CN116443953A - 一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用 - Google Patents

一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用 Download PDF

Info

Publication number
CN116443953A
CN116443953A CN202310621950.5A CN202310621950A CN116443953A CN 116443953 A CN116443953 A CN 116443953A CN 202310621950 A CN202310621950 A CN 202310621950A CN 116443953 A CN116443953 A CN 116443953A
Authority
CN
China
Prior art keywords
cobalt
layered double
double hydroxide
electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310621950.5A
Other languages
English (en)
Other versions
CN116443953B (zh
Inventor
黄子航
马天翼
李慧
孙放放
刘骥驰
孙颖
孙晓东
赵钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202310621950.5A priority Critical patent/CN116443953B/zh
Publication of CN116443953A publication Critical patent/CN116443953A/zh
Application granted granted Critical
Publication of CN116443953B publication Critical patent/CN116443953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及本发明属于新能源技术领域,具体涉及一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用。包括如下步骤:将含有钴镍阳离子和氟阴离子的盐溶液作为电沉积电解液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极进行电沉积,得到氟掺杂钴镍层状双氢氧化物;将氟掺杂钴镍层状双氢氧化物作为工作电极,混合碱液作为电解液,石墨纸和氧化汞电极作为对电极和参比电极进行电化学活化,得到富含氢空位的氟掺杂钴镍层状双氢氧化物。本发明制备的具有增强铵离子存储的钴镍层状双氢氧化物有利于增加活性比表面积,促进铵离子的快速传输。

Description

一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法 及应用
技术领域
本发明属于新能源技术领域,具体涉及一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法。
背景技术
随着新能源的普及,各种续航和安全问题逐渐凸显,开发安全高效的储能电池成为目前科学界研究的重点。水系电池相较于有机系电池具有较低的成本和较高的安全性,因此逐渐引起了科学家的研究兴趣。相较于Li+、K+、Zn2+、Mg2+、Ca2+等金属载流子,NH4 +具有较轻的摩尔质量,较小的水合离子半径和取向性。同时来源广泛,理论上利用氮气和氢气可无限合成。另外,相较于H+的腐蚀性,NH4 +也具有较高的安全性。因此开发和优化铵离子电池材料是非常有意义的工作。研究表明NH4 +的存储伴随着氢键的形成和断裂,以类猿猴在林间跳跃的方式传输。层状双氢氧化物作为一种典型的二维层状材料被广泛用在储能领域,但是其大部分用在碱性电解液中,在中性电解液中表现一般,但是层状结构和大量的羟基的存在使其能够作为铵离子存储载体。故此,本发明致力于增强钴镍层状双氢氧化物储铵性能。
发明内容
本发明通过高电负性的元素掺杂和电化学活化的方法,制备了富含氢空位的氟掺杂钴镍层状双氢氧化物,逐级调节氢键相互作用,增加了铵离子吸附活性位点,达到了大幅改善电极材料储铵的能力。
本发明采用的技术方案是:一种具有增强铵离子存储的钴镍层状双氢氧化物,制备方法包括如下步骤:
1)将含有钴镍阳离子和氟阴离子的盐溶液作为电沉积电解液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极进行电沉积,得到氟掺杂钴镍层状双氢氧化物;
2)将氟掺杂钴镍层状双氢氧化物作为工作电极,混合碱液作为电解液,石墨纸和氧化汞电极作为对电极和参比电极进行电化学活化,得到富含氢空位的氟掺杂钴镍层状双氢氧化物。
上述的一种具有增强铵离子存储的钴镍层状双氢氧化物,步骤1)中,所述电沉积液为硝酸钴、硝酸镍和氟化铵的水溶液,摩尔浓度比为3:2:5。
上述的一种具有增强铵离子存储的钴镍层状双氢氧化物,步骤1)中,所述电沉积的方式为恒电位法,沉积电位为-1V,沉积时间为150s。
上述的一种具有增强铵离子存储的钴镍层状双氢氧化物,步骤2)中,混合碱液为6mol/L的氢氧化钾和2mol/L氟化钾的混合液。
上述的一种具有增强铵离子存储的钴镍层状双氢氧化物,步骤2)中,电化学活化方式为循环伏安法,电压范围从0V到0.6V,扫描速度为50mV/s,运行圈数为300圈。
上述一种具有增强铵离子存储的钴镍层状双氢氧化物在水系铵离子电池中的应用。
上述的应用,制备的钴镍层状双氢氧化物电极材料作为正极材料在水系铵离子电池的应用。
铵离子在金属氧化物中的嵌入和脱出涉及到氢键的断裂和形成,因此调节主体材料和客体离子之间的氢键相互作用可以有效改善铵离子的存储性能。本文采用调节氢键强度和增加氢空位的协同优化策略大幅提升了钴镍层状双氢氧化物的储铵能力。即首先在碳布上电沉积氟掺杂的钴镍层状双氢氧化物,然后通过强碱电解液介导的电化学活化策略进一步增加氢空位浓度。电负性最强的氟可以有效增强和铵根离子氢键相互作用,此外氟取代羟基也在一定程度上相当于形成氢空位。而后续的电化学学活化策略可以更加有效形成氢空位,增加铵离子存储活性位点。因此该方法大幅改善了钴镍层状双氢氧化物的储铵性能,同时也为改善其他电极材料的储铵性能提供了一种思路。
本发明的有益效果是:
1、电负性最强的氟原子取代羟基增强了层状双氢氧化物和铵根离子之间的氢键相互作用,有利于铵根离子的快速吸附。而电化学活化后,羟基脱掉氢原子形成氢空位,直接暴露出具有高活性的氧原子,进一步增加了吸附铵根离子的活性位点。总之,氟取代和电活化都相当于形成氢空位,裸露出能和铵根离子形成氢键的高能原子,降低铵根离子的吸附能,同时减少了氢离子的位阻效应。
2、本发明制备的富含氢空位的氟掺杂钴镍层状双氢氧化物呈超薄多孔纳米片结构,有利于增加活性比表面积,促进铵离子的快速传输。
附图说明
图1是实施例1中富含氢空位氟掺杂钴镍层状双氢氧化物的扫描电镜图片。
图2是实施例1和实施例2中镍钴层状双氢氧化物的XRD图。
图3是实施例1中富含氢空位氟掺杂钴镍层状双氢氧化物的能谱图。
图4是实施例1和实施例2中镍钴层状双氢氧化物的循环伏安曲线。
图5是实施例1和实施例2中镍钴层状双氢氧化物在不同电流密度下的充放电曲线。
图6是富含氢空位氟掺杂钴镍层状双氢氧化物的优点示意图。
具体实施方式
一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法,包括如下步骤:
1)将硝酸钴、硝酸镍和氟化铵按照摩尔浓度比为3:2:5的比例溶解在水溶液中作为电沉积液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极,恒电位沉积得到氟掺杂钴镍层状双氢氧化物;沉积电位为-1V,沉积时间为150s。
2)将氟掺杂钴镍层状双氢氧化物作为工作电极,6mol/L的氢氧化钾和2mol/L氟化钾混合液作为电解液,石墨纸和氧化汞电极作为对电极和参比电极,电化学活化得到富含氢空位的氟掺杂钴镍层状双氢氧化物。
电化学活化方式为循环伏安法,电压范围从0V到0.6V,扫描速度为50mV/s,运行圈数为300圈。
实施例1
一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法,包括如下步骤:
1)将硝酸钴、硝酸镍和氟化铵按照摩尔浓度比为3:2:5的比例溶解在水溶液中作为电沉积液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极,在-1V的电位下沉积150s,得到氟掺杂钴镍层状双氢氧化物,记作FCoNi LDH;
2)将氟掺杂钴镍层状双氢氧化物作为工作电极,6mol/L的氢氧化钾和2mol/L氟化钾混合液作为电解液,石墨纸和氧化汞电极作为对电极和参比电极,在0-0.6V的电位下以50mV/s的扫速运行300圈,得到富含氢空位的氟掺杂钴镍层状双氢氧化物,
记作HV-FCoNi LDH。
图1中扫描电镜显示,HV-FCoNi LDH为多孔超薄纳米片结构,这有利于活性位点的暴露和电解液离子的快速传输。
实施例2
钴镍层状双氢氧化物制备方法包括如下步骤:
1)将硝酸钴、硝酸镍按照摩尔浓度比为3:2的比例溶解在水溶液中作为电沉积液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极,在-1V的电位下沉积100s,得到钴镍层状双氢氧化物,记作CoNi LDH;
图2中X射线衍射结果表明,氟掺杂后钴镍层状双氢氧化物的峰向低角度移动,表明原子的配位环境发生变化,氟离子成功掺杂到钴镍层状双氢氧化物中。图3中HV-FCoNiLDH的能谱图中显示了氟元素的峰,进一步证明了这一结果。
实施例3
一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法,包括如下步骤:
1)将硝酸钴、硝酸镍和氟化铵按照摩尔浓度比为3:2:5的比例溶解在水溶液中作为电沉积液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极,在-1V的电位下沉积150s,得到氟掺杂钴镍层状双氢氧化物,记作FCoNi LDH;
2)将氟掺杂钴镍层状双氢氧化物作为工作电极,6mol/L的氢氧化钾和2mol/L氟化钾混合液作为电解液,石墨纸和氧化汞电极作为对电极和参比电极,在0-0.6V的电位下以50mV/s的扫速运行300圈,得到富含氢空位的氟掺杂钴镍层状双氢氧化物,记作HV-FCoNiLDH。
3)以HV-FCoNi LDH为工作电极,饱和甘汞电极为参比电极,石墨纸为对电极,0.5MCH3COONH4作为电解液,在0-0.9V的电位范围内,分别进行循环伏安扫描测试和恒电流充放电测试。
实施例4
一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法,包括如下步骤:
1)将硝酸钴、硝酸镍按照摩尔浓度比为3:2的比例溶解在水溶液中作为电沉积液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极,在-1V的电位下沉积100s,得到钴镍层状双氢氧化物,记作CoNi LDH;
2)以CoNi LDH为工作电极,饱和甘汞电极为参比电极,石墨纸为对电极,0.5MCH3COONH4作为电解液,在0-0.9V的电位范围内,分别进行循环伏安扫描测试和恒电流充放电测试。
图4展示了HV-FCoNi LDH和CoNi LDH的循环伏安曲线,明显的氧化还原峰证明了它们适合存储铵离子。图5的充放电结果显示HV-CoNi LDH在0.4A/g时的容量为203mAh/g,那远远高于CoNi LDH的81mAh/g,证明氟掺杂和氢空位相结合的策略可以有效提高钴镍层状双氢氧化物的储铵性能。如图6所示,电负性最强的氟和铵根离子之间强烈的氢键相互作用可以增强钴镍层状双氢氧化物对铵根离子的吸附。和氟元素类似,电化学活化后氢空位的产生暴露出了大量的高活性氧原子,进一步增加了活性位点。此外,不论是氟掺杂还是脱氢增加氧的活性,都相当于脱掉了氢原子,这减少了铵根离子中氢原子和活性原子形成氢键的位阻,有利于降低铵根离子的吸附能。总之,氟掺杂和氢空位相结合优化钴镍层状双氢氧化物的储铵性能是非常可行的。

Claims (7)

1.一种具有增强铵离子存储的钴镍层状双氢氧化物,其特征在于,制备方法包括如下步骤:
1)将含有钴镍阳离子和氟阴离子的盐溶液作为电沉积电解液,以碳布为工作电极,石墨纸和甘汞电极分别作为对电极和参比电极进行电沉积,得到氟掺杂钴镍层状双氢氧化物;
2)将氟掺杂钴镍层状双氢氧化物作为工作电极,混合碱液作为电解液,石墨纸和氧化汞电极作为对电极和参比电极进行电化学活化,得到富含氢空位的氟掺杂钴镍层状双氢氧化物。
2.根据权利要求1所述的一种具有增强铵离子存储的钴镍层状双氢氧化物,其特征在于,步骤1)中,所述电沉积液为硝酸钴、硝酸镍和氟化铵的水溶液,摩尔浓度比为3:2:5。
3.根据权利要求1所述的一种具有增强铵离子存储的钴镍层状双氢氧化物,其特征在于,步骤1)中,所述电沉积的方式为恒电位法,沉积电位为-1V,沉积时间为150s。
4.根据权利要求1所述的一种具有增强铵离子存储的钴镍层状双氢氧化物,其特征在于,步骤2)中,混合碱液为6mol/L的氢氧化钾和2mol/L氟化钾的混合液。
5.根据权利要求1所述的一种具有增强铵离子存储的钴镍层状双氢氧化物,其特征在于,步骤2)中,电化学活化方式为循环伏安法,电压范围从0V到0.6V,扫描速度为50mV/s,运行圈数为300圈。
6.权利要求1所述一种具有增强铵离子存储的钴镍层状双氢氧化物在水系铵离子电池中的应用。
7.根据权利要求6所述的应用,其特征在于,制备的钴镍层状双氢氧化物电极材料作为正极材料在水系铵离子电池的应用。
CN202310621950.5A 2023-05-30 2023-05-30 一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用 Active CN116443953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310621950.5A CN116443953B (zh) 2023-05-30 2023-05-30 一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310621950.5A CN116443953B (zh) 2023-05-30 2023-05-30 一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用

Publications (2)

Publication Number Publication Date
CN116443953A true CN116443953A (zh) 2023-07-18
CN116443953B CN116443953B (zh) 2024-09-10

Family

ID=87132263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310621950.5A Active CN116443953B (zh) 2023-05-30 2023-05-30 一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116443953B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117684202A (zh) * 2024-02-02 2024-03-12 东华大学 一种表面修饰的析氧电催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANMING MENG ET AL: ""Cobalt–Nickel Double Hydroxide toward Mild Aqueous Zinc-Ion Batteries"", 《ADVANCED FUNCTIONAL MATERIALS》, vol. 32, no. 33, 30 April 2022 (2022-04-30), pages 2204026 *
TIANLE WANG ET AL: ""Fluorine-doped nickel-copper layered double hydroxide combined with nitrogen-doped reduced graphene oxide for high-performance asymmetric supercapacitor"", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 928, 14 September 2022 (2022-09-14), pages 167226, XP087190525, DOI: 10.1016/j.jallcom.2022.167226 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117684202A (zh) * 2024-02-02 2024-03-12 东华大学 一种表面修饰的析氧电催化剂及其制备方法
CN117684202B (zh) * 2024-02-02 2024-05-31 东华大学 一种表面修饰的析氧电催化剂及其制备方法

Also Published As

Publication number Publication date
CN116443953B (zh) 2024-09-10

Similar Documents

Publication Publication Date Title
Yang et al. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives
Liu et al. Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries
Elsiddig et al. Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol-gel method as high-performance supercapacitor electrodes
Gonçalves et al. Recent progress in water splitting and hybrid supercapacitors based on nickel-vanadium layered double hydroxides
CN105552282A (zh) 基于功能性碳纤维布作为正极阻挡层的锂硫电池
CN109560265B (zh) 一种有效抑制富锂锰基正极材料氧流失的包覆方法
CN110335764B (zh) 一种高效构筑钠离子电容器的预钠化方法
CN116443953B (zh) 一种具有增强铵离子存储的钴镍层状双氢氧化物的制备方法及应用
CN112299493B (zh) 一种Ni掺杂δ-MnO2材料制备方法及其在钾离子电池中应用
CN109449379A (zh) 一种氮掺杂碳复合的SnFe2O4锂离子电池负极材料及其制备方法与应用
CN112830523A (zh) 用于超级电容器的钼掺杂四氧化三钴及其制备方法
CN114335661A (zh) 一种提升中性水系可充电锌锰电池稳定性的电解液添加剂和电解液
Zhang et al. Soft template-induced self-assembly strategy for sustainable production of porous carbon spheres as anode towards advanced sodium-ion batteries
CN112467077A (zh) 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN115448368B (zh) 一种能够借助电荷转移储钠的层状二氧化锰制备方法及其应用
CN109786861B (zh) 一种混合电化学储能器件
CN111584248A (zh) 一种钾离子混合电容器及其制备方法
CN115863549A (zh) 一种p2相镍锰基正极极片及其处理方法和应用
CN112420401B (zh) 一种氧化铋/氧化锰复合型超级电容器及其制备方法
CN115692669A (zh) 一种嵌入转换双机理异质界面材料、制备方法及应用
CN112599361A (zh) 基于铋基电极的宽温区高性能电化学储能器件
CN114824240B (zh) 改性氧化钼及基于改性氧化钼的锌离子电池
CN117613262B (zh) 一种铁基硫酸盐正极材料在钠离子电池中的应用
CN116161713B (zh) 一种氯离子插层的钼掺杂水滑石材料及电池正极材料
CN114300277B (zh) 一种铝锰氧化物及其作为正极材料在水系镁离子电容器中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant