CN116444264A - 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法 - Google Patents

一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116444264A
CN116444264A CN202310414685.3A CN202310414685A CN116444264A CN 116444264 A CN116444264 A CN 116444264A CN 202310414685 A CN202310414685 A CN 202310414685A CN 116444264 A CN116444264 A CN 116444264A
Authority
CN
China
Prior art keywords
energy storage
sodium titanate
potassium sodium
ceramic material
ferroelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310414685.3A
Other languages
English (en)
Other versions
CN116444264B (zh
Inventor
刘辉
孙正
罗华杰
陈骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202310414685.3A priority Critical patent/CN116444264B/zh
Publication of CN116444264A publication Critical patent/CN116444264A/zh
Application granted granted Critical
Publication of CN116444264B publication Critical patent/CN116444264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法,属于电介质储能陶瓷材料领域;其化学组成为(1‑x)Bi0.5Na0.25K0.25TiO3‑xBaZrO3,0.1≤x≤0.4。本发明提供的钛酸铋钾钠基弛豫铁电陶瓷材料具有优良的储能性能及环境稳定性,通过对元素比例调控,可使该陶瓷的储能密度达到13.4J/cm3,储能效率达到91%,同时具有出色的温度、疲劳稳定性,在RT‑150℃的较宽的温度范围内,储能效率均能够较好地保持在80%以上,且在循环次数高达108内,展现出了较为良好的使用寿命,在电动汽车、脉冲武器、医疗器械等领域有着较为乐观的应用前景。

Description

一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁 电陶瓷材料及其制备方法
技术领域
本发明属于电介质储能陶瓷材料领域,具体涉及一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法。
背景技术
能源是人类文明进步的基础和动力,随着以光伏发电、风力发电为代表的新能源发电技术逐步走向实用化,对于先进储能材料与技术的研究也开始逐渐深入。在众多储能材料中,电介质电容器以功率密度高、充放电速率快等优势在电动汽车、脉冲武器、医疗器械等设备中发挥着不可替代的作用。然而在电子元器件小型化、高集成化的发展趋势下,对电介质电容器的储能密度和储能效率提出了更高的要求。
目前用于储能的电介质电容器可分为薄膜、聚合物复合材料和陶瓷。薄膜具有较高的击穿场强和储能密度,但由于体积有限,能够输出的能量较低,同时其较差的机械性能也限制了它的应用范围。
聚合物复合材料具有较大的储能密度,但其表现出较大的热不稳定性。相比之下,陶瓷具有优良的机械性能和环境稳定性,是比较理想的储能材料。但现阶段的研究普遍在储能密度、储能效率与环境稳定性之间进行取舍,难以兼得,因此合成出兼具高储能密度和高储能效率与高环境稳定性的电介质电容器具有重要意义。
发明内容
本发明要解决的技术问题是提供一种钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法,其兼顾具有优异储能性能及环境稳定性。储能性能包括储能密度、储能效率。
为解决上述技术问题,本发明提供如下技术方案:
第一方面,提供一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料,其化学组成为(1-x)Bi0.5Na0.25K0.25TiO3-xBaZrO3(0.1≤x≤0.4、优选0.12≤x≤0.4)。
可以理解的是,本发明的陶瓷材料中0.5BNT-0.5BKT,BNT,BKT比例为1:1。
优选地,0.2≤x≤0.3,x具体例如可以为0.2、0.25、0.3。
更优选地,x=0.3。
在上述优选x方案下,其储能密度能够达到13.3J/cm3,储能效率能够达到91%,且最大击穿场强可以达到60kV/mm,同时其具有出色的环境稳定性以及抗疲劳性。
第二方面,提供第一方面所述的钛酸铋钾钠基弛豫铁电陶瓷材料的制备方法。
其中,具体采用以下步骤:
S1、按照(1-x)Bi0.5Na0.25K0.25TiO3-xBaZrO3化学计量比称取Bi2O3、Na2CO3、K2CO3、BaCO3、TiO2、ZrO2,与乙醇混合进行一次球磨,然后进行烘干、研磨、一次煅烧以及冷却;
S2、将S1煅烧后得到的粉末倒入高能球磨机中,加入乙醇进行二次球磨,然后进行烘干;
S3、将S2煅烧后得到的样品滴加粘结剂进行造粒,并将造粒后的粉过筛、压片,然后烧结;
S4、将S3烧结得到的陶瓷片进行打磨,放入离子溅射仪中进行离子溅射,之后将边缘打磨后即可得到一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料。
其中,优选地,S1中所述一次球磨的条件包括:转速为300-400rpm,时间为12-24h。
S1中所述乙醇的用量可以根据所采用容器的体积和研磨均匀情况进行自由选择,只要利于研磨均匀即可,且乙醇在后续烘干处理过程中也会逐渐蒸发掉。
其中,优选地,S1中所述一次煅烧的条件包括:温度为700-900℃,时间为2-3h。
其中,优选地,S1中所述烘干的条件包括:在鼓风干燥箱内,温度为80-120℃,时间为80-120min。
其中,优选地,S2中所述的二次球磨的条件包括:转速为500-700rpm,时间为4-12h。
其中,优选地,S2中所述粘结剂为PVA和PVB中的一种。
优选地,所述粘结剂与S2二次球磨后烘干得到的样品的用量质量比为1:5-15。
其中,优选地,S2中所述过筛的过程中,筛网为400-500目标准筛。
其中,优选地,S2中所述烧结的条件包括:温度为1000-1200℃,时间为2-4h。
其中,优选地,S3中所述的离子溅射过程包括:靶材为金靶,电流为10-20mA,溅射时间为50-300s。该优选方案,能够使表面电极更为均匀,从而更利于耐击穿电场强度的温度及提高。
本发明的上述技术方案的有益效果如下:
本发明提供的钛酸铋钾钠基弛豫铁电陶瓷材料(化学式为(1-x)Bi0.5Na0.25K0.25TiO3-xBaZrO3),0.1≤x≤0.4,其各元素及其具有适宜比例,能够协同作用,使得兼顾优异储能性能及环境稳定性;其中,选用的BNT,BKT比例为1:1,而非在MPB处进行化学设计,对环境稳定性的提升提供了必要的结构基础。另外,对BNKT基体中引入异化学价的Ba2+,减少了Bi3+与O2-的极化耦合,同时在B位引入离子半径更大的Zr4+,从而实现长程有序电畴向极性纳米微区的转变。通过合理的化学调控使陶瓷能够同时获得大的最大极化强度(Pmax)和小的剩余极化强度(Pr),从而能够使其兼具高储能密度、高储能效率与良好的环境稳定性。而在相同条件下,若x低于0.1则陶瓷的剩余极化会比较大,从而产生较大的能量损耗,x高于0.4时陶瓷的最大极化强度较小,难以对储能密度实现可观的提升。
在本发明的制备方法中,在特定原料配比下,还特别采用特定转速下的两次高能球磨。从SEM的数据就可以看出,经过高能球磨的样品晶粒尺寸有明显的减小,且致密度较高,这对击穿场强的提升是有效的,也能对于该陶瓷的实用化发展提供了更大的潜力。
本发明通过对元素比例和工艺的协同调控,其储能密度可以达到13.3J/cm3,储能效率可以达到91%,最大击穿场强能够达到60kV/mm。同时其具有出色的环境稳定性以及抗疲劳性,在RT-150℃的较宽的温度范围内,储能效率均能够较好地保持在80%以上,且储能密度的浮动小于5%;在循环次数高达108内,该陶瓷储能密度的浮动小于1.6%,储能效率浮动小于0.9%,同时其成本低廉,工艺简单,对环境友好,在电动汽车、脉冲武器、医疗器械等领域有着较为乐观的应用前景。
附图说明
图1为实施例1制得的钛酸铋钾钠基弛豫铁电陶瓷的SEM图片;
图2为实施例1制得的钛酸铋钾钠基弛豫铁电陶瓷最大可施加电场下的电滞回线图;
图3为实施例1制得的钛酸铋钾钠基弛豫铁电陶瓷的储能特性随电场强度的变化曲线。
图4为实施例1制得的钛酸铋钾钠基弛豫铁电陶瓷的单极电滞回线随温度的变化曲线。
图5为实施例1制得的钛酸铋钾钠基弛豫铁电陶瓷的单极电滞回线随循环次数的变化曲线。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
实施例1:
利用本发明制备0.7Bi0.5Na0.25K0.25TiO3-0.3BaZrO3。按照化学剂量比称取5.4362克Bi2O3,0.6183克Na2CO3,0.8465克K2CO3,3.9468克BaCO3,3.7273克TiO2,2.4644克ZrO2并倒入球磨罐中,加入乙醇球磨20h,转速为300rpm。将球磨后的样品依次进行烘干、研磨,然后放入马弗炉中设置温度为850℃煅烧2h。将冷却后的粉末倒入高能球磨机中,加入乙醇,进行高能球磨10h,转速为600rpm。烘干后,将样品倒入研钵中,滴加适量PVA粘结剂(粘结剂与样品的用量质量比为1:10)研磨1h,研磨均匀,倒入400目的标准筛中进行过筛。然后利用的模具将过筛后的粉末压制成片并放入马弗炉中,设置温度为1150℃烧结2h,冷却后将陶瓷片厚度打磨至50μm。利用离子溅射仪在陶瓷的上下表面镀金电极,离子溅射的条件包括:靶材选用金靶,电流为15mA,时间为200s。将边缘打磨后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钾钠基弛豫铁电陶瓷材料。
图1为本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷的SEM图片,从图中可以看出,该陶瓷具有较高的致密度,晶粒平均尺寸在2μm左右,这有效提升了其击穿场强。
图2为本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷室温最大可施加电场下的单极电滞回线,从图中可以看出,该陶瓷电滞回线细长,最大极化强度较大,剩余极化强度较小,使其具有较高的储能效率,其最大电场强度可以达到60kV/mm。
图3为本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷储能特性随电场强度的变化曲线,从图中可以看出,该陶瓷储能密度在60kV/mm的电场中可以达到13.3J/cm3,储能效率可以稳定在91%以上。
图4为本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷单极电滞回线随温度的变化曲线,从图中可以看出,在RT-150℃的较宽的温度范围内,储能效率均能够较好地保持在80%以上,且储能密度的浮动小于5%,说明其具有良好的温度稳定性。
图5为本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷单极电滞回线随循环次数的变化曲线,从图中可以看出,随着循环次数的指数级增加,电滞回线仍然保持极小的变化幅度。在循环次数高达108内,该陶瓷储能密度的浮动小于1.6%,储能效率浮动小于0.9%,证明其具有良好的使用寿命。
实施例2:
参照实施例1的方法进行,不同的是,制备0.8Bi0.5Na0.25K0.25TiO3-0.2BaZrO3,按照化学剂量比称取6.2128克Bi2O3,0.7066克Na2CO3,0.9674克K2CO3,2.6312克BaCO3,4.2597克TiO2,1.6429克ZrO2并倒入球磨罐中。
经测试,本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷在55kV/mm的电场下,储能密度达到11.9J/cm3,储能效率达到88.8%。在RT-150℃的较宽的温度范围内,储能效率均能够较好地保持在80%以上,且储能密度的浮动小于6.5%,说明其具有良好的温度稳定性。在循环次数高达108内,该陶瓷储能密度的浮动小于3%,储能效率浮动小于2.2%。
实施例3:
参照实施例1的方法进行,不同的是,制备0.9Bi0.5Na0.25K0.25TiO3-0.1BaZrO3。按照化学剂量比称取6.9894克Bi2O3,0.7949克Na2CO3,1.0884克K2CO3,1.3156克BaCO3,4.7922克TiO2,0.8215克ZrO2并倒入球磨罐中。
经测试,制得的钛酸铋钾钠基弛豫铁电陶瓷在45kV/mm的电场下,储能密度达到7.4J/cm3,储能效率达到77.3%,温度稳定性好。
实施例4:
参照实施例1的方法进行,不同的是,不进行二次球磨。
经测试,本实施例制得的钛酸铋钾钠基弛豫铁电陶瓷在48kV/mm的电场下,储能密度达到7.9J/cm3,储能效率达到90.1%。
对比例1:
参照实施例1的方法进行,不同的是,制备0.7Bi0.5Na0.45K0.05TiO3-0.3BaZrO3。按照化学剂量比称取5.4362克Bi2O3,1.1129克Na2CO3,0.1693克K2CO3,3.9468克BaCO3,3.7273克TiO2,2.4644克ZrO2并倒入球磨罐中。
经测试,制得的钛酸铋钾钠基弛豫铁电陶瓷在39kV/mm的电场下,储能密度达到6.6J/cm3,储能效率为73.6%。在RT-150℃的较宽的温度范围内,储能效率浮动高于23%,且储能密度的浮动高于15%,说明其温度稳定性较差。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料,其特征在于,其化学组成为(1-x)Bi0.5Na0.25K0.25TiO3-xBaZrO3,0.1≤x≤0.4。
2.根据权利要求1所述的钛酸铋钾钠基弛豫铁电陶瓷材料,其特征在于,0.2≤x≤0.3。
3.根据权利要求1所述的钛酸铋钾钠基弛豫铁电陶瓷材料,其特征在于,x=0.3。
4.如权利要求1-3中任一项所述的钛酸铋钾钠基弛豫铁电陶瓷材料的制备方法,其特征在于,采用以下步骤:
S1、按照(1-x)Bi0.5Na0.25K0.25TiO3-xBaZrO3化学计量比称取Bi2O3、Na2CO3、K2CO3、BaCO3、TiO2、ZrO2,与乙醇混合进行一次球磨,然后进行烘干、研磨、一次煅烧;
S2、将S1煅烧后得到的粉末倒入高能球磨机中,加入乙醇进行二次球磨,然后进行烘干;
S3、将S2得到的样品滴加粘结剂进行造粒,并将造粒后的粉过筛、压片,然后烧结;
S4、将S3烧结得到的陶瓷片进行打磨,放入离子溅射仪中进行离子溅射,之后将边缘打磨后即可得到一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料。
5.根据权利要求4所述的制备方法,其特征在于,S1中所述一次球磨的条件包括:转速为300-400rpm,时间为12-24h;
和/或,S1中所述一次煅烧的条件包括:温度为700-900℃,时间为2-3h。
6.根据权利要求4所述的制备方法,其特征在于,S2中所述二次球磨的条件包括:转速为500-700rpm,时间为4-12h。
7.根据权利要求4所述的制备方法,其特征在于,S3中所述粘结剂为PVA或PVB;所述粘结剂与S2二次球磨后烘干得到的样品的用量质量比为1:5-15。
8.根据权利要求4所述的制备方法,其特征在于,S3中所述过筛的过程中,选用筛网为400-500目的标准筛。
9.根据权利要求4所述的制备方法,其特征在于,S3中所述烧结的条件包括:温度为1000-1200℃,时间为2-4h。
10.根据权利要求4所述的制备方法,其特征在于,S3中所述离子溅射的条件包括:靶材选用金靶,电流为10-20mA,时间为150-300s。
CN202310414685.3A 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法 Active CN116444264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310414685.3A CN116444264B (zh) 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310414685.3A CN116444264B (zh) 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116444264A true CN116444264A (zh) 2023-07-18
CN116444264B CN116444264B (zh) 2024-05-17

Family

ID=87123327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310414685.3A Active CN116444264B (zh) 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116444264B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037985A (ko) * 2011-10-07 2013-04-17 울산대학교 산학협력단 온도안정성이 우수한 전왜성 무연 세라믹 조성물 및 이의 제조방법
KR20130047875A (ko) * 2011-11-01 2013-05-09 울산대학교 산학협력단 변형율이 높은 무연 압전 세라믹 조성물
KR101671672B1 (ko) * 2016-06-01 2016-11-01 울산대학교 산학협력단 무연 압전 세라믹 조성물 및 이의 제조방법
CN110550953A (zh) * 2019-09-17 2019-12-10 齐鲁工业大学 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN113264766A (zh) * 2021-06-07 2021-08-17 西安交通大学 一种无铅压电薄膜材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037985A (ko) * 2011-10-07 2013-04-17 울산대학교 산학협력단 온도안정성이 우수한 전왜성 무연 세라믹 조성물 및 이의 제조방법
KR20130047875A (ko) * 2011-11-01 2013-05-09 울산대학교 산학협력단 변형율이 높은 무연 압전 세라믹 조성물
KR101671672B1 (ko) * 2016-06-01 2016-11-01 울산대학교 산학협력단 무연 압전 세라믹 조성물 및 이의 제조방법
CN110550953A (zh) * 2019-09-17 2019-12-10 齐鲁工业大学 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN113264766A (zh) * 2021-06-07 2021-08-17 西安交通大学 一种无铅压电薄膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANG LI ET AL.: "Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric Ceramics", 《J MATER SCI》, pages 1153 - 1160 *

Also Published As

Publication number Publication date
CN116444264B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
Shen et al. BaTiO 3–BiYbO 3 perovskite materials for energy storage applications
CN108329027B (zh) 一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
Lv et al. Enhancing the dielectric and energy storage properties of lead-free Na0. 5Bi0. 5TiO3–BaTiO3 ceramics by adding K0. 5Na0. 5NbO3 ferroelectric
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN112919903B (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN108751982A (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN112266247A (zh) 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN111704463A (zh) 电介质陶瓷材料及其制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN111129580A (zh) 一种硫银锗矿掺杂钙钛矿型固体电解质及其制备方法
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN113929458A (zh) 一种高效高储能铌酸钠基陶瓷材料及其制备方法
CN116444264B (zh) 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN111153696A (zh) 一种低温烧结的锆钛酸钡钙基无铅高储能效率陶瓷材料
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN112979306B (zh) 一种制备铁电储能陶瓷的方法
CN112521145B (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN116444265B (zh) 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant