CN112553504B - 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法 - Google Patents

一种高抗氧化性能的析出强化型镍钴基合金及其制备方法 Download PDF

Info

Publication number
CN112553504B
CN112553504B CN202011325226.0A CN202011325226A CN112553504B CN 112553504 B CN112553504 B CN 112553504B CN 202011325226 A CN202011325226 A CN 202011325226A CN 112553504 B CN112553504 B CN 112553504B
Authority
CN
China
Prior art keywords
equal
less
alloy
cobalt
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011325226.0A
Other languages
English (en)
Other versions
CN112553504A (zh
Inventor
杨珍
谷月峰
袁勇
鲁金涛
严靖博
杨征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Huaneng Group Co Ltd
Xian Thermal Power Research Institute Co Ltd
Original Assignee
China Huaneng Group Co Ltd
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Huaneng Group Co Ltd, Xian Thermal Power Research Institute Co Ltd filed Critical China Huaneng Group Co Ltd
Priority to CN202011325226.0A priority Critical patent/CN112553504B/zh
Publication of CN112553504A publication Critical patent/CN112553504A/zh
Application granted granted Critical
Publication of CN112553504B publication Critical patent/CN112553504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明一种高抗氧化性能的析出强化型镍钴基合金及其制备方法,所述合金组成成分按重量百分比计为,0.03≤C≤0.1%,0<B≤0.003%,14≤Cr≤17%,25≤Co≤30%,3≤W≤12%,0.5≤Nb≤2%,2.5≤Al≤6%、1≤Ti≤4%、0≤Hf≤0.15%,0≤Ta≤2%,余量为Ni,其中,当1.5≤Al/Ti<3时,4<Cr/Al≤6;当3≤Al/Ti≤6时,2.5≤Cr/Al≤4。在Al含量一定时通过合金中的Al/Ti比,从而降低Cr含量,促使合金自发形成保护性佳的Al2O3膜,解决了合金必须单纯增加Cr或Al含量提高抗氧化性的技术难题,增大了合金中其它元素含量的调整裕度。

Description

一种高抗氧化性能的析出强化型镍钴基合金及其制备方法
技术领域
本发明涉及镍钴基合金领域,具体为一种高抗氧化性能的析出强化型镍钴基合金及其制备方法。
背景技术
由于具有优异的高温强度、疲劳性能以及良好的抗高温氧化/腐蚀性能,以铁、钴、镍为基的高温合金能够长期在600℃以上的高温环境中工作。三类高温合金中,传统的钴基高温合金主要依靠固溶强化或碳化物强化,其高温强度低,主要应用于机械负荷较低的环境中。与之相比,镍基高温合金以γ′(Ni3Al)相强化为主要强化方式,具有优异的力学性能,但镍基高温合金的耐蚀性能较差。为实现高温力学性能和耐蚀性的平衡,人们开发了以γ′相强化为主要强化方式的新型镍钴基高温合金。具体地,通过添加Ti、Ta等元素,增加γ′相的体积分数及其稳定性,进一步提高合金的力学性能。另一方面,添加一定量的Cr或Al,以形成保护性的Cr2O3膜或Al2O3膜,实现高的抗氧化性能,且随着设计目标服役温度的增加,合金中添加的Cr或Al的含量升高。但是,Cr含量增加势必导致合金中α-Cr相析出倾向增加,使得材料脆化;而Al含量增加使得合金的塑性、热加工性以及焊接性能降低。同时,Ti含量较高时,合金在高温下尤其是在含水蒸气的高温环境中更易形成TiO2,反而削弱了合金的抗氧化性能。这意味着在高温合金的设计上,提高合金的抗氧化性能与改善合金的力学性能是矛盾的,很难同时提升合金的抗氧化性能与力学性能。
发明内容
针对现有技术中存在的问题,本发明提供一种高抗氧化性能的析出强化型镍钴基合金及其制备方法,在保证镍钴基高温合金力学性能的前提下提高其抗氧化性能,使合金特别适用于750℃以上的超高温蒸汽环境。
本发明是通过以下技术方案来实现:
一种高抗氧化性能的析出强化型镍钴基合金,其组成成分按重量百分比计为,0.03≤C≤0.1%,0<B≤0.003%,14≤Cr≤17%,25≤Co≤30%,3≤W≤12%,0.5≤Nb≤2%,2.5≤Al≤6%、1≤Ti≤4%、0≤Hf≤0.15%,0≤Ta≤2%,余量为Ni,其中,当1.5≤Al/Ti≤3时,4<Cr/Al≤6;当3<Al/Ti≤6时,2.5≤Cr/Al≤4,以抑制非保护性TiO2的形成,促进连续Al2O3膜的形成。
优选的,该高抗氧化性能的析出强化型镍钴基合金中的析出强化相为γ′相Ni3(Al,Ti),且其占合金总体积的35%-45%。
优选的,2.5%≤Al≤4.5%,1.5%≤Ti≤4%。
优选的,所述的Co的质量分数为26%-30%。
优选的,所述的Cr的质量分数为15%-17%。
优选的,3%≤W≤10%,0.8≤Nb≤1.5%,0.05%≤Hf≤0.15%,0.5%≤Ta≤1.5%。
一种高抗氧化性能的析出强化型镍钴基合金的制备方法,包括以下步骤:
步骤1,合金熔炼:依照合金成分及烧损量配备原材料,并将原材料在真空环境下熔炼并浇注成合金铸锭;合金锭的组成成分按重量百分比计为,0.03≤C≤0.1%,0<B≤0.003%,14≤Cr≤17%,25≤Co≤30%,3≤W≤12%,0.5≤Nb≤2%,2.5≤Al≤6%、1≤Ti≤4%、0≤Hf≤0.15%,0≤Ta≤2%,余量为Ni,其中,
当1.5≤Al/Ti<3时,4<Cr/Al≤6;
当3≤Al/Ti≤6时,2.5≤Cr/Al≤4;
步骤2,均匀化处理:将合金铸锭在γ′相固溶温度以上10~30℃均匀化处理24~72小时,随后空冷至室温;
步骤3,轧制:将均匀化处理后的合金铸锭在γ′相固溶温度以上30~50℃进行高温轧制;
步骤4,热处理:将轧制后的板材进行热处理,得到成形的高抗氧化性能的析出强化型镍钴基合金。
优选的,步骤4中的热处理制度为:在γ′相固溶温度以上30℃范围内保温0.5小时后空冷至室温;随后在γ′相固溶温度以下30~50℃范围内保温1小时并空冷至室温;再在γ′相固溶温度以下300~350℃范围内保温8小时;最后在γ′相固溶温度以下200~250℃范围内保温2小时。
优选的,步骤4中所述成形的高抗氧化性能的析出强化型镍钴基合金,在750℃以上的超高温蒸汽环境中氧化时自发形成Al2O3膜,从而在不降低析出强化型镍钴基合金力学性能的前提下提高其抗高温氧化性能。
与现有技术相比,本发明具有以下有益的技术效果:
本发明所述合金在Al含量一定时通过调控合金中的Al/Ti比,从而降低Cr含量,促使合金自发形成保护性佳的Al2O3膜,解决了合金必须依靠单纯增加Cr或Al含量从而提高合金抗氧化性的技术难题,避免了因Cr或Al含量过高而导致的力学性能、加工性能降低的可能性,增大了合金中其它元素含量的调整裕度,为设计高强抗氧化镍钴基合金提供了新思路。
附图说明
图1为本发明实例中所述各个合金在800℃纯水蒸气中的恒温氧化动力学曲线。
图2a为实施例3所述合金在800℃纯水蒸气中的氧化2000小时后的氧化膜截面形貌像。
图2b为对比例2所述合金在800℃纯水蒸气中的氧化2000小时后的氧化膜截面形貌像。
图2c为所述Inconel740H合金在800℃纯水蒸气中的氧化2000小时后的氧化膜截面形貌像。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明一种高抗氧化性能的析出强化型镍钴基合金,在保证镍钴基高温合金力学性能的同时提高其抗氧化性能。在Al含量一定的条件下调控合金中的Al/Ti比,可降低镍钴基合金中Cr的质量含量,促使合金自发形成热力学稳定性高的Al2O3保护膜,从而在不降低析出强化型镍钴基合金力学性能的前提下提高其抗高温氧化性能。
所述一种高抗氧化性能的析出强化型镍钴基合金的制备方法包括以下步骤:
(1)合金熔炼:各元素按质量分数计,0.03≤C≤0.1%,0<B≤0.003%,14≤Cr≤17%,25≤Co≤30%,3≤W≤12%,0.5≤Nb≤2%,2.5≤Al≤6%、1≤Ti≤4%、0≤Hf≤0.15%,0≤Ta≤2%,余量为Ni,
其中,当1.5≤Al/Ti≤3时,4<Cr/Al≤6;当3<Al/Ti≤6时,2.5≤Cr/Al≤4,以抑制非保护性TiO2的形成,促进连续Al2O3膜的形成。
按上述化学成分配比,将合金原料投入到真空感应电弧炉中,熔化精炼,得到合金铸锭。
(2)均匀化处理:将合金铸锭在γ′相固溶温度以上10~30℃均匀化处理24~72小时,随后空冷至室温。
(3)轧制:将均匀化处理后的合金锭在γ′相固溶温度以上30~50℃进行高温轧制;
(4)热处理:将轧制后的板材进行热处理,热处理制度为:在γ′相固溶温度以上30℃范围内保温0.5小时后空冷至室温;随后在γ′相固溶温度以下30~50℃范围内保温1小时并空冷至室温;再在γ′相固溶温度以下300~350℃范围内保温8小时;最后在γ′相固溶温度以下200~250℃范围内保温2小时。
本发明在800℃、2000h纯水蒸气中氧化时形成Al2O3膜,氧化动力学遵循抛物线规律。因此,本发明提供了一种设计析出强化型镍钴基高温合金的新思路,可降低Cr含量,在Al含量一定的条件下提高Al/Ti比,促使合金自发形成热力学稳定性高的Al2O3保护膜,从而在不降低析出强化型镍钴基合金力学性能的前提下提高其抗高温氧化性能。
下面结合实施例对本发明做进一步详细说明。
表1是实施例1-6的合金、对比例1的合金、对比例2的合金、合金Inconel740H的化学成分组成(化学成分组成以质量分数计);所有合金均为热处理态。
表1实施例合金、对比例合金和Inconel740H的化学成分组成
Figure BDA0002793695630000051
(一)测量实施例3合金、对比例1-2的合金和合金Inconel740H在800℃纯水蒸气中氧化时的质量变化。
表2合金的氧化抛物线速率常数和平均氧化速率
Figure BDA0002793695630000061
如图1中各合金在800℃时纯水蒸气中的氧化增重曲线。为更直观地分析,将合金2000h的氧化增重抛物线常数和平均增重速率分别计算出,如表2所示。明显地,本发明通过提高Al/Ti比,在Al含量一定时降低Cr的含量至15%,也可以降低合金的氧化速率,提高其抗氧化性能。尤其是通过本发明所得的析出强化型镍钴基合金的抗氧化性能远高于Inconel740H的抗氧化性能,其2000h的平均氧化增重速率远均低于0.01g/m2hr,达到完全抗氧化等级。
(二)测定实施例3合金、对比例1-2的合金在850℃时的抗拉强度,测定结果见表3。
表3合金在850℃的持久强度
Figure BDA0002793695630000062
由表3可以看出,通过本发明通过提高Al/Ti比,降低Cr和Al的含量,仍可保持高的力学性能。尤其是通过本发明所得的析出强化型镍钴基合金的高温力学性能优于Inconel740H,其850℃时的抗拉强度可达665MPa。
对比合金在800℃纯水蒸气中氧化2000小时后的氧化膜截面形貌像,如图2a所示,实施例3中氧化膜为双层结构:外层Cr2O3膜的下方,形成极薄的连续的Al2O3膜;如图2b所示,对比例2中氧化膜为单层的Cr2O3,其上方有不连续的TiO2;如图2c所示,Inconel740H中氧化膜为单层的Cr2O3。三者之中,实施例3表面的氧化膜最薄且最致密,这是因为形成了生长速度更为缓慢、稳定性更高的Al2O3膜,有效地阻碍了阴离子的向内扩散和阳离子的向外扩散,降低了氧化膜的生长速度,提高了合金的抗氧化性。

Claims (9)

1.一种高抗氧化性能的析出强化型镍钴基合金,其特征在于,其组成成分按重量百分比计为,0.03≤C≤0.1%,0<B≤0.003%,14≤Cr≤17%,25≤Co≤30%,3≤W≤12%,0.5≤Nb≤2%,2.5≤Al≤6%、1≤Ti≤4%、0≤Hf≤0.15%,0≤Ta≤2%,余量为Ni;
其中,
当1.5≤Al/Ti<3时,4<Cr/Al≤6;
当3≤Al/Ti≤6时,2.5≤Cr/Al≤4;
以抑制非保护性TiO2的形成,促进连续Al2O3膜的形成,所述Al2O3膜位于外层Cr2O3膜的下方;
所述高抗氧化性能的析出强化型镍钴基合金中的析出强化相为γ′相(Ni,Co)3(Al,Ti,W)。
2.根据权利要求1所述的高抗氧化性能的析出强化型镍钴基合金,其特征在于,该高抗氧化性能的析出强化型镍钴基合金中的析出强化相为γ′相Ni3(Al,Ti),且其占合金总体积的35%-45%。
3.根据权利要求1所述的高抗氧化性能的析出强化型镍钴基合金,其特征在于,2.5%≤Al≤4.5%,1.5%≤Ti≤4%。
4.根据权利要求1所述的高抗氧化性能的析出强化型镍钴基合金,其特征在于,所述的Co的质量分数为26%-30%。
5.根据权利要求1所述的高抗氧化性能的析出强化型镍钴基合金,其特征在于,所述的Cr的质量分数为15%-17%。
6.根据权利要求1所述的高抗氧化性能的析出强化型镍钴基合金,其特征在于,3%≤W≤10%,0.8≤Nb≤1.5%,0.05%≤Hf≤0.15%,0.5%≤Ta≤1.5%。
7.一种高抗氧化性能的析出强化型镍钴基合金的制备方法,其特征在于,包括以下步骤:
步骤1,合金熔炼:依照合金成分及烧损量配备原材料,并将原材料在真空环境下熔炼并浇注成合金铸锭;合金锭的组成成分按重量百分比计为,0.03≤C≤0.1%,0<B≤0.003%,14≤Cr≤17%,25≤Co≤30%,3≤W≤12%,0.5≤Nb≤2%,2.5≤Al≤6%、1≤Ti≤4%、0≤Hf≤0.15%,0≤Ta≤2%,余量为Ni,其中,
当1.5≤Al/Ti<3时,4<Cr/Al≤6;
当3≤Al/Ti≤6时,2.5≤Cr/Al≤4;
步骤2,均匀化处理:将合金铸锭在γ′相固溶温度以上10~30℃均匀化处理24~72小时,随后空冷至室温;
步骤3,轧制:将均匀化处理后的合金铸锭在γ′相固溶温度以上30~50℃进行高温轧制;
步骤4,热处理:将轧制后的板材进行热处理,得到成形的高抗氧化性能的析出强化型镍钴基合金;
所述合金表面形成双层结构,外层Cr2O3膜的下方,形成极薄的连续的Al2O3膜;
所述高抗氧化性能的析出强化型镍钴基合金中的析出强化相为γ′相(Ni,Co)3(Al,Ti,W)。
8.根据权利要求7所述的一种高抗氧化性能的析出强化型镍钴基合金的制备方法,其特征在于,步骤4中的热处理制度为:在γ′相固溶温度以上30℃范围内保温0.5小时后空冷至室温;随后在γ′相固溶温度以下30~50℃范围内保温1小时并空冷至室温;再在γ′相固溶温度以下300~350℃范围内保温8小时;最后在γ′相固溶温度以下200~250℃范围内保温2小时。
9.根据权利要求7所述的一种高抗氧化性能的析出强化型镍钴基合金的制备方法,其特征在于,步骤4中所述成形的高抗氧化性能的析出强化型镍钴基合金,在750℃以上的超高温蒸汽环境中氧化时自发形成Al2O3膜,从而在不降低析出强化型镍钴基合金力学性能的前提下提高其抗高温氧化性能。
CN202011325226.0A 2020-11-23 2020-11-23 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法 Active CN112553504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011325226.0A CN112553504B (zh) 2020-11-23 2020-11-23 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011325226.0A CN112553504B (zh) 2020-11-23 2020-11-23 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法

Publications (2)

Publication Number Publication Date
CN112553504A CN112553504A (zh) 2021-03-26
CN112553504B true CN112553504B (zh) 2021-12-14

Family

ID=75043235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011325226.0A Active CN112553504B (zh) 2020-11-23 2020-11-23 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法

Country Status (1)

Country Link
CN (1) CN112553504B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558881A (zh) * 2022-10-11 2023-01-03 华能国际电力股份有限公司 一种提高M-Cr-Al基合金高温抗氧化性能的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112327A (zh) * 2018-11-08 2019-01-01 北京钢研高纳科技股份有限公司 一种抗氧化耐热合金及制备方法
CN111850348A (zh) * 2020-07-30 2020-10-30 北京北冶功能材料有限公司 一种高强高韧镍基高温合金箔材及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476555A (en) * 1992-08-31 1995-12-19 Sps Technologies, Inc. Nickel-cobalt based alloys
JP6422045B1 (ja) * 2017-02-21 2018-11-14 日立金属株式会社 Ni基超耐熱合金およびその製造方法
JP6850223B2 (ja) * 2017-08-30 2021-03-31 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
CN110643856B (zh) * 2018-06-26 2021-11-30 中南大学 一种镍基合金、其制备方法与一种制造物品
CN110484776A (zh) * 2019-09-02 2019-11-22 深圳市万泽中南研究院有限公司 一种增材制造用的镍基高温合金粉末及使用方法
CN111411266B (zh) * 2020-05-08 2021-03-16 中国华能集团有限公司 一种镍基高钨多晶高温合金的制备工艺
CN111534717B (zh) * 2020-05-08 2021-05-25 中国华能集团有限公司 一种高强镍钴基合金管材的制备成型工艺
CN111519069B (zh) * 2020-05-08 2021-11-30 中国华能集团有限公司 一种高强镍钴基高温合金及其制备工艺
CN111471914A (zh) * 2020-05-08 2020-07-31 中国华能集团有限公司 一种高碳、铬含量的镍基变形高温合金及其制备方法
CN111378874B (zh) * 2020-05-08 2022-01-25 中国华能集团有限公司 一种析出强化型变形高温合金及其制备工艺
CN111549259B (zh) * 2020-05-25 2021-06-04 中国科学院金属研究所 一种镍钴基高温合金涡轮盘及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112327A (zh) * 2018-11-08 2019-01-01 北京钢研高纳科技股份有限公司 一种抗氧化耐热合金及制备方法
CN111850348A (zh) * 2020-07-30 2020-10-30 北京北冶功能材料有限公司 一种高强高韧镍基高温合金箔材及其制备方法

Also Published As

Publication number Publication date
CN112553504A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
EP1842934B1 (en) Heat-resistant superalloy
EP2479302B1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
EP2612937A1 (en) Nickel based forged alloy, gas turbine member using said alloy and gas turbine using said member
JP5657523B2 (ja) 超々臨界ボイラヘッダ合金および製造方法
CA2841329A1 (en) Hot-forgeable ni-based superalloy excellent in high temperature strength
JP2006070360A (ja) 進歩したガスタービンエンジン用Ni−Cr−Co合金
GB2405643A (en) A nickel-chromium-molybdenum alloy
US7922969B2 (en) Corrosion-resistant nickel-base alloy
JP2018131667A (ja) Ni基合金、ガスタービン材およびクリープ特性に優れたNi基合金の製造方法
JP4768672B2 (ja) 組織安定性と高温強度に優れたNi基合金およびNi基合金材の製造方法
KR20120053645A (ko) 고온에서의 기계적 특성이 우수한 다결정 니켈기 초내열합금
CN105238957A (zh) 一种高性能镍基高温合金及其制造方法
CN114231765A (zh) 一种高温合金棒材的制备方法与应用
CN113604706A (zh) 一种低密度低膨胀高熵高温合金及其制备方法
CN112553504B (zh) 一种高抗氧化性能的析出强化型镍钴基合金及其制备方法
CA3020420C (en) Ferritic alloy
CN112458369B (zh) 一种析出强化型铁素体耐热钢及其制备方法
CN114164357B (zh) 一种低成本、低密度镍基单晶高温合金
KR101601207B1 (ko) 니켈계 초내열 합금 및 이의 제조방법
KR20160079997A (ko) 니켈 저감형 스테인리스강
JP5595495B2 (ja) ニッケル基超合金
CN115505790A (zh) 一种焊缝强度稳定的镍基高温合金及其制备方法和应用
CN115354195A (zh) 一种抗裂纹镍基高温合金及其制备方法和应用
JP2014051698A (ja) Ni基鍛造合金と、それを用いたガスタービン
KR102139177B1 (ko) 크립 특성이 우수한 단련용 니켈기 초내열합금 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant