned at least one non-refrigerated branch may include a variable-temperature branch 202
- the above-mentioned non-refrigerated capillary may include a variable-temperature capillary 28
- the above-mentioned non-refrigerated evaporator A variable temperature evaporator 29 may be included.
- the freezing compartment 11 is kept moist or humidified by reducing the operating frequency of the compressor 21 .
- Fig. 7 is a schematic structural block diagram of a refrigeration system according to yet another embodiment of the present invention.
- the number of non-freezing compartments can be two, which are refrigerated compartments 12 and variable temperature compartments 13 .
- the number of non-refrigerated branches is two, namely the refrigerated branch 201 and the variable temperature branch 202 .
- the number of non-refrigerating evaporators is two, which are refrigerating evaporators 27 and variable temperature evaporators 29 respectively.
- the freezing compartment 11 is kept moist or humidified by reducing the operating frequency of the compressor 21 .
- FIG. 8 is a schematic structural block diagram of the refrigerating and freezing device according to an embodiment of the present invention.
- the refrigerating and freezing device 1 of the present invention includes a cabinet 10 , a refrigeration system 20 and a control device 40 .
- a freezer compartment 11 and at least one non-freeze compartment are defined inside the box body 10 .
- the refrigeration system 20 includes a compressor 21, a condenser 22, a solenoid valve 23, a refrigerated capillary 24, and a refrigerated evaporator 25 that are connected in series in sequence, and two ends of the refrigerated capillary 24 are connected in parallel to provide refrigeration for the above-mentioned at least one non-refrigerated compartment respectively.
- At least one non-refrigerated branch of the quantity, each non-refrigerated branch includes a non-refrigerated capillary and a non-refrigerated evaporator connected in series.
- the control device 40 includes a processor 41 and a memory 42, the memory 42 stores a machine executable program 43, and the machine executable program 43 is used to implement the control method described in any of the above embodiments when executed by the processor 41.
- the refrigerating and freezing device 1 of the present invention reduces the operating frequency of the compressor 21 only when the humidity in the freezing compartment 11 is lower than the preset minimum humidity threshold, which not only increases the moisture content in the freezing compartment 11, but also improves the temperature of the freezing compartment.
- the humidity in the room 11 avoids directly adjusting the operating frequency of the compressor 21 and affecting the cooling of the non-refrigerated room, and the scheme design is more reasonable.
- the processor 41 may be a central processing unit (central processing unit, CPU for short), or a digital processing unit or the like.
- the processor 41 sends and receives data through the communication interface.
- the memory 44 is used to store programs executed by the processor 41 .
- the memory 44 is any medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, and can also be a combination of multiple memories.
- the above-mentioned machine-executable program 43 can be downloaded from a computer-readable storage medium to a corresponding computing/processing device or downloaded to a computer or an external storage device via a network (such as the Internet, a local area network, a wide area network, and/or a wireless network).
- the refrigerating and freezing device 1 further includes a freezing fan 30 .
- the refrigerating fan 30 is used to promote the cooling airflow generated by the refrigerating evaporator 25 to flow to the refrigerating compartment 11 when the refrigerating compartment 11 is cooling, and is configured to start when the humidity of the compartment in the refrigerating compartment 11 is less than a preset minimum humidity threshold, The closed state remains when the humidity of the compartment in the freezer compartment 11 is greater than or equal to the preset minimum humidity threshold.
- the humidity of the compartment in the freezer compartment 11 is low, the moisture at the freezer evaporator 25 can be urged to enter the freezer compartment 11 faster by the freezer fan 30 , thereby improving the humidification efficiency of the freezer compartment 11 .
- the refrigeration blower 30 is electrically connected with the control device 40 to operate under the control of the control device 40 .
- the refrigerating and freezing device 1 of the present invention includes not only a refrigerator, but also a freezer, a freezer or other refrigerating and freezing devices with at least a freezing function.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
一种冷藏冷冻装置(1)控制方法及冷藏冷冻装置(1),冷藏冷冻装置(1)包括箱体(10)和制冷系统(20),箱体(10)内限定有冷冻间室(11)和至少一个非冷冻间室,制冷系统(20)包括依次串联成回路的压缩机(21)、冷凝器(22)、电磁阀(23)、冷冻毛细管(24)和冷冻蒸发器(25),冷冻毛细管(24)的两端并联有至少一个非冷冻支路,每个非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器。控制方法包括:当冷藏冷冻装置(1)处于任一非冷冻间室制冷的状态时,获取冷冻间室(11)内的间室湿度;以及若间室湿度小于预设最低湿度阈值,则降低压缩机(21)的运行频率,以使得冷冻蒸发器(25)的蒸发器温度高于冷冻间室(11)内的间室温度;若间室湿度大于等于预设最低湿度阈值则保持压缩机(21)的运行频率不变。
Description
本发明涉及冷藏冷冻技术,特别是涉及一种冷藏冷冻装置的控制方法及冷藏冷冻装置。
冷藏冷冻装置内湿度的高低会影响食材水分蒸发的快慢,从而影响食材的品质。当湿度过低时,食材的水分蒸发较快,会引起食材重量损失,继而造成食物储存效果差和食物保鲜期较短等问题。因此,对冷藏冷冻装置进行保湿始终是至关重要的研究课题。然而,目前的冷藏冷冻装置大多对冷藏室进行加湿保湿,很少关注冷冻室加湿保湿的问题。实际上,冷冻室的湿度较小,长时间储存在冷冻室内的肉类等食材的水分损失严重,储存效果差,不但会影响食材的口感,而且还会造成食材营养的流失,影响用户体验。
现有技术中少有的关于冷冻室加湿的方案都是在冷藏冷冻装置内增加非常复杂的加湿装置。然而,冷冻室温度较低,加湿装置本身容易产生凝霜而被堵,而且加湿装置会占用风道空间或间室空间。因此,现有的这些方案不但会增加冷藏冷冻装置的成本和装配难度,而且还非常难以在实际中应用,使得冷冻室湿度低的问题得不到实际解决。
在对如何保持或提高冷冻室内湿度这一技术难题的研究过程中,申请人认识到,对冷冻室内进行加湿或保湿可能会影响到冷冻室内的温度、以及非冷冻室的制冷等其他有关冷藏冷冻装置性能的参数,因此设计出一种比较合理的冷冻室加湿或保湿的方案至关重要。
发明内容
本发明第一方面的一个目的旨在克服现有技术的至少一个缺陷,提供一种能够合理地对冷冻间室进行加湿或保湿的冷藏冷冻装置的控制方法。
本发明第一方面的一个进一步的目的是提高制冷间室的加湿效率。
本发明第二方面的目的是提供一种能够合理地对冷冻间室进行加湿或保湿的冷藏冷冻装置。
根据本发明的第一方面,本发明提供一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括箱体和制冷系统,所述箱体内限定有冷冻间室和至少一 个非冷冻间室,所述制冷系统包括依次串联成回路的压缩机、冷凝器、电磁阀、冷冻毛细管和冷冻蒸发器,所述冷冻毛细管的两端并联有用于分别为所述至少一个非冷冻间室提供冷量的至少一个非冷冻支路,每个所述非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器;所述控制方法包括:
当所述冷藏冷冻装置处于任一非冷冻间室制冷的状态时,获取所述冷冻间室内的间室湿度;以及
若所述间室湿度小于预设最低湿度阈值,则降低所述压缩机的运行频率,以使得所述冷冻蒸发器的蒸发器温度高于所述冷冻间室内的间室温度;若所述间室湿度大于等于所述预设最低湿度阈值则保持所述压缩机的运行频率不变。
可选地,所述冷藏冷冻装置还包括用于在所述冷冻间室制冷时促使所述冷冻蒸发器产生的冷却气流流向所述冷冻间室的冷冻风机;且所述控制方法还包括:
若所述间室湿度小于所述预设最低湿度阈值,则控制所述冷冻风机处于运行状态;
若所述间室湿度大于等于所述预设最低湿度阈值,则控制所述冷冻风机处于停止状态。
可选地,当所述间室湿度小于预设最低湿度阈值时,所述冷冻风机的转速小于所述冷冻风机在所述冷藏冷冻装置处于冷冻间室制冷状态时的设定转速。
可选地,在降低所述压缩机的运行频率和启动所述冷冻风机之后,所述控制方法还包括:
再次获取所述冷冻间室内的间室湿度;
判断再次获取的所述间室湿度是否大于预设最高湿度阈值;
若是,则保持所述压缩机的运行频率不变,并停止所述冷冻风机,直至处于制冷状态的非冷冻间室内的温度达到其设定温度;若否,则返回继续判断所述间室湿度是否小于预设最低湿度阈值。
可选地,所述预设最低湿度阈值为45%~55%之间的任一相对湿度值;且/或
所述预设最高湿度阈值为80%~100%之间的任一相对湿度值。
可选地,所述控制方法还包括:
当处于制冷状态的非冷冻间室内的温度达到该非冷冻间室的设定温度时,若所述冷冻间室内的间室温度高于所述冷冻间室的设定温度,则控制所述电磁阀切换为所述冷冻间室制冷的状态,并将所述压缩机的运行频率恢复至用于所述冷冻间室制冷的预设运行频率。
可选地,当所述间室湿度是否小于所述预设最低湿度阈值时,所述压缩机的运行频率处于所述压缩机的最低运行频率和所述压缩机在所述冷藏冷冻装置处于冷冻间室制冷状态时的设定运行频率之间。
可选地,所述至少一个非冷冻间室包括冷藏间室,所述至少一个非冷冻支路包括冷藏支路,所述非冷冻毛细管包括冷藏毛细管,所述非冷冻蒸发器包括冷藏蒸发器;且/或
所述至少一个非冷冻间室包括变温间室,所述至少一个非冷冻支路包括变温支路,所述非冷冻毛细管包括变温毛细管,所述非冷冻蒸发器包括变温蒸发器。
根据本发明的第二方面,本发明还提供一种冷藏冷冻装置,包括:
箱体,所述箱体内限定有冷冻间室和至少一个非冷冻间室;
制冷系统,包括依次串联成回路的压缩机、冷凝器、电磁阀、冷冻毛细管和冷冻蒸发器,所述冷冻毛细管的两端并联有用于分别为所述至少一个非冷冻间室提供冷量的至少一个非冷冻支路,每个所述非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器;以及
控制装置,包括处理器和存储器,所述存储器内存储有机器可执行程序,并且所述机器可执行程序被所述处理器执行时用于实现根据上述任一方案所述的控制方法。
可选地,所述冷藏冷冻装置还包括:
冷冻风机,用于在所述冷冻间室制冷时促使所述冷冻蒸发器产生的冷却气流流向所述冷冻间室,且配置成在所述冷冻间室内的间室湿度小于预设最低湿度阈值时启动、在所述间室湿度大于等于所述预设最低湿度阈值时保持关闭状态。
本发明的冷藏冷冻装置在非冷冻间室制冷期间,首先获取冷冻间室内的间室湿度,只有在冷冻间室内的间室湿度小于预设最低湿度阈值时才降低压缩机的运行频率以提高冷冻蒸发器的蒸发器温度,在满足非冷冻间室制冷需求的情况下使得冷冻蒸发器的蒸发器温度高于冷冻间室内的间室温度。这是 因为,申请人认识到,冷冻蒸发器与任一非冷冻蒸发器串联,在非冷冻间室制冷期间,制冷剂流经非冷冻蒸发器后再流经冷冻蒸发器,制冷剂流经非冷冻蒸发器时会吸收外部热量,由此流出非冷冻蒸发器的制冷剂温度高于非冷冻蒸发器处的制冷剂温度,当吸收热量后的制冷剂流经冷冻蒸发器时,冷冻蒸发器的温度有可能已经接近或高于冷冻间室内的温度。此时,不需要进行任何的调节即可使得通过门封进入冷冻间室内的外界水汽以及冷冻间室内的水分(例如食材挥发的水分)在温度更低的冷冻间室内凝结而不是凝结在冷冻蒸发器处。这样,既提高了冷冻间室内的水分含量从而提高了冷冻间室内的湿度,又避免了直接调节压缩机的运行频率而影响到非冷冻间室的制冷,方案设计更加合理。
进一步地,冷藏冷冻装置还包括用于在冷冻间室制冷时促使冷冻蒸发器产生的冷却气流流向冷冻间室的冷冻风机。现有技术中,在非冷冻间室制冷时,冷冻风机通常是停止的。本发明将冷冻风机设置成在冷冻间室内的间室湿度小于预设最低湿度阈值时运行、在冷冻间室内的间室湿度大于等于预设最低湿度阈值时停止。也就是说,只有在冷冻间室内的间室湿度小于预设最低湿度阈值时才启动冷冻风机,促使冷冻蒸发器表面的部分结霜升华形成的水汽进入温度更低的冷冻间室,以提高冷冻间室的加湿速率。在冷冻间室内的间室湿度大于等于预设最低湿度阈值时,不需要在对间室湿度进行调节,此时冷冻风机停止可以避免将冷冻蒸发器处温度稍高的气流吹入冷冻间室导致冷冻间室的温度过度升高,方案设计更加合理。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图;
图2是根据本发明一个实施例的冷藏冷冻装置的制冷系统的示意性结构框图;
图3是根据本发明一个具体实施例的冷藏冷冻装置的控制方法的示意性 流程图;
图4是根据本发明另一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图;
图5是根据本发明又一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图;
图6是根据本发明另一个实施例的制冷系统的示意性结构框图;
图7是根据本发明又一个实施例的制冷系统的示意性结构框图;
图8是根据本发明一个实施例的冷藏冷冻装置的示意性结构框图。
本发明首先提供一种冷藏冷冻装置的控制方法,图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图,图2是根据本发明一个实施例的冷藏冷冻装置的制冷系统的示意性结构框图。
参见图1和图2,冷藏冷冻装置1包括箱体10和制冷系统20,箱体10内限定有冷冻间室11和至少一个非冷冻间室。可以理解的是,冷冻间室11为用作冷冻的储物间室,非冷冻间室为用作非冷冻的储物间室,例如非冷冻间室可以为用作冷藏或变温的储物间室。通常情况下,非冷冻间室内的温度高于冷冻间室11内的温度。
制冷系统20包括依次串联成回路的压缩机21、冷凝器22、电磁阀23、冷冻毛细管24和冷冻蒸发器25,冷冻毛细管24的两端并联有用于分别为上述至少一个非冷冻间室提供冷量的至少一个非冷冻支路,每个非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器。需要说明的是,本发明所说的串联、并联分别指的是制冷剂流路在物理上的串联、并联,而不是电路结构的串联、并联。
当冷藏冷冻装置1处于非冷冻间室制冷的状态时,电磁阀23的状态设置成连通冷凝器22和该非冷冻间室对应的非冷冻支路,此时,从压缩机21流出的制冷剂依次经过冷凝器22、电磁阀23、非冷冻支路的非冷冻蒸发器和非冷冻毛细管、冷冻蒸发器25,最后返回到压缩机21。当冷藏冷冻装置1处于冷冻间室制冷的状态时,电磁阀23的状态设置成连通冷凝器22和冷冻毛细管24,此时,从压缩机21流出的制冷剂依次经过冷凝器22、电磁阀23、冷冻毛细管24和冷冻蒸发器25,最后返回到压缩机21。
申请人认识到,冷冻间室11不是一个绝对封闭的间室。外界携带水分的空气会通过冷冻间室11的门封进入冷冻间室11内;冷冻间室11内部的尚未冻结的食材会挥发出一定的水分;在冷冻间室11内的食材冻结后,食材表面的水分会有少量升华;冷冻蒸发器25表面形成的凝霜也会有少量升华。也就是说,冷藏冷冻装置1内原本就具有多种能够用作对冷冻间室11进行保湿或加湿的水分来源。若能够将这些水分有效地用作对冷冻间室11进行保湿或加湿,那么就完全不需要设置任何其他的加湿装置。
申请人进一步认识到,对于风冷式的冷藏冷冻装置1来说,其储物间室内很少产生凝霜,凝霜基本产生在蒸发器上。这是因为蒸发器的温度普遍比储物间室的温度低。也就是说,水汽通常会在温度更低的位置聚集、凝结。那么,如果冷冻间室11内的间室温度比冷冻蒸发器25处的蒸发器温度低,水汽就会聚集在冷冻间室11内,就可以有效地对冷冻间室11进行保湿或提高冷冻间室内的湿度。
为此,本发明特别提出了一种冷藏冷冻装置的控制方法,该控制方法包括:
当冷藏冷冻装置1处于任一非冷冻间室制冷的状态时,获取冷冻间室11内的间室湿度;以及
若冷冻间室11内的间室湿度小于预设最低湿度阈值,则降低压缩机21的运行频率,以使得冷冻蒸发器25的蒸发器温度高于冷冻间室11内的间室温度;若冷冻间室11内的间室湿度大于等于上述预设最低湿度阈值,则保持压缩机21的运行频率不变。
本发明的冷藏冷冻装置1在非冷冻间室制冷期间,首先获取冷冻间室11内的间室湿度,只有在冷冻间室11内的间室湿度小于预设最低湿度阈值时才降低压缩机21的运行频率以提高冷冻蒸发器25的蒸发器温度,在满足非冷冻间室制冷需求的情况下使得冷冻蒸发器25的蒸发器温度高于冷冻间室11内的间室温度。这是因为,申请人认识到,冷冻蒸发器25与任一非冷冻蒸发器串联,在非冷冻间室制冷期间,制冷剂流经非冷冻蒸发器后再流经冷冻蒸发器25,制冷剂流经非冷冻蒸发器时会吸收外部热量,由此流出非冷冻蒸发器的制冷剂温度高于非冷冻蒸发器处的制冷剂温度,当吸收热量后的制冷剂流经冷冻蒸发器时,冷冻蒸发器25的温度有可能已经接近或高于冷冻间室11内的温度。此时,不需要进行任何的调节即可使得通过门封进入冷 冻间室内的外界水汽以及冷冻间室内的水分(例如食材挥发的水分、冷冻食材表面升华的水分等)在温度更低的冷冻间室11内凝结而不是凝结在冷冻蒸发器25处。这样,既提高了冷冻间室11内的水分含量从而提高了冷冻间室11内的湿度,又避免了直接调节压缩机21的运行频率而影响到非冷冻间室的制冷,方案设计更加合理。
并且,本发明在冷藏冷冻装置1原有结构的基础上通过对压缩机21运行频率的控制实现冷冻间室11加湿保湿的效果,不需要增加任何辅助结构,因此,不会对冷藏冷冻装置1的原有结构及储物能力产生任何影响,便于在实际中应用。本发明实现冷冻间室11加湿保湿的方案与现有技术所采用的方案完全不同,设计思路非常新颖,且效果显著,实际应用的前景较好。
图3是根据本发明一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图,参见图3,本发明的控制方法包括:
步骤S10,获取冷藏冷冻装置1当前所处的状态;
步骤S20,判断冷藏冷冻装置1是否处于非冷冻间室制冷状态;若是,则转步骤S30,若否,则返回步骤S10;以及
步骤S30,获取冷冻间室11内的间室湿度;
步骤S40,判断冷冻间室11内的间室湿度是否小于预设最低湿度阈值,若是,则转步骤S50,若否,则转步骤S60;
步骤S50,降低压缩机21的运行频率,以使得冷冻蒸发器25的蒸发器温度高于冷冻间室11内的间室温度;
步骤S60,保持压缩机21的运行频率不变。
在一些实施例中,冷藏冷冻装置1还包括用于在冷冻间室11制冷时促使冷冻蒸发器25产生的冷却气流流向冷冻间室11的冷冻风机30。在这些实施例中,本发明的控制方法还包括:
若冷冻间室11内的间室湿度小于上述预设最低湿度阈值,则控制冷冻风机30处于运行状态;且
若冷冻间室11内的间室湿度大于等于上述预设最低湿度阈值,则控制冷冻风机30处于停止状态。
现有技术中,在非冷冻间室制冷时,冷冻风机30通常是停止的。本发明将冷冻风机30设置成在冷冻间室11内的间室湿度小于预设最低湿度阈值时运行、在冷冻间室11内的间室湿度大于等于预设最低湿度阈值时停止。 也就是说,只有在冷冻间室11内的间室湿度小于预设最低湿度阈值时才启动冷冻风机30,促使冷冻蒸发器25表面的部分结霜升华形成的水汽进入温度更低的冷冻间室11,以提高冷冻间室11的加湿速率。也就是说,可从多个方面着手同时提高冷冻间室11内的水分含量,从而效率较高地提高了冷冻间室11内的湿度。
图4是根据本发明另一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图,参见图4,本发明的控制方法包括:
步骤S10,获取冷藏冷冻装置1当前所处的状态;
步骤S20,判断冷藏冷冻装置1是否处于非冷冻间室制冷状态;若是,则转步骤S30,若否,则返回步骤S10;以及
步骤S30,获取冷冻间室11内的间室湿度;
步骤S40,判断冷冻间室11内的间室湿度是否小于预设最低湿度阈值,若是,则转步骤S50’,若否,则转步骤S60’;
步骤S50’,降低压缩机21的运行频率,以使得冷冻蒸发器25的蒸发器温度高于冷冻间室11内的间室温度,并控制冷冻风机30处于运行状态;
步骤S60’,保持压缩机21的运行频率不变,并控制冷冻风机30处于停止状态。
可以理解的是,在步骤S50’中,可以先降低压缩机21的运行频率之后再控制冷冻风机30运行,也可以在降低压缩机21运行频率的同时控制冷冻风机30运行。
图5是根据本发明又一个具体实施例的冷藏冷冻装置的控制方法的示意性流程图,参见图5,在降低压缩机21的运行频率和启动冷冻风机30之后,本发明的控制方法还包括:
步骤S70,再次获取冷冻间室11内的间室湿度;
步骤S80,判断再次获取的冷冻间室11内的间室湿度是否大于预设最高湿度阈值;若是,则转步骤S90;若否,则返回步骤S40,以继续判断再次获取的冷冻间室11内的间室湿度是否小于预设最低湿度阈值;
步骤S90,保持压缩机21的运行频率不变,并停止冷冻风机30,直至处于制冷状态的非冷冻间室内的温度达到其设定温度。
也就是说,在非冷冻间室制冷期间,当冷冻间室11内的间室湿度大于预设最高湿度阈值而停止冷冻风机30后,冷冻风机30不再启动,压缩机的 运行频率不再改变。当处于制冷状态的非冷冻间室内的温度达到其设定温度后,若冷冻间室11需要制冷,再启动冷冻风机30。当处于制冷状态的非冷冻间室内的温度达到其设定温度后,压缩机21的运行频率可以根据冷藏冷冻装置1的状态灵活调整,例如,当任何间室都不需要制冷时,压缩机21停止运行;当任一间室需要制冷时,压缩机21以预设的运行频率运行。
在降低压缩机21的运行频率,并运行冷冻风机30后,冷冻间室11内的湿度逐渐上升。在冷冻间室11内的间室湿度大于等于预设最低湿度阈值时,冷冻间室11内的间室湿度已经适宜于食材的优质保存,不需要再对冷冻间室11进行快速加湿,此时冷冻风机30停止可以避免将冷冻蒸发器25处温度稍高的气流继续吹入冷冻间室11导致冷冻间室11的温度过度升高,可见,本发明的方案设计更加合理。
并且,在冷冻间室11内的间室湿度大于等于预设最低湿度阈值时,压缩机21的运行频率保持不变,即压缩机21仍然以降低后的运行频率运行,以确保冷冻蒸发器25的蒸发器温度高于冷冻间室11内的间室温度。此时通过门封进入冷冻间室11内的外界水汽以及冷冻间室11内的水分仍然会在温度更低的冷冻间室11内凝结,冷冻间室11内的湿度缓慢增加或持续保持,确保了冷冻间室11内始终具有较高的湿度,提高了食材的保存效果。
在一些实施例中,上述预设最高湿度阈值可以为80%~100%之间的任一相对湿度值。例如,该预设最高湿度阈值可以为80%、85%、90%、95%或100%。在此范围内,冷冻间室11内的湿度尚未饱和、接近饱和或刚好饱和,冷冻间室11内的水汽不会或者不易凝结,保湿效果或加湿效果较好,食材的保存效果较好。此时不需要再继续对冷冻间室11内高效地加湿,因此,此时停止冷冻风机30可以通过减缓冷冻间室11内的湿度提升的速度来降低对冷冻间室11内温度的影响,既不影响冷冻间室11内食材的保存效果,又不会对冷冻间室11内的冷冻效果产生较大影响。
若该预设最高湿度阈值过大,会导致冷冻风机30持续不断的运行,不但不会继续提高保湿效果或加湿效果,而且还会严重影响冷冻间室11内的温度。若该预设最高湿度阈值过小,会导致冷冻间室11内的湿度不满足需求时就停止了冷冻风机30,导致冷冻间室11加湿效率较低。
在一些实施例中,上述预设最低湿度阈值为45%~55%之间的任一相对湿度值。例如,该预设最低湿度阈值可以为45%、47%、50%、53%或55%。 在此范围内,冷冻间室11内的湿度尚未饱和,但也勉强不对食材品质产生影响。若该预设最低湿度阈值过大,则压缩机21很容易达到降低运行频率的条件,导致压缩机21以正常频率运行的时间过短从而严重降低了非冷冻间室11的制冷效率。若该预设最低湿度阈值过小,可能会在冷冻间室11内的间室湿度非常低时仍然达不到降低压缩机21运行频率的条件,导致不能够对冷冻间室11进行实质的、长期的保湿加湿操作。
在一些实施例中,本发明的控制方法还包括:
当处于制冷状态的非冷冻间室内的温度达到该非冷冻间室的设定温度时,若冷冻间室11内的间室温度高于冷冻间室11的设定温度,则控制电磁阀23切换为冷冻间室11制冷的状态,并将压缩机21的运行频率恢复至用于冷冻间室11制冷的预设运行频率,以使得冷冻间室11较快地达到设定温度。
由于冷冻风机30在非冷冻间室制冷期间运行的目的是促使冷冻蒸发器25上的部分凝霜升华形成的水汽较快地进入冷冻间室11,而不是向冷冻间室11输送气流,因此,冷冻风机30的转速不需要较大。
为此,在一些实施例中,当冷冻间室11内的间室湿度小于预设最低湿度阈值时,冷冻风机30的转速小于冷冻风机30在冷藏冷冻装置1处于冷冻间室制冷状态时的设定转速。这样既可以将冷冻蒸发器25上的部分凝霜升华形成的水汽较快地送入冷冻间室11,又可以避免过多的温度相对较高的气流进入冷冻间室11导致冷冻间室11内温度回升较多而影响冷冻间室11的冷冻效果。
由于在非冷冻间室制冷期间,需要满足非冷冻间室的制冷需求。因此,压缩机21的运行频率不能够太低。
在一些实施例中,当冷冻间室11内的间室湿度是否小于预设最低湿度阈值时,压缩机21的运行频率处于压缩机21的最低运行频率和压缩机21在冷藏冷冻装置1处于冷冻间室制冷状态时的设定运行频率之间。由此,既可以满足非冷冻间室的制冷需求,又可以使得冷冻蒸发器25的蒸发器温度适当地高于冷冻间室11内的间室温度,从而实现对冷冻间室11进行保湿或加湿的目的。
在一些实施例中,当冷冻间室11内的间室湿度是否小于预设最低湿度阈值时,压缩机21的运行频率比压缩机21在冷藏冷冻装置1处于冷冻间室 制冷状态时的设定运行频率低3~17赫兹。也就是说,只要适当地降低压缩机21的运行频率,使得冷冻蒸发器25的蒸发器温度稍微高于冷冻间室11内的温度即可,最大化地确保了非冷冻间室的制冷效率和制冷效果,且最大可能地避免了冷冻间室11内的温度回升过多。
例如,当冷冻间室11内的间室湿度是否小于预设最低湿度阈值时,压缩机21的运行频率可以比冷冻间室制冷期间压缩机21的运行频率低3赫兹、5赫兹、7赫兹、9赫兹、11赫兹、13赫兹、15赫兹或17赫兹。
优选地,当冷冻间室11内的间室湿度是否小于预设最低湿度阈值时,压缩机21的运行频率比压缩机21的上述设定运行频率低8~12赫兹。由此,非冷冻间室的制冷效率和制冷效果、以及冷冻间室11内的保湿加湿效果都较佳。
在一些实施例中,上述至少一个非冷冻间室可包括冷藏间室12,上述至少一个非冷冻支路可包括冷藏支路201,上述非冷冻毛细管可包括冷藏毛细管26,上述非冷冻蒸发器可包括冷藏蒸发器27。在冷藏间室12制冷期间,通过降低压缩机21运行频率的方式对冷冻间室11进行保湿或加湿。
图6是根据本发明另一个实施例的制冷系统的示意性结构框图。在另一些实施例中,上述至少一个非冷冻间室可包括变温间室13,上述至少一个非冷冻支路可包括变温支路202,上述非冷冻毛细管可包括变温毛细管28,上述非冷冻蒸发器可包括变温蒸发器29。在变温间室13制冷期间,通过降低压缩机21运行频率的方式对冷冻间室11进行保湿或加湿。
图7是根据本发明又一个实施例的制冷系统的示意性结构框图。在又一些实施例中,非冷冻间室的数量可以为两个,分别为冷藏间室12和变温间室13。非冷冻支路的数量为两个,分别为冷藏支路201和变温支路202。非冷冻毛细管的数量为两个,分别为冷藏毛细管26和变温毛细管28。非冷冻蒸发器的数量为两个,分别为冷藏蒸发器27和变温蒸发器29。在冷藏间室12和变温间室13中任一间室制冷期间,通过降低压缩机21运行频率的方式对冷冻间室11进行保湿或加湿。
本发明还提供一种冷藏冷冻装置,图8是根据本发明一个实施例的冷藏冷冻装置的示意性结构框图。参见图1、图2和图8,本发明的冷藏冷冻装置1包括箱体10、制冷系统20和控制装置40。
箱体10内限定有冷冻间室11和至少一个非冷冻间室。
制冷系统20包括依次串联成回路的压缩机21、冷凝器22、电磁阀23、冷冻毛细管24和冷冻蒸发器25,冷冻毛细管24的两端并联有用于分别为上述至少一个非冷冻间室提供冷量的至少一个非冷冻支路,每个非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器。
控制装置40包括处理器41和存储器42,存储器42内存储有机器可执行程序43,并且机器可执行程序43被处理器41执行时用于实现上述任一实施例所描述的控制方法。
本发明的冷藏冷冻装置1只有在冷冻间室11内的间室湿度小于预设最低湿度阈值时才降低压缩机21的运行频率,既提高了冷冻间室11内的水分含量从而提高了冷冻间室11内的湿度,又避免了直接调节压缩机21的运行频率而影响到非冷冻间室的制冷,方案设计更加合理。
具体地,处理器41可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器41通过通信接口收发数据。存储器44用于存储处理器41执行的程序。存储器44是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器的组合。上述机器可执行程序43可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载到计算机或外部存储设备。
在一些实施例中,冷藏冷冻装置1还包括冷冻风机30。冷冻风机30用于在冷冻间室11制冷时促使冷冻蒸发器25产生的冷却气流流向冷冻间室11,且配置成在冷冻间室11内的间室湿度小于预设最低湿度阈值时启动、在冷冻间室11内的间室湿度大于等于预设最低湿度阈值时保持关闭状态。由此,可在冷冻间室11内的间室湿度较低时通过冷冻风机30促使冷冻蒸发器25处的水分更快地进入冷冻间室11,提高了冷冻间室11的加湿效率。
具体地,冷冻风机30与控制装置40电连接,以在控制装置40的控制下运行。
本领域技术人员应理解,本发明的冷藏冷冻装置1不但包括冰箱,而且还包括冷柜、冰柜或其他至少具有冷冻功能的冷藏冷冻装置。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括箱体和制冷系统,所述箱体内限定有冷冻间室和至少一个非冷冻间室,所述制冷系统包括依次串联成回路的压缩机、冷凝器、电磁阀、冷冻毛细管和冷冻蒸发器,所述冷冻毛细管的两端并联有用于分别为所述至少一个非冷冻间室提供冷量的至少一个非冷冻支路,每个所述非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器;所述控制方法包括:当所述冷藏冷冻装置处于任一非冷冻间室制冷的状态时,获取所述冷冻间室内的间室湿度;以及若所述间室湿度小于预设最低湿度阈值,则降低所述压缩机的运行频率,以使得所述冷冻蒸发器的蒸发器温度高于所述冷冻间室内的间室温度;若所述间室湿度大于等于所述预设最低湿度阈值则保持所述压缩机的运行频率不变。
- 根据权利要求1所述的控制方法,所述冷藏冷冻装置还包括用于在所述冷冻间室制冷时促使所述冷冻蒸发器产生的冷却气流流向所述冷冻间室的冷冻风机;且所述控制方法还包括:若所述间室湿度小于所述预设最低湿度阈值,则控制所述冷冻风机处于运行状态;若所述间室湿度大于等于所述预设最低湿度阈值,则控制所述冷冻风机处于停止状态。
- 根据权利要求2所述的控制方法,其中当所述间室湿度小于预设最低湿度阈值时,所述冷冻风机的转速小于所述冷冻风机在所述冷藏冷冻装置处于冷冻间室制冷状态时的设定转速。
- 根据权利要求2或3所述的控制方法,在降低所述压缩机的运行频率和启动所述冷冻风机之后,所述控制方法还包括:再次获取所述冷冻间室内的间室湿度;判断再次获取的所述间室湿度是否大于预设最高湿度阈值;若是,则保持所述压缩机的运行频率不变,并停止所述冷冻风机,直至处于制冷状态的非冷冻间室内的温度达到其设定温度;若否,则返回继续判 断所述间室湿度是否小于预设最低湿度阈值。
- 根据权利要求4所述的控制方法,其中所述预设最低湿度阈值为45%~55%之间的任一相对湿度值;且/或所述预设最高湿度阈值为80%~100%之间的任一相对湿度值。
- 根据权利要求1-5中任一项所述的控制方法,还包括:当处于制冷状态的非冷冻间室内的温度达到该非冷冻间室的设定温度时,若所述冷冻间室内的间室温度高于所述冷冻间室的设定温度,则控制所述电磁阀切换为所述冷冻间室制冷的状态,并将所述压缩机的运行频率恢复至用于所述冷冻间室制冷的预设运行频率。
- 根据权利要求1-6中任一项所述的控制方法,其中当所述间室湿度是否小于所述预设最低湿度阈值时,所述压缩机的运行频率处于所述压缩机的最低运行频率和所述压缩机在所述冷藏冷冻装置处于冷冻间室制冷状态时的设定运行频率之间。
- 根据权利要求1-7中任一项所述的控制方法,其中所述至少一个非冷冻间室包括冷藏间室,所述至少一个非冷冻支路包括冷藏支路,所述非冷冻毛细管包括冷藏毛细管,所述非冷冻蒸发器包括冷藏蒸发器;且/或所述至少一个非冷冻间室包括变温间室,所述至少一个非冷冻支路包括变温支路,所述非冷冻毛细管包括变温毛细管,所述非冷冻蒸发器包括变温蒸发器。
- 一种冷藏冷冻装置,包括:箱体,所述箱体内限定有冷冻间室和至少一个非冷冻间室;制冷系统,包括依次串联成回路的压缩机、冷凝器、电磁阀、冷冻毛细管和冷冻蒸发器,所述冷冻毛细管的两端并联有用于分别为所述至少一个非冷冻间室提供冷量的至少一个非冷冻支路,每个所述非冷冻支路均包括串联的非冷冻毛细管和非冷冻蒸发器;以及控制装置,包括处理器和存储器,所述存储器内存储有机器可执行程序,并且所述机器可执行程序被所述处理器执行时用于实现根据权利要求1-8中 任一所述的控制方法。
- 根据权利要求9所述的冷藏冷冻装置,还包括:冷冻风机,用于在所述冷冻间室制冷时促使所述冷冻蒸发器产生的冷却气流流向所述冷冻间室,且配置成在所述冷冻间室内的间室湿度小于预设最低湿度阈值时启动、在所述间室湿度大于等于所述预设最低湿度阈值时保持关闭状态。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110686603.1 | 2021-06-21 | ||
CN202110686603.1A CN115574530A (zh) | 2021-06-21 | 2021-06-21 | 冷藏冷冻装置的控制方法及冷藏冷冻装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267772A1 true WO2022267772A1 (zh) | 2022-12-29 |
Family
ID=84544080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/093870 WO2022267772A1 (zh) | 2021-06-21 | 2022-05-19 | 冷藏冷冻装置的控制方法及冷藏冷冻装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115574530A (zh) |
WO (1) | WO2022267772A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047826A (ja) * | 1996-08-06 | 1998-02-20 | Matsushita Refrig Co Ltd | 冷凍冷蔵庫 |
JP2004132618A (ja) * | 2002-10-10 | 2004-04-30 | Toshiba Corp | 冷蔵庫 |
CN105222511A (zh) * | 2015-10-14 | 2016-01-06 | 合肥美菱股份有限公司 | 一种风冷冰箱的保湿控制方法及其应用 |
CN108955039A (zh) * | 2018-09-14 | 2018-12-07 | 长虹美菱股份有限公司 | 一种带有冰箱专区的冰箱及冰箱专区的湿度控制方法 |
CN109140870A (zh) * | 2018-08-20 | 2019-01-04 | 长虹美菱股份有限公司 | 一种具有低湿度精确调节功能的风冷冰箱及其控制方法 |
-
2021
- 2021-06-21 CN CN202110686603.1A patent/CN115574530A/zh active Pending
-
2022
- 2022-05-19 WO PCT/CN2022/093870 patent/WO2022267772A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047826A (ja) * | 1996-08-06 | 1998-02-20 | Matsushita Refrig Co Ltd | 冷凍冷蔵庫 |
JP2004132618A (ja) * | 2002-10-10 | 2004-04-30 | Toshiba Corp | 冷蔵庫 |
CN105222511A (zh) * | 2015-10-14 | 2016-01-06 | 合肥美菱股份有限公司 | 一种风冷冰箱的保湿控制方法及其应用 |
CN109140870A (zh) * | 2018-08-20 | 2019-01-04 | 长虹美菱股份有限公司 | 一种具有低湿度精确调节功能的风冷冰箱及其控制方法 |
CN108955039A (zh) * | 2018-09-14 | 2018-12-07 | 长虹美菱股份有限公司 | 一种带有冰箱专区的冰箱及冰箱专区的湿度控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115574530A (zh) | 2023-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110440502B (zh) | 一种风冷冰箱化霜增湿装置及其控制方法 | |
JP2009121803A (ja) | 冷蔵庫 | |
WO2023098247A1 (zh) | 制冷设备的湿度控制方法 | |
WO2022267772A1 (zh) | 冷藏冷冻装置的控制方法及冷藏冷冻装置 | |
WO2022267774A1 (zh) | 冷藏冷冻装置的控制方法、冷藏冷冻装置 | |
WO2022267775A1 (zh) | 冷藏冷冻装置的控制方法及冷藏冷冻装置 | |
WO2022267776A1 (zh) | 冷藏冷冻装置的控制方法及冷藏冷冻装置 | |
WO2022267773A1 (zh) | 冷藏冷冻装置的控制方法及冷藏冷冻装置 | |
JPH11211325A (ja) | 冷蔵庫 | |
WO2023138318A1 (zh) | 冷藏冷冻装置及其控制方法 | |
WO2023142952A1 (zh) | 冷藏冷冻装置及其控制方法 | |
WO2023138377A1 (zh) | 冷藏冷冻装置及其控制方法 | |
WO2023131001A1 (zh) | 冷藏冷冻装置及其控制方法 | |
WO2023134541A1 (zh) | 冷藏冷冻装置及其控制方法 | |
CN116538735A (zh) | 冷藏冷冻装置及其控制方法 | |
CN115031469A (zh) | 一种冰箱及其化霜控制方法 | |
WO2023138319A1 (zh) | 冷藏冷冻装置及其控制方法 | |
CN116499174A (zh) | 冷藏冷冻装置及其控制方法 | |
CN116499172A (zh) | 冷藏冷冻装置及其控制方法 | |
CN116481230A (zh) | 冷藏冷冻装置及其控制方法 | |
CN116538736A (zh) | 冷藏冷冻装置及其控制方法 | |
CN116481231A (zh) | 冷藏冷冻装置及其控制方法 | |
KR100759047B1 (ko) | 냉장고 기계실의 방열 및 제상수 증발 시스템 및 그제어방법 | |
CN116481232A (zh) | 冷藏冷冻装置及其控制方法 | |
WO2023138312A1 (zh) | 冷藏冷冻装置及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22827270 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22827270 Country of ref document: EP Kind code of ref document: A1 |