CN116445793A - 一种长期组织稳定的低密度中熵高温合金及其制备方法与应用 - Google Patents

一种长期组织稳定的低密度中熵高温合金及其制备方法与应用 Download PDF

Info

Publication number
CN116445793A
CN116445793A CN202310435130.7A CN202310435130A CN116445793A CN 116445793 A CN116445793 A CN 116445793A CN 202310435130 A CN202310435130 A CN 202310435130A CN 116445793 A CN116445793 A CN 116445793A
Authority
CN
China
Prior art keywords
percent
alloy
entropy
temperature
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310435130.7A
Other languages
English (en)
Inventor
安宁
薛佳宁
赵文倩
邓睿
张志伟
安杨
李崇巍
郭宇威
李振瑞
李占青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Beiye Functional Materials Corp
Original Assignee
Beijing Beiye Functional Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Beiye Functional Materials Corp filed Critical Beijing Beiye Functional Materials Corp
Priority to CN202310435130.7A priority Critical patent/CN116445793A/zh
Publication of CN116445793A publication Critical patent/CN116445793A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

本发明实施例公开了一种长期组织稳定的低密度中熵高温合金及其制备方法与应用。以重量百分含量计,所述中熵高温合金的组成为:C:0.02~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.2~1.0%,Ti:0.8~2.2%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.001~0.20%,及不可避免的杂质。该合金具有良好的长期组织稳定性、低的密度、优异的中温强塑性等,同时易加工成型,满足航空发动机和燃气轮机热端部件的使用需求。

Description

一种长期组织稳定的低密度中熵高温合金及其制备方法与 应用
技术领域
本发明实施例涉及冶金技术领域,具体涉及一种长期组织稳定的低密度中熵高温合金及其制备方法与应用。
背景技术
CoCrFeMnNi是目前研究最广泛的高熵合金之一,它是由等摩尔比的Co、Cr、Fe、Ni和Mn五种元素混合而成,具有FCC面心立方结构;该高熵合金展示出非常强的高温强度和塑性,另外该合金从室温降低到零下196℃时,仍具有200MPa·m1/2以上的断裂韧性值,同时拉伸强度从763MPa升高到1280MPa,延伸率从50%增加到70%。虽然CoCrFeMnNi高熵合金低温下的韧性较好,但普遍强韧性匹配较差,例如,FeCoNiCrMn高熵合金的拉伸塑形可达60%,但其抗拉强度却低于500MPa,正是由于这些原因,限制了高熵合金的发展和工程应用。
目前有研究将CoCrFeMnNi高熵合金中的Mn和Fe元素剔除,剩余的CrCoNi等摩尔比中熵合金,仍然是具有FCC结构的单相固溶体。同时三元CrCoNi中熵合金相比于五元CoCrFeMnNi高熵合金具有更高的断裂韧性。因此近两年来三元的中熵合金成为了开发应用和研究的热点。
CrCoNi中熵合金是单一面心立方结构(FCC)固溶体,具有比FeCoNiCrMn高熵合金更优异的强度和塑性。但是,目前该中熵合金强度仍然偏低,需要进一步优化。该合金成分是Cr、Co和Ni等高温合金中常用元素,可以作为高温合金的基体,在其基础上通过添加其他合金化元素和制备工艺控制是否可以研制出兼具高温合金和中熵合金特性的长期组织稳定的低密度新型合金,推动其在工程上的应用是目前亟需解决的问题。
发明内容
本发明是基于发明人对以下事实和问题的发现和认识做出的:
中熵高温合金指的是由3种主要元素组成,组成元素具有相等或近似相等的原子比,并且在600℃以上具有较高的强度和良好的持久性能、抗腐蚀能力以及良好的长期组织稳定性等特点的合金。虽然现有的中熵高温合金的室温性能较佳,但随着各行业对耐高温合金的耐高温要求越来越高,现有技术中中熵高温合金无法满足使用需求,需要制备耐更高温度的长期组织稳定的、低密度中熵高温合金来满足使用需求。为此,本发明提供一种长期组织稳定的低密度中熵高温合金及其制备方法与应用,解决现有中熵合金面临的中温强塑性差、长期组织不稳定、持久性能差等技术问题。
本发明提供的一种长期组织稳定的低密度中熵高温合金,以重量百分含量计,所述中熵高温合金的组成为:C:0.02~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.2~1.0%,Ti:0.8~2.2%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.001~0.20%,及不可避免的杂质。
本发明实施例的长期组织稳定的低密度中熵高温合金带来的优点和技术效果:
1、本发明实施例中,Cr、Co和Ni以等摩尔原子百分比添加,保持了较高的熵值,起着强烈的固溶强化效果;另外通过添加Al和Ti二种γ’相形成元素,使合金在800~850℃具有稳定存在的纳米级γ’相起沉淀强化作用,再通过合理搭配C和B晶界强化元素,显著提高了该合金的中温强塑性和长时持久性能。
2、本发明实施例中,加入了Nb元素,Nb在中熵高温合金中不仅是固溶强化元素,还是γ’强化相形成元素,随Nb含量的增加,γ’数量增加,高温强度和持久性能提高。但过多的γ’会恶化焊接性能和损害加工性能,另外,Nb还会与C结合形成MC型碳化物,在高温时阻碍晶界长大和晶界滑动,起到提高高温力学性能的作用,但Nb同时会形成大颗粒MC型碳化物,对合金的力学性能反而不利,另外,过多的Nb会损害焊接性能,使得合金的应变时效开裂敏感性增强,表现为容易出现焊接裂纹缺陷,综合考虑Nb的作用,在本发明实施例中添加0.4~1.7%Nb。
3、本发明实施例中,不加入W、Mo和Ta元素,W、Mo和Ta在合金中主要起固溶强化作用,但W、Mo和Ta长期服役时会形成有害的η相、μ相、δ相等有害脆性TCP相,降低合金强度和韧性。此外,W、Mo和Ta的密度较大,比如W的密度高达19.25g/cm3,考虑到本发明实施例中的合金主要用在航空发动机和燃气轮机上,要求材料越轻越好,因此本发明实施例的合金中不添加W、Mo和Ta元素。
4、本发明实施例中,中熵高温合金具有较宽的热加工窗口400℃~460℃,合金锻造过程中表面裂纹少,塑性好,成材率高。通过控制Al、Ti和Nb元素的含量,在充分起到时效强化效果的同时,保证合金具有良好的加工性能,控制γ’相呈纳米颗粒弥散分布,并且在850℃高温稳定存在。
5、本发明实施例中,加入了Nd元素,Nd具有强的脱氧、脱硫能力,可净化钢液,延缓碳化物沿晶界析出和聚集长大,还能阻碍晶界裂纹的形成和扩展,并可削弱或消除杂质元素在晶界的偏聚,从而强化晶界,起到提高合金高温持久寿命和抗蠕变能力的作用,Nd的特点是添加量很少就能明显提高合金高温性能,添加量过多时损害热加工性能,引起锻造裂纹,而且会形成大尺寸夹杂物,反而对合金的性能有害。因此,本发明实施例将Nd含量控制在0.001~0.20%范围内。
6、本发明实施例中,中熵高温合金通过Cr、Co、Nb等元素的固溶强化作用,Al、Ti和Nb元素的析出强化作用,以及C、B和Nd的晶界强化作用,750℃下抗拉强度582~697MPa,断后伸长率≥22%,密度≤8.17g/cm3,满足了先进航空发动机和燃气轮机的设计和使用的要求。
在一些实施例中,所述的Cr:Co:Ni的原子百分比为1:1:1。
在一些实施例中,所述Nd的重量百分比为0.004~0.15%。
在一些实施例中,所述Al、Ti、Nb和Nd的重量百分含量满足关系式0.2≤(Nb+Nd)/(Al+Ti)≤0.7。
在一些实施例中,所述Al、Ti、Nb和Nd的重量百分含量满足关系式0.22≤(Nb+Nd)/(Al+Ti)≤0.67。
在一些实施例中,所述的长期组织稳定的低密度中熵高温合金,所述中熵高温合金的组成为:C:0.04~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.4~0.8%,Ti:1.2~2.0%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.004~0.15%,及不可避免的杂质。
本发明实施例还提供了长期组织稳定的低密度中熵高温合金在航空发动机中的应用。
本发明实施例还提供了长期组织稳定的低密度中熵高温合金在燃气轮机中的应用。
本发明实施例还提供了一种长期组织稳定的低密度中熵高温合金的制备方法,包括以下步骤:
(1)将Co、Ni、Cr、Nb以及部分C原料置于真空度≤1.2Pa的环境中混合加热,排出附着在原料上的气体;
(2)在真空度≤0.5Pa环境中,加热所述原料至熔化状态,再升温至1550~1650℃,高温精炼20-35min,停止加热,使得熔化原料结膜;
(3)升高温度使得所述熔化原料破膜,加入Al、Ti、B、Nd和剩余部分C原料,混合均匀;
(4)将加入Al、Ti、B、Nd和剩余部分C原料的混合原料在1620~1650℃下精炼;
(5)对精炼后的原料,在1450~1550℃下进行浇注,获得扁坯;
(6)对所述扁坯精整、热轧、退火软化处理、再次精整、冷轧、中间热处理和切边,得到合金带材;
(7)将所述合金带材在750~800℃时效10~20h热处理,形成所述长期组织稳定的低密度中熵高温合金。
本发明实施例的长期组织稳定的低密度中熵高温合金制备方法带来的优点和技术效果:1、本发明实施例中,该制备方法制得的长期组织稳定的低密度中熵高温合金具有优异的中温强度性、持久寿命、长期组织稳定性以及无锻造、热轧和冷轧裂纹形成,满足了先进航空发动机和燃气轮机设计和使用的要求;2、本发明实施例中,合金成本低廉、制备工艺简单,降低了能源消耗,同时缩短了生产周期,提高了生产效率,适用于工业生产的推广应用。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明实施例的一种长期组织稳定的低密度中熵高温合金,所述中熵高温合金的组成为:C:0.02~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.2~1.0%,Ti:0.8~2.2%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.001~0.20%,及不可避免的杂质。
本发明实施例的低密度中熵高温合金带来的优点和技术效果:本发明实施例中,Cr、Co和Ni以等摩尔原子百分比添加,保持了较高的熵值,起着强烈的固溶强化效果;另外通过添加Al和Ti二种γ’相形成元素,使合金在800~850℃具有稳定存在的纳米级γ’相起沉淀强化作用,再通过合理搭配C和B晶界强化元素,显著提高了该合金的中温强塑性和长时持久性能。本发明实施例中,加入了Nb元素,Nb在中熵高温合金中不仅是固溶强化元素,还是γ’强化相形成元素,随Nb含量的增加,γ’数量增加,高温强度和持久性能提高。但过多的γ’会恶化焊接性能和损害加工性能,另外,Nb还会与C结合形成MC型碳化物,在高温时阻碍晶界长大和晶界滑动,起到提高高温力学性能的作用,但Nb同时会形成大颗粒MC型碳化物,对合金的力学性能反而不利,另外,过多的Nb会损害焊接性能,使得合金的应变时效开裂敏感性增强,表现为容易出现焊接裂纹缺陷,综合考虑Nb的作用,在本发明实施例中添加0.4~1.7%Nb。本发明实施例中,不加入W、Mo和Ta元素,W、Mo和Ta在合金中主要起固溶强化作用,但W、Mo和Ta长期服役时会形成有害的η相、μ相、δ相等有害脆性TCP相,降低合金强度和韧性。此外,W、Mo和Ta的密度较大,比如W的密度高达19.25g/cm3,考虑到本发明实施例中的合金主要用在航空发动机和燃气轮机上,要求材料越轻越好,因此本发明实施例的合金中不添加W、Mo和Ta元素。本发明实施例中,中熵高温合金具有较宽的热加工窗口400℃~460℃,合金锻造过程中表面裂纹少,塑性好,成材率高。通过控制Al、Ti和Nb元素的含量,在充分起到时效强化效果的同时,保证合金具有良好的加工性能,控制γ’相呈纳米颗粒弥散分布,并且在850℃高温稳定存在。本发明实施例中,加入了Nd元素,Nd具有强的脱氧、脱硫能力,可净化钢液,延缓碳化物沿晶界析出和聚集长大,还能阻碍晶界裂纹的形成和扩展,并可削弱或消除杂质元素在晶界的偏聚,从而强化晶界,起到提高合金高温持久寿命和抗蠕变能力的作用,Nd的特点是添加量很少就能明显提高合金高温性能,添加量过多时损害热加工性能,引起锻造裂纹,而且会形成大尺寸夹杂物,反而对合金的性能有害。因此,本发明实施例将Nd含量控制在0.004~0.15%范围内。本发明实施例中,中熵高温合金通过Cr、Co、Nb等元素的固溶强化作用,Al、Ti和Nb元素的析出强化作用,以及C、B和Nd的晶界强化作用,750℃下抗拉强度582~697MPa,断后伸长率≥22%,密度≤8.17g/cm3,满足了先进航空发动机和燃气轮机设计和使用的要求。
在一些实施例中,优选地,所述的长期组织稳定的低密度中熵高温合金Cr:Co:Ni的原子百分比为1:1:1。
在一些实施例中,优选地,所述的长期组织稳定的低密度中熵高温合金Nd的重量百分比为0.004~0.15%。
在一些实施例中,优选地,所述长期组织稳定的低密度中熵高温合金的Al、Ti、Nb和Nd的重量百分含量满足关系式0.2≤(Nb+Nd)/(Al+Ti)≤0.7。在上述关系式下能最大程度发挥Al、Ti、Nb和Nd的协同作用,制得的中熵高温合金具有更加优异的综合性能,能够满足先进航空发动机和燃气轮机设计和使用的要求。进一步优选地,所述Al、Ti、Nb和Nd的重量百分含量满足关系式0.22≤(Nb+Nd)/(Al+Ti)≤0.67。
本发明实施例中,优选地,所述长期组织稳定的低密度中熵高温合金,所述中熵高温合金的组成为:C:0.04~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.4~0.8%,Ti:1.2~2.0%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.004~0.15%,及不可避免的杂质。
本发明实施例还提供了长期组织稳定的低密度中熵高温合金在航空发动机中的应用。本发明实施例中的长期组织稳定的低密度中熵高温合金满足了先进航空发动机设计和使用的要求,能够应用在先进航空发动机的热端部件中。
本发明实施例还提供了长期组织稳定的低密度中熵高温合金在燃气轮机中的应用。本发明实施例中的长期组织稳定的低密度中熵高温合金满足了先进燃气轮机设计和使用的要求,能够应用在先进燃气轮机的热端部件中。
本发明实施例还提供了一种长期组织稳定的低密度中熵高温合金的制备方法,包括以下步骤:
(1)将Co、Ni、Cr、Nb以及部分C原料置于真空度≤1.2Pa的环境中混合加热,排出附着在原料上的气体;
(2)在真空度≤0.5Pa环境中,加热所述原料至熔化状态,再升温至1550~1650℃,高温精炼20-35min,停止加热,使得熔化原料结膜;
(3)升高温度使得所述熔化原料破膜,加入Al、Ti、B、Nd和剩余部分C原料,混合均匀;
(4)将加入Al、Ti、B、Nd和剩余部分C原料的混合原料在1620~1650℃下精炼;
(5)对精炼后的原料,在1450~1550℃下进行浇注,获得扁坯;
(6)对所述扁坯精整、热轧、退火软化处理、再次精整、冷轧、中间热处理和切边,得到合金带材;
(7)将所述合金带材在750~800℃时效10~20h热处理,形成所述长期组织稳定的低密度中熵高温合金。
本发明实施例的长期组织稳定的低密度中熵高温合金制备方法,该制备方法制得的长期组织稳定的低密度中熵高温合金具有优异的中温强度性、持久寿命、长期组织稳定性以及无锻造、热轧和冷轧裂纹形成,满足了先进航空发动机和燃气轮机设计和使用的要求;合金成本低廉、制备工艺简单,降低了能源消耗,同时缩短了生产周期,提高了生产效率,适用于工业生产的推广应用。下面结合实施例详细描述本发明。
实施例1
(1)将Co、Ni、Cr、Nb以及部分C原料置于真空度1.1Pa的环境中混合加热,排出附着在原料上的气体;
(2)在真空度0.4Pa环境中,加热所述原料至熔化状态,再升温至1600℃,高温精炼35min,停止加热,使得熔化原料结膜;
(3)升高温度使得所述熔化原料破膜,加入Al、Ti、B、Nd和剩余部分C原料,混合均匀;
(4)将加入Al、Ti、B、Nd和剩余部分C原料的混合原料在1620℃下精炼;
(5)对精炼后的原料,在1480℃下进行浇注,获得扁坯;
(6)对所述扁坯精整、热轧、退火软化处理、再次精整、冷轧、中间热处理和切边,得到合金带材;
(7)将所述合金带材在800℃时效15h热处理,形成所述长期组织稳定的低密度中熵高温合金。
实施例1制得的合金成分见表1,性能见表2。
实施例2-8与实施例1的制备方法相同,不同在于合金成分不同,实施例2-8制得的合金成分见表1,性能见表2。
实施例9
实施例9与实施例1的制备方法相同,合金成分不同,其中(Nb+Nd)/(Al+Ti)为1.14,实施例9制得的合金成分见表1,性能见表2。
实施例10
实施例10与实施例1的制备方法相同,合金成分不同,其中(Nb+Nd)/(Al+Ti)为0.17,实施例10制得的合金成分见表1,性能见表2。
实施例11
实施例11与实施例1的制备方法相同,合金成分不同,其中Cr:Co:Ni的原子百分比为1:1:1,实施例11制得的合金成分见表1,性能见表2。
对比例1
对比例1与实施例1的制备方法相同,不同之处在合金成分中,含有W和Mo元素,对比例1制得的合金成分见表1,性能见表2。
对比例2
对比例2与实施例1的制备方法相同,不同之处在合金成分中,含重量分数为0.8%的Ta元素,对比例2制得的合金成分见表1,性能见表2。
对比例3
对比例3与实施例1的制备方法相同,不同之处在合金成分中,含有重量分数为1.8%的元素Nb,对比例3制得的合金成分见表1,性能见表2。
对比例4
对比例4与实施例1的制备方法相同,不同之处在合金成分中,含有重量分数为0.3%的元素Nb,对比例4制得的合金成分见表1,性能见表2。
对比例5
对比例5与实施例1的制备方法相同,不同之处在合金成分中,不含有元素Nd,对比例5制得的合金成分见表1,性能见表2。
对比例6
对比例6与实施例1的制备方法相同,不同之处在合金成分中,元素Nd的含量为0.18%,对比例6制得的合金成分见表1,性能见表2。
表1所示为实施例1-11的合金成分以及对比例1-6合金成分。
表1
表2所示为实施例1-11的合金成分以及对比例1-6合金的性能
表2
从表1和表2的数据中可以看出,本发明实施例控制各元素的含量制备得到的中熵高温合金,750℃高温拉伸抗拉强度均远远高于582MPa,750℃屈服强度也能高于270MPa,密度小于8.17g/cm3,750℃时效5000h后无TCP脆性相析出,同时具有较好的加工性能,锻造、热轧和冷轧之后没有裂纹产生。
对比例1和2是在合金中添加W、Mo和Ta元素,对比例1中含有W和Mo元素,对比例2中含有Ta元素,由于W、Mo和Ta元素的密度较大,并且是强TCP相形成元素,导致合金的密度大于8.17g/cm3,750℃时效5000h后有TCP脆性相析出,无法满足使用需求。
对比例3和4是在合金中加入元素Nb,对比例3中元素Nb的加入量为1.8%,对比例4中元素Nb的加入量为0.3%,元素Nb能提高高温力学性能,使对比例3合金的750℃高温拉伸强度达到684MPa,但是过多的Nb损害加工性能,导致热轧和冷轧时出现裂纹缺陷。对比例4中由于Nb含量较低,强化效果较弱,导致合金的高温强度较低,只有542MPa,无法满足使用要求。
对比例5和6调整了元素Nd的用量,对比例5中没有使用元素Nd,元素Nd能净化晶界,提高合金的中温强塑性,本对比例中没有添加元素Nd,导致合金在750℃高温拉伸强度只有534MPa,断后伸长率不到13%;对比例6中元素Nd的用量为0.18%,添加量过多时损害热加工性能,引起锻造和热轧裂纹,而且会形成大尺寸夹杂物,导致合金的综合性能变差。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种长期组织稳定的低密度中熵高温合金,其特征在于,以重量百分含量计,所述中熵高温合金的组成为:C:0.02~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.2~1.0%,Ti:0.8~2.2%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.001~0.20%,及不可避免的杂质。
2.根据权利要求1所述的长期组织稳定的低密度中熵高温合金,其特征在于,所述Cr、Co、Ni的原子百分比为1:1:1。
3.根据权利要求1所述的长期组织稳定的低密度中熵高温合金,其特征在于,所述Nd的重量百分含量为0.004~0.15%。
4.根据权利要求1所述的长期组织稳定的低密度中熵高温合金,其特征在于,所述Al、Ti、Nb和Nd的重量百分含量满足关系式0.2≤(Nb+Nd)/(Al+Ti)≤0.7。
5.根据权利要求1所述的长期组织稳定的低密度中熵高温合金,其特征在于,所述Al、Ti、Nb和Nd的重量百分含量满足关系式0.22≤(Nb+Nd)/(Al+Ti)≤0.67。
6.根据权利要求1所述的长期组织稳定的低密度中熵高温合金,其特征在于,所述中熵高温合金的组成为:C:0.04~0.08%,Cr:28.0~33.0%,Co:33.5~35.7%,Ni:33.0~35.8%,Al:0.4~0.8%,Ti:1.2~2.0%,Nb:0.4~1.7%,B:0.005~0.015%,Nd:0.004~0.15%,及不可避免的杂质。
7.权利要求1~6中任一项所述的长期组织稳定的低密度中熵高温合金在航空发动机中的应用。
8.权利要求1~6中任一项所述的长期组织稳定的低密度中熵高温合金在燃气轮机中的应用。
9.一种权利要求1~6中任一项所述的长期组织稳定的低密度中熵高温合金的制备方法,其特征在于,所述方法包括以下步骤:
(1)将Co、Ni、Cr、Nb以及部分C原料置于真空度≤1.2Pa的环境中混合加热,排出附着在原料上的气体;
(2)在真空度≤0.5Pa环境中,加热所述原料至熔化状态,再升温至1550~1650℃,高温精炼20-35min,停止加热,使得熔化原料结膜;
(3)升高温度使得所述熔化原料破膜,加入Al、Ti、B、Nd和剩余部分C原料,混合均匀;
(4)将加入Al、Ti、B、Nd和剩余部分C原料的混合原料在1620~1650℃下精炼;
(5)对精炼后的原料,在1450~1550℃下进行浇注,获得扁坯;
(6)对所述扁坯精整、热轧、退火软化处理、再次精整、冷轧、中间热处理和切边,得到合金带材;
(7)将所述合金带材在750~800℃时效10~20h热处理,形成所述长期组织稳定的低密度中熵高温合金。
CN202310435130.7A 2023-04-21 2023-04-21 一种长期组织稳定的低密度中熵高温合金及其制备方法与应用 Pending CN116445793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310435130.7A CN116445793A (zh) 2023-04-21 2023-04-21 一种长期组织稳定的低密度中熵高温合金及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310435130.7A CN116445793A (zh) 2023-04-21 2023-04-21 一种长期组织稳定的低密度中熵高温合金及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN116445793A true CN116445793A (zh) 2023-07-18

Family

ID=87131833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310435130.7A Pending CN116445793A (zh) 2023-04-21 2023-04-21 一种长期组织稳定的低密度中熵高温合金及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116445793A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140279A (ja) * 1996-09-13 1998-05-26 Seiko Instr Inc Co−Ni基合金
CN111500917A (zh) * 2020-05-11 2020-08-07 北京科技大学 一种高强韧性中熵高温合金及其制备方法
CN112575228A (zh) * 2020-11-12 2021-03-30 中国联合重型燃气轮机技术有限公司 抗蠕变、长寿命镍基变形高温合金及其制备方法和应用
CN114182153A (zh) * 2021-11-26 2022-03-15 北京北冶功能材料有限公司 一种镍基合金及其制备方法与应用
CN115505790A (zh) * 2022-09-20 2022-12-23 北京北冶功能材料有限公司 一种焊缝强度稳定的镍基高温合金及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140279A (ja) * 1996-09-13 1998-05-26 Seiko Instr Inc Co−Ni基合金
CN111500917A (zh) * 2020-05-11 2020-08-07 北京科技大学 一种高强韧性中熵高温合金及其制备方法
CN112575228A (zh) * 2020-11-12 2021-03-30 中国联合重型燃气轮机技术有限公司 抗蠕变、长寿命镍基变形高温合金及其制备方法和应用
CN114182153A (zh) * 2021-11-26 2022-03-15 北京北冶功能材料有限公司 一种镍基合金及其制备方法与应用
CN115505790A (zh) * 2022-09-20 2022-12-23 北京北冶功能材料有限公司 一种焊缝强度稳定的镍基高温合金及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108467972B (zh) 一种高承温能力的镍基变形高温合金及其制备方法
CN110551920B (zh) 一种高性能易加工镍基变形高温合金及其制备方法
US9945019B2 (en) Nickel-based heat-resistant superalloy
CN110205523B (zh) 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
WO2012026354A1 (ja) Co基合金
US2880087A (en) Titanium-aluminum alloys
US4386976A (en) Dispersion-strengthened nickel-base alloy
JP2022500557A (ja) ニッケル基超合金
CN106011540B (zh) 一种低铼第三代镍基单晶合金及其制备方法
CN114231765B (zh) 一种高温合金棒材的制备方法与应用
CN117385212B (zh) 一种中温强度优异的镍基高温合金箔材及其制备方法
CN113604706A (zh) 一种低密度低膨胀高熵高温合金及其制备方法
CA2955322C (en) Ni-based superalloy for hot forging
CN115537603B (zh) 一种耐高温镍基合金、其制造方法及应用
CN115354195B (zh) 一种抗裂纹镍基高温合金及其制备方法和应用
CN115505790B (zh) 一种焊缝强度稳定的镍基高温合金及其制备方法和应用
CN116445793A (zh) 一种长期组织稳定的低密度中熵高温合金及其制备方法与应用
CN117286382A (zh) 一种高抗蠕变性能镍基粉末高温合金及其制备方法
CN112553504B (zh) 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法
CN116463526A (zh) 一种高强度、长寿命中熵高温合金及其制备方法与应用
CN115491545B (zh) 一种抗氧化、长寿命镍基高温合金及其制备方法和应用
CN115418531B (zh) 一种低密度镍基高温合金及其制备方法和应用
CN116463539A (zh) 一种高温强度优异的中熵高温合金及其制备方法与应用
CN116536556A (zh) 一种抗氧化性优异的中熵高温合金及其制备方法和应用
CN115725895B (zh) 一种抗拉强度≥1600MPa的低膨胀Fe-Ni因瓦合金线材及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination