CN116444265B - 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法 - Google Patents

一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116444265B
CN116444265B CN202310414690.4A CN202310414690A CN116444265B CN 116444265 B CN116444265 B CN 116444265B CN 202310414690 A CN202310414690 A CN 202310414690A CN 116444265 B CN116444265 B CN 116444265B
Authority
CN
China
Prior art keywords
energy storage
ceramic material
ferroelectric ceramic
sodium titanate
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310414690.4A
Other languages
English (en)
Other versions
CN116444265A (zh
Inventor
刘辉
孙正
罗华杰
陈骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202310414690.4A priority Critical patent/CN116444265B/zh
Publication of CN116444265A publication Critical patent/CN116444265A/zh
Application granted granted Critical
Publication of CN116444265B publication Critical patent/CN116444265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明提供一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法,属于电介质储能陶瓷材料领域;其化学组成为(1‑x)[0.75(Bi0.5Na0.5)TiO3‑0.25BaTiO3]‑xBaZrO3,0.09<x≤0.18。本发明提供的钛酸铋钠基无铅弛豫铁电陶瓷具有优良的储能性能及环境稳定性,通过对元素比例及制备工艺进行调控,可以使该陶瓷的储能密度达到13.6J/cm3,储能效率达到94%,同时具有出色的温度、频率、疲劳稳定性。

Description

一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电 陶瓷材料及其制备方法
技术领域
本发明属于电介质储能陶瓷材料领域,具体涉及一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法。
背景技术
随着化石燃料的匮乏与环境问题的恶化,以光伏发电、风力发电为代表的新型能源发电技术开始得到普及,但由于地理、气候等因素的制约,能源呈现出时空分布不均的特征,因此目前对于储能材料的研究也逐渐深入。在众多的储能材料和设备中,电介质电容器以功率密度高、充放电速率快、工作寿命长、环境稳定性好等优势广泛应用于军事、医疗、通信等领域。但现阶段的电介质电容器储能密度普遍较低,难以顺应当前元器件小型化、集成化的发展趋势。因此合成出高储能密度的电介质电容器具有重要意义。
储能陶瓷电容器的储能密度主要与极化强度以及耐击穿强度有关。在目前较为热门的体系中,钛酸铋钠基储能陶瓷具有较高自发极化强度,但其剩余极化强度大,击穿场强低,导致储能效率和储能密度低,制约了它的应用范围。针对于此,现阶段主要通过掺杂等方式合成钛酸铋钠固溶体,细化晶粒尺寸、打破长程有序电畴,提高其储能密度及储能效率,从而使其能更好地满足实际应用的需求。
然而,现有的掺杂等方式合成钛酸铋钠固溶体中,掺杂元素众多且各元素配比各不相同,就储能性能而言,目前的普遍问题在于,储能密度与储能效率不能兼得。主要原因是其化学组分不能使材料同时具有较高的最大极化强度和较低的剩余极化强度。再者,目前很多材料选择在钛酸铋钠固溶体的准同型相界(MPB)处进行化学设计(如CN1298672C的组分设计基体为MPB附近的0.9BNT-0.1BT),以获得更高的极化强度,但这种设计往往会使材料具有较差的环境稳定性,从而无法预期性获得具有优异储能性能及环境稳定性的陶瓷材料。
发明内容
本发明要解决的技术问题是提供一种钛酸铋钠基弛豫铁电陶瓷材料及其制备方法,其能在采用较少掺杂元素种类的情况下具有优异储能性能及环境稳定性。
为解决上述技术问题,本发明提供如下技术方案:
第一方面,提供一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料,其化学组成为(1-x)[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-xBaZrO3(0.09<x≤0.18)。
优选地,0.12≤x≤0.18,x具体例如可以为0.12、0.13、0.14、0.15、0.18。
更优选地,x=0.15。
在上述优选x方案下,其储能密度能够达到13.6J/cm3,储能效率能够达到94%,且最大击穿场强可以达到66kV/mm;同时兼具优异的环境稳定性。
第二方面,提供第一方面所述的钛酸铋钠基弛豫铁电陶瓷材料的制备方法。
其中,优选地,具体采用以下步骤:
S1、按照(1-x)[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-xBaZrO3化学计量比称取Bi2O3、Na2CO3、BaCO3、TiO2、ZrO2,与乙醇混合进行一次球磨,然后进行烘干、研磨、一次煅烧以及冷却;
S2、将S1煅烧后得到的粉末倒入高能球磨机中,加入乙醇进行二次球磨,然后进行烘干;
S3、将S2煅烧后得到的样品滴加粘结剂进行造粒,并将造粒后的粉过筛、压片,然后烧结;
S4、将S3烧结得到的陶瓷片进行打磨,在离子溅射仪中对其上下表面进行离子溅射,将边缘打磨后即可得到一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料。
其中,优选地,S1中所述一次球磨的条件包括:转速为300-400rpm,时间为12-24h。
S1中所述乙醇的用量可以根据所采用容器的体积和研磨均匀情况进行自由选择,只要利于研磨均匀即可,且乙醇在后续烘干过程中会蒸发掉。
其中,优选地,S1中所述一次煅烧的条件包括:温度为600-900℃,时间为1-3h。
其中,优选地,S2中所述的二次球磨的条件包括:转速为500-700rpm,时间为6-12h。
其中,优选地,S3中所述粘结剂为PVA和PVB中的一种。
优选地,所述粘结剂与S2得到的样品的用量质量比为1:5-15。
其中,优选地,S3中所述的过筛过程中,选用筛网为400目的标准筛。
其中,优选地,S3中所述烧结的条件包括:温度为1100-1300℃,时间为1-3h。
其中,优选地,S3中所述离子溅射的条件包括:靶材选用金靶,电流为10-15mA,时间为150-300s。该优选方案,能够使陶瓷表面的电极更加均匀,从而更利于击穿电场强度的稳定及提高。
本发明的上述技术方案的有益效果如下:
本发明提供的钛酸铋钠基弛豫铁电陶瓷材料,化学式为(1-x)[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-xBaZrO3,0.09<x≤0.18,其各元素及其具有适宜比例,能够协同作用,使得兼顾优异储能性能及环境稳定性;其中,通过合理的化学调控,在B位引入离子半径更大的Zr4+,配合其他特定元素及其含量,打破长程有序结构,使材料兼具较高的最大极化强度以及较低的剩余极化强度,能够同时获得优异的储能密度及储能效率。而在相同条件下,若x低于0.09材料往往会具有较大的剩余极化强度,从而导致储能密度低下,在实际应用过程中具有较大的能量损耗,x高于0.18材料则具有较低小的最大极化强度,从而具有较低的储能密度。另外,在远离MPB处进行化学设计,能够提高材料的环境稳定性,有利于实用化的发展。
在本发明的制备方法中,在特定原料配比下,还特别采用二次高能球磨,以起到细化晶粒,提高致密度的作用,从而提高陶瓷的耐击穿电场强度。本发明通过离子溅射,能够使陶瓷表面的电极更加均匀,有利于耐击穿电场强度的稳定和提升。
本发明通过对元素比例和工艺的协同调控,其储能密度可以达到13.6J/cm3,储能效率可以达到94%,最大击穿场强能够达到66kV/mm,超过了报道的绝大多数储能陶瓷的性能。同时其具有出色的环境稳定性以及抗疲劳性,成本低廉,制备简单,可广泛的应用于移动通信、医疗卫生、国防军事等脉冲功率电子系统。
附图说明
图1为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的SEM图片;
图2为实施例1制得的钛酸铋钠基弛豫铁电陶瓷最大可施加电场下的电滞回线图;
图3为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的储能特性随电场强度的变化曲线。
图4为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的单极电滞回线随温度的变化曲线。
图5为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的单极电滞回线随频率的变化曲线。
图6为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的单极电滞回线随循环次数的变化曲线。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
实施例1:
利用本发明制备0.85[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-0.15BaZrO3。按照化学剂量比称取3.7131克Bi2O3,0.8446克Na2CO3,3.5768克BaCO3,3.3945克TiO2,0.9242克ZrO2并倒入球磨罐中,加入乙醇一次球磨20h,转速为400rpm。将球磨后的样品依次进行烘干、研磨,然后放入马弗炉中设置温度为850℃煅烧2h。将冷却后的粉末倒入高能球磨机中,加入乙醇,进行高能球磨6h,转速为500rpm。烘干后,将样品倒入研钵中,滴加适量PVA粘结剂(粘结剂与样品的用量质量比为1:10)研磨1h,研磨均匀,倒入400目的标准筛中进行过筛。然后利用φ=10mm的模具将过筛后的粉末压制成片并放入马弗炉中,设置温度为1150℃烧结2h,冷却后将陶瓷片厚度打磨至50μm。利用离子溅射仪在陶瓷的上下表面镀金电极,离子溅射的条件包括:靶材选用金靶,电流为10mA,时间为200s。即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料。
图1为本实施例制得的钛酸铋钠基弛豫铁电陶瓷的SEM图片,从图中可以看出,陶瓷晶粒平均尺寸在1.5μm左右,具有较高的致密度,这有效提升了其耐击穿强度。
图2为本实施例制得的钛酸铋钠基弛豫铁电陶瓷室温最大可施加电场下的单极电滞回线,从图中可以看出,该陶瓷电滞回线细长,具有较高的极化强度以及较小的能量损耗,最大可施加电场为66kV/mm。
图3为本实施例制得的钛酸铋钠基弛豫铁电陶瓷储能特性随电场强度的变化曲线,从图中可以看出,该陶瓷储能密度在66kV/mm的电场中可以达到13.6J/cm3;储能效率可以稳定在93%以上。
图4为本实施例制得的钛酸铋钠基弛豫铁电陶瓷单极电滞回线随温度的变化曲线,从图中可以看出,在不同温度下的电滞回线变化幅度较小,在RT-120℃的温度范围内,该陶瓷储能密度的浮动小于2%,储能效率浮动小于5.8%,温度稳定性优异。
图5为本实施例制得的钛酸铋钠基弛豫铁电陶瓷单极电滞回线随频率的变化曲线,从图中可以看出,在不同频率下的电滞回线几乎不变,在1-200Hz的频率范围内,该陶瓷储能密度的浮动小于2%,储能效率浮动小于1.9%,频率稳定性优异。
图6为本实施例制得的钛酸铋钠基弛豫铁电陶瓷单极电滞回线随循环次数的变化曲线,从图中可以看出,随着循环次数的指数级增加,电滞回线仍然保持极小的变化幅度,在循环次数高达108内,该陶瓷储能密度的浮动小于2%,储能效率浮动小于0.7%,疲劳稳定性优异。
实施例2:
参照实施例1的方法进行,不同的是,制备0.88[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-0.12BaZrO3。按照化学剂量比称取3.8442克Bi2O3,0.8744克Na2CO3,3.3548克BaCO3,3.5143克TiO2,0.7393克ZrO2并倒入球磨罐中。
经测试,本实施例制得的弛豫铁电陶瓷在47kV/mm的电场下,储能密度达到8.1J/cm3,储能效率达到86.4%。
实施例3:
参照实施例1的方法进行,不同的是,制备0.82[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-0.18BaZrO3。按照化学剂量比称取3.5821克Bi2O3,0.8148克Na2CO3,3.7988克BaCO3,3.2747克TiO2,1.1090克ZrO2并倒入球磨罐中。
经测试,本实施例制得的弛豫铁电陶瓷在58kV/mm的电场下,储能密度达到10.3J/cm3,储能效率达到94.2%。
对比例1:
参照实施例1的方法进行,不同的是,制备0.94[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-0.06BaZrO3。按照化学剂量比称取4.1063克Bi2O3,0.9340克Na2CO3,2.9108克BaCO3,3.7539克TiO2,0.3697克ZrO2并倒入球磨罐中并倒入球磨罐中。
经测试,制得的弛豫铁电陶瓷在31kV/mm的电场下,储能密度为4.7J/cm3,储能效率为72.3%。
对比例2:
参照实施例1的方法进行,不同的是,制备0.85[0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3]-0.15BaZrO3。按照化学剂量比称取4.6538克Bi2O3,0.9572克Na2CO3,1.9833克BaCO3,3.3945克TiO2,0.9242克ZrO2并倒入球磨罐中。
经测试,制得的弛豫铁电陶瓷在34kV/mm的电场下,储能密度为4.2J/cm3,储能效率为78.1%。在RT-150℃的较宽的温度范围内,储能效率的浮动高于15%,且储能密度的浮动高于10%。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料,其特征在于,其化学组成为(1-x)[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-xBaZrO3,0.09<x≤0.18;
所述的钛酸铋钠基弛豫铁电陶瓷材料的制备方法,采用以下步骤:
S1、按照(1-x)[0.75(Bi0.5Na0.5)TiO3-0.25BaTiO3]-xBaZrO3化学计量比称取Bi2O3、Na2CO3、BaCO3、TiO2、ZrO2,与乙醇混合进行一次球磨,然后进行烘干、研磨、一次煅烧;
S2、将S1煅烧后得到的粉末倒入高能球磨机中,加入乙醇进行二次球磨,然后进行烘干;
S3、将S2得到的样品滴加粘结剂进行造粒,并将造粒后的粉过筛、压片,然后烧结;
S4、将S3烧结得到的陶瓷片进行打磨,在离子溅射仪中对其上下表面进行离子溅射,将边缘打磨后即可得到一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料;
S1中所述一次球磨的条件包括:转速为300-400rpm,时间为12-24h,S1中所述一次煅烧的条件包括:温度为600-900℃,时间为1-3h;
S3中所述粘结剂为PVA或PVB;所述粘结剂与S2得到的样品的用量质量比为1:5-15;
S3中所述烧结的条件包括:温度为1100-1300℃,时间为1-3h;
S4中所述离子溅射的条件包括:靶材选用金靶,电流为10-15mA,时间为150-300s。
2.根据权利要求1所述的钛酸铋钠基弛豫铁电陶瓷材料,其特征在于,0.12≤x≤0.18。
3.根据权利要求2所述的钛酸铋钠基弛豫铁电陶瓷材料,其特征在于,x=0.15。
4.根据权利要求1所述的钛酸铋钠基弛豫铁电陶瓷材料,其特征在于,S2中所述二次球磨的条件包括:转速为500-700rpm,时间为6-12h。
5.根据权利要求1所述的钛酸铋钠基弛豫铁电陶瓷材料,其特征在于,S3中所述的过筛过程中,选用筛网为400目的标准筛。
CN202310414690.4A 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法 Active CN116444265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310414690.4A CN116444265B (zh) 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310414690.4A CN116444265B (zh) 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116444265A CN116444265A (zh) 2023-07-18
CN116444265B true CN116444265B (zh) 2024-04-16

Family

ID=87121603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310414690.4A Active CN116444265B (zh) 2023-04-18 2023-04-18 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116444265B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
JP2008004782A (ja) * 2006-06-23 2008-01-10 Fujifilm Corp 強誘電体素子とその製造方法、強誘電体メモリ、及びインクジェット式記録ヘッド
KR20120134928A (ko) * 2011-06-03 2012-12-12 한국세라믹기술원 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
JP2015154013A (ja) * 2014-02-18 2015-08-24 株式会社ユーテック 電極、強誘電体セラミックス及びその製造方法
CN114180962A (zh) * 2021-12-30 2022-03-15 陕西科技大学 一种低电场高储能和超快放电速率钛酸铋钠基陶瓷材料及其制备方法
CN114914087A (zh) * 2022-05-09 2022-08-16 同济大学 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN115196960A (zh) * 2022-06-29 2022-10-18 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
JP2008004782A (ja) * 2006-06-23 2008-01-10 Fujifilm Corp 強誘電体素子とその製造方法、強誘電体メモリ、及びインクジェット式記録ヘッド
KR20120134928A (ko) * 2011-06-03 2012-12-12 한국세라믹기술원 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
JP2015154013A (ja) * 2014-02-18 2015-08-24 株式会社ユーテック 電極、強誘電体セラミックス及びその製造方法
CN114180962A (zh) * 2021-12-30 2022-03-15 陕西科技大学 一种低电场高储能和超快放电速率钛酸铋钠基陶瓷材料及其制备方法
CN114914087A (zh) * 2022-05-09 2022-08-16 同济大学 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN115196960A (zh) * 2022-06-29 2022-10-18 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
0.94(Bi0.5Na0.5)TiO3-0.06Ba(Zr0.25Ti0.75)O3陶瓷的制备、表征与热释电性能;张晖等;《兰州理工大学学报》;20220228;第48卷(第1期);第1-7页 *
Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics;Jamil Ur Rahman a, et al.;《Journal of Alloys and Compounds》;20140118(第593期);第97-102页 *

Also Published As

Publication number Publication date
CN116444265A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN109650876B (zh) 一种a位高熵钙钛矿氧化物及其制备方法
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
KR101268487B1 (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN107459350B (zh) 一种介电储能反铁电陶瓷材料及其制备方法
CN106631005A (zh) 中温烧结的无铅高压电容器介质瓷料及制备方法
CN107140974A (zh) 一种微波烧结的无铅高储能密度st‑nbt陶瓷材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
Lv et al. Enhancing the dielectric and energy storage properties of lead-free Na0. 5Bi0. 5TiO3–BaTiO3 ceramics by adding K0. 5Na0. 5NbO3 ferroelectric
Li et al. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors
Cao et al. Lithium ionic conductivity of Li 7-3x Fe x La 3 Zr 2 O 12 ceramics by the Pechini method
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN111129580B (zh) 一种硫银锗矿掺杂钙钛矿型固体电解质及其制备方法
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
Yang et al. Controllable low-temperature flash sintering and giant dielectric performance of (Zn, Ta) co-doped TiO2 ceramics
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
JP2011079707A (ja) セラミックス材料及びその製造方法
CN116444265B (zh) 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN103693958A (zh) 一种用于储能电容器的反铁电陶瓷材料及其制备方法和应用
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
Lee et al. Influence of MnO2 and Ta2O5/YSZ addition on properties of Na+-β/β"-alumina solid electrolytes prepared by a synthesizing-cum-sintering process
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN102643092B (zh) 一种铅基反铁电纳米材料和铅基反铁电陶瓷储能材料的制备
CN116444264B (zh) 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant