CN116426454A - 一种提高阿维菌素B1a组分效价和比例的基因工程方法 - Google Patents

一种提高阿维菌素B1a组分效价和比例的基因工程方法 Download PDF

Info

Publication number
CN116426454A
CN116426454A CN202310549020.3A CN202310549020A CN116426454A CN 116426454 A CN116426454 A CN 116426454A CN 202310549020 A CN202310549020 A CN 202310549020A CN 116426454 A CN116426454 A CN 116426454A
Authority
CN
China
Prior art keywords
avermectin
gene
proportion
component
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310549020.3A
Other languages
English (en)
Inventor
吴杰群
高尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202310549020.3A priority Critical patent/CN116426454A/zh
Publication of CN116426454A publication Critical patent/CN116426454A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • C12P19/62Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin the hetero ring having eight or more ring members and only oxygen as ring hetero atoms, e.g. erythromycin, spiramycin, nystatin
    • C12P19/623Avermectin; Milbemycin; Ivermectin; C-076
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01019Threonine ammonia-lyase (4.3.1.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种提高阿维菌素B1a组分效价和比例的基因工程方法,对阿维链霉菌体内支链氨基酸合成途径进行重构,将编码乙酰羟基酸合成酶(AHAS)的ilvB1N基因替换为来源于大肠杆菌的ilvGM基因,同时过表达内源性的ilvA基因,从源头上改变两种阿维菌素生物合成起始单元前体的产生比例,使阿维菌素B1a组分的效价和B1a/B1b组分比例均明显提高。利用该策略能有效提升阿维菌素生产菌株的性能,降低阿维菌素的生产成本。

Description

一种提高阿维菌素B1a组分效价和比例的基因工程方法
技术领域
本发明属于生物学和代谢工程技术领域,具体涉及一种提高阿维菌素B1a组分效价和比例的基因工程方法。
背景技术
阿维菌素(Avermectin)是由阿维链霉菌(Streptomyces avermitilis)发酵产生的一系列结构相似的十六元大环内酯类抗生素,具有广谱、高效的抗寄生虫活性。天然生产的阿维菌素有八种组分,分别为A1a、A1b、A2a、A2b、B1a、B1b、B2a和B2b,它们是由于其聚酮苷元的母核上C-5、C-22,23和C-25三个位置的结构差异而产生的,其中B1a组分是主要活性成分,B1b组分是工业上较难去除的杂质组分。市售阿维菌素农药是以Abamectin(B1a+B1b,其中B1a含量不低于90%、B1b不高于5%)为主要杀虫成分,以B1a的含量来标定。由于阿维菌素能够在土壤中被微生物分解为无毒物质,并且使用量通常较少,因此对人、畜和生态环境有较高的安全性,在农业、林业、畜牧业和医药领域具有广阔的市场前景和应用价值。
鉴于阿维菌素重要的应用价值及大宗需求性,人们一直致力于开发生产性能优良的工业菌株,以降低阿维菌素的生产成本。阐明阿维菌素生物合成的代谢机制可以为阿维菌素的产量提升、选择性生产所需组分以及理性改变菌株代谢产物结构从而生产新的阿维菌素衍生物提供合理的途径,具有重大意义。阿维菌素的生物合成过程大致可分为三步:首先,聚酮合成酶(Polyketide synthases,PKS)利用各种酰基辅酶A线性组装生成聚酮类初始糖苷配基;然后,阿维菌素生物合成基因簇中的后修饰基因对初始糖苷配基进行环化、还原、脱水和甲基化等一系列修饰得到阿维菌素糖苷配基;最后,阿维菌素糖苷配基经过糖基化生成成熟的阿维菌素。值得注意的是,天然存在的阿维菌素C-25号位具有两个可能的取代基:来自2-甲基丁酰CoA的仲丁基残基和来自异丁酰CoA的异丙基残基,这是由于阿维菌素生物合成过程中PKS起始模块AT结构域识别起始单元不具有专一性,分别加载2-甲基丁酰CoA和异丁酰CoA,从而产生了a和b两种组分。在早期的同位素标记实验中,L-[U-14C]-异亮氨酸及其酮酸[U-14C]3-甲基-2-氧代戊酸有效地掺入a组分和L-[3,4-3H]缬氨酸及其酮酸[3,4-3H]2-氧代异戊酸有效地掺入b组分,初步显示阿维菌素起始单元来源于支链氨基酸的代谢途径。大肠杆菌体内存在的ilvGM基因编码的Ⅱ型AHAS对α-酮丁酸的底物特异性更强,能够催化产生更多的(S)-2-乙酰基-2-羟基丁酸(BARAK Z,CHIPMAN D M,GOLLOPN.Physiological implications ofthe specificityofacetohydroxyacid synthaseisozymes ofenteric bacteria[J].Journal of bacteriology,1987,169(8):3750-3756.)。
利用合成生物学和代谢工程策略对阿维链霉菌支链氨基酸代谢通路进行合理的重构和优化,改变不同前体分子参与PKS合成的比例,可以实现阿维菌素B1a活性成分比例和产量的提高,降低B1b杂质组分的含量,也可为其他大环内酯类抗生素的产生菌株基因工程改造提供重要的参考。
发明内容
为了降低阿维菌素的生产成本和解决现有的技术问题,本发明的目的在于提供一种提高阿维菌素B1a组分效价和比例的基因工程方法。
本发明提供的阿维链霉菌基因改造方法,主要是通过对体内支链氨基酸合成途径进行合理的重构和优化,具体是将阿维链霉菌体内编码乙酰羟基酸合成酶的ilvB1N基因(核苷酸序列如SEQ ID NO.1所示,氨基酸序列如SEQ ID NO.5所示)进行失活,并异源表达来源于大肠杆菌的ilvGM基因(核苷酸序列如SEQ ID NO.2所示,氨基酸序列如SEQ ID NO.6所示),催化产生更多的阿维菌素a组分前体(S)-2-乙酰基-2-羟基丁酸,并降低阿维菌素b组分前体(S)-2-乙酰乳酸的产生。
本发明提供的阿维链霉菌基因改造方法,主要是通过对体内支链氨基酸合成途径进行合理的重构和优化,具体是过表达内源性的ilvA基因(核苷酸序列如SEQ ID NO.3所示,氨基酸序列如SEQ ID NO.7所示),为乙酰羟基酸合成酶的特异性催化反应提供充足的底物,有利于阿维菌素a组分前体(S)-2-乙酰基-2-羟基丁酸的生成。
本发明所述的基因改造过程包括:构建用于失活ilvB1N基因,异源表达ilvGM基因和ilvA基因的重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA(SEQ ID NO.4);将所述质粒通过大肠杆菌-链霉菌属间接合转移导入阿维链霉菌产生菌株S.avermitilis中;筛选表型和基因型正确的突变型菌株VOILVAGM;发酵验证所述突变型菌株阿维菌素B1a和B1b组分的产量变化。
本发明所述基因改造的出发菌株可以是任何能够生产阿维菌素的链霉菌属细菌,优选为S.avermitilis。
本发明所述的ilvB1N基因(核苷酸序列如SEQ ID NO.1所示,氨基酸序列如SEQ IDNO.5所示)在重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA与阿维链霉菌基因组发生同源重组单交换过程中被功能失活。本领域的技术人员应当理解,ilvB1N基因的失活还可以通过在ilvB1N基因中缺失、插入、替换一个或多个碱基、抑制启动子等方式实现。
本发明异源表达的ilvGM基因来源于大肠杆菌(核苷酸序列如SEQ ID NO.2所示,氨基酸序列如SEQ ID NO.6所示),其编码的乙酰羟基酸合成酶对α-酮丁酸的底物特异性更强,能够催化更多的α-酮丁酸与丙酮酸合成(S)-2-乙酰基-2-羟基丁酸(阿维菌素a组分的前体),仅产生极少量的(S)-2-乙酰乳酸(阿维菌素b组分前体)。
本发明过表达的ilvA基因编码苏氨酸脱水酶(核苷酸序列如SEQ ID NO.3所示,氨基酸序列如SEQ ID NO.7所示),能够催化L-苏氨酸脱氨基生成α-酮丁酸,为乙酰羟基酸合成酶的特异性催化反应提供了充足的底物,有利于阿维菌素a组分前体(S)-2-乙酰基-2-羟基丁酸的生成。本领域的技术人员应当理解,ilvGM基因和ilvA基因的异源表达或过表达可以通过更换启动子、增加基因拷贝数、RBS的优化或操控调控原件等方式来实现。
本发明所述重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA的出发载体可以为任意一种带有大肠杆菌-链霉菌接合转移基因的自杀型质粒,优选为pOJ260。该质粒可以通过同源片段定位整合位点,利用同源性DNA片段可发生重组的原理整合到链霉菌基因组上并与染色体一起复制,构建基因突变菌株。
本发明所述重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA导入产阿维菌素的出发菌株S.avermitilis,可以采用常规的链霉菌遗传操作方法,例如接合转移法、PEG介导的原生质体转化法、电转化法等,优选为接合转移法。为了提高质粒的转化效率,可以选择甲基化缺陷型菌株E.coli ET12567/pUZ8002作为接合转移的供体菌。
本发明所述的突变型阿维链霉菌筛选方法,是将接合转移长出的接合子划线到含50.0μg/mL阿普拉霉素和25.0μg/mL萘啶酮酸的MS固体培养基上,在28.0-30.0℃下培养7-10天,挑取单菌落PCR验证基因型,筛选表型和基因型正确的突变型菌株。
本发明的有益效果在于:
利用本发明所述的基因改造方法能够使突变型阿维链霉菌在摇瓶内发酵效价提高25%以上,B1a与杂质组分B1b比例提高400%以上,在工业发酵中利用该方法能够极大地降低阿维菌素的生产成本。
附图说明
图1为阿维链霉菌支链氨基酸合成途径的重构示意图。
图2为本发明所述重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA图谱。
图3为重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA与阿维链霉菌VL1001基因组发生同源重组单交换整合示意图。
图4为阿维链霉菌VL1001及其突变型菌株VOILVAGM的阿维菌素发酵单位。
具体实施方式
下面将结合具体实施例对本发明作进一步说明。下述实施例中所使用的实验方法如无特殊说明,均按照《分子克隆实验指南(第三版)》和《链霉菌遗传操作实验手册》中所述具体方法进行,或者按照相关试剂盒和产品说明书进行。
阿维菌素生物合成起始单元的前体主要来源于支链氨基酸合成途径,对该途径进行合理的重构可以有效提高阿维菌素B1a组分的效价,降低B1b组分的含量。
如图1所示,在阿维链霉菌的支链氨基酸合成途径中,由苏氨酸脱水酶TD(ilvA基因编码)催化L-苏氨酸脱氨基生成的α-酮丁酸与丙酮酸共用同一组酶来合成异亮氨酸和缬氨酸,其中乙酰羟基酸合成酶AHAS(ilvBN基因编码)催化α-酮丁酸和丙酮酸生成的两种产物的相对量直接决定了阿维菌素两种起始单元前体支链α-酮酸(3-甲基-2-氧代丁酸和(S)-3-甲基-2-氧代戊酸)的供应水平。
采用如图1所示的方法对支链氨基酸合成途径进行重构,将阿维链霉菌体内编码AHAS的ilvB1N基因替换为来源于大肠杆菌的ilvGM基因,从源头上改变阿维菌素生物合成两种起始单元的前体的产生比例,同时过表达内源性的ilvA基因以增加AHAS反应所需底物的供应,使来源于丙酮酸和苏氨酸代谢的碳源更多地流向阿维菌素a组分,减少b组分的产生。
实施例1重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA的构建
将来自大肠杆菌BL21的ilvGM基因(其核苷酸序列如SEQ ID NO.2所示,氨基酸序列如SEQ ID NO.6所示)和来自阿维链霉菌ATCC31267的ilvA基因(其核苷酸序列如SEQ IDNO.3所示,氨基酸序列如SEQ ID NO.7所示,)共同置于强启动子ermEp*之下,组成一个多顺反子,另外以ilvB1N基因(核苷酸序列如SEQ ID NO.1所示,氨基酸序列如SEQ ID NO.5所示)的一部分作为同源臂,将它们连接到自杀型质粒pOJ260上,构建重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA(其核苷酸序列如SEQ ID NO.4)。
设计引物对260-ermE-S:5’-GGTACCAGCCCGACCCGAGC-3’/260-ermE-A:5’-CCGGGTACCGAGCTCTCCGG-3’从pZL2008质粒上PCR扩增获得长度为478bp的ermEp*启动子片段,其中pZL2008质粒是由Wu等人在pSET152质粒上插入ermEp*启动子衍生获得的。
根据Genbank公布的阿维链霉菌ATCC31267基因组DNA序列,设计引物对ilvA-S:5’-CACAACAAATCCGCGCCTGAGGCGTGAGCTGCGAGACTGG-3’/ilvA-A:5’-TATGACATGATTACGAATT CTCAGTCGATGACCGTGTAGC-3’(EcoRI)和ilvB1N-S:5’-GGCTGCAGGTCGACTCTAGACCTACGACCCGCTGATGGAC-3’(XbaI)/ilvB1N-A:5’-GCTCGGGTCGGGCTGGTACCTTGTTGATGATGGCGACCTT-3’,酶切位点用下划线表示,以阿维链霉菌ATCC31267基因组DNA为模板进行PCR扩增分别得到长度为1275bp的ilvA基因片段和长度为1364bp的ilvB1N同源臂片段。
使用限制性内切酶XbaI/EcoRI对载体质粒pOJ260进行双酶切线性化。
使用试剂盒胶回收上述5条DNA片段并进行Gibson重组。重组产物转化到E.coliDH5α感受态细胞中,涂布于含50.0μg/mL阿普拉霉素的LB固体培养基上,37.0℃培养14h,挑取单克隆接种到含有相同抗性的LB液体培养基中培养12h后提取质粒,用引物对POJ260-CES:5’-GCACAGATGCGTAAGGAGAAA-3’/POJ260-CEA:5’-GAGCGAGGAAGCGGAAGA-3’对质粒进行PCR和测序验证,结果证明目标质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA构建成功,质粒图谱如图2所示。
实施例2重组质粒导入阿维链霉菌
将重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA转化到甲基化缺陷型的E.coliET12567/pUZ8002感受态细胞中,与阿维链霉菌VL1001进行接合转移。
1)将带有重组质粒的E.coli ET12567/pUZ8002单菌落接种至50.0mL含50.0μg/mL阿普拉霉素、50.0μg/mL卡那霉素和50.0μg/mL氯霉素的LB液体培养基中,于37.0℃、220rpm培养12.0h。
2)5000rpm离心3.0min收集大肠杆菌,再用40.0mL无抗LB液体培养基清洗菌体两次,最后重悬于1.50mL的LB液体培养基中。
3)阿维链霉菌VL1001孢子用500μL的0.05mol/LTES溶液清洗2次后,50.0℃水浴热激10.0min,再加入500μL TSB液体培养基,37.0℃水浴3.0h使孢子萌发,最后5000rpm离心10.0min收集孢子并重悬于300μL的LB液体培养基中。
4)将100μL的孢子混悬液和不同体积的大肠杆菌混悬液共同涂布在含10.0mmol/LMgCl2的MS固体培养基上,于30.0℃培养16.0h。
5)将适量的阿普拉霉素和萘定酮酸覆盖在MS固体培养基表面(使抗生素在25.0mL培养基上的终浓度为50.0μg/mL),于30.0℃培养7天直至长出接合子。
实施例3突变型菌株VOILVAGM的筛选
将接合转移后长出的接合子划线到含有相同抗性的MS固体培养基上进行分离传代,对单菌落通过PCR验证重组质粒在阿维链霉菌VL1001基因组上的整合情况。
根据同源重组单交换原理设计引物,如图3所示,正向引物HR260-CES:5’-CACCGTACAAACCTCGCAAA-3’设计在阿维链霉菌VL1001基因组同源臂区域左侧,反向引物HR260-CEA:5’-CGACAATCCCAGGACATCCA-3’设计在pOJ260-ilvB1N-ermEp-ilvGM-ilvA质粒骨架上,以接合子基因组DNA为模板,PC R得到长度为2395bp的目的条带。
将对应PCR样品进行测序验证,测序结果经软件分析比对后确定基因型正确,表明重组质粒pOJ260-ilvB1N-ermEp-ilvGM-ilvA整合成功,获得了ilvB1N被敲除,同时过表达异源ilvGM基因和内源ilvA基因的突变型菌株VOILVAGM。
实施例4突变菌株VOILVAGM的阿维菌素发酵
将阿维链霉菌出发菌株VL1001及其突变菌株VOILVAGM的孢子涂布到MS固体平板上30.0℃培养7天后,取约1.00cm2的菌苔接种到种子瓶内,28.0℃、220rpm培养24.0h,按10.0%(体积百分比)的接种量将种子液转接到发酵摇瓶,每个样本设置3个平行,28.0℃、220rpm发酵11天。
取2.00mL发酵液加4.00mL甲醇超声30.0min,HPLC测定阿维菌素的效价。HPLC分析条件为:月旭AQ-C18柱(4.60×250mm,5.00μm),柱温30.0℃,流动相为甲醇/水=85.0/15.0(v/v),等度洗脱,流速1.00mL/min,紫外检测波长245nm。
发酵结果如图4所示,突变型菌株VOILVAGM的B1a组分产量为5473.7±691.5mg/L,相较于出发菌株VL1001的B1a组分产量4281.7±491.2mg/L,提升了约27.8%。此外,VOILVAGM菌株所生产的阿维菌素B1a/B1b组分比例从VL1001菌株的6.1±1.9提高到了35.6±2.7,基本消除了b组分的产生。说明在过表达内源ilvA基因和异源ilvGM基因的情况下,支链氨基酸合成途径产生了更多a组分的前体(S)-3-甲基-2-氧代戊酸,仅产生极少量的b组分的前体3-甲基-2-氧代丁酸,阿维菌素B1a/B1b组分比例因此得到显著提高。另外3-甲基-2-氧代丁酸同时作为缬氨酸的重要前体,细胞内缬氨酸的不足又会促进来自苏氨酸和丙酮酸的碳源更多地进入支链氨基酸合成途径,这无疑进一步增加了体内(S)-3-甲基-2-氧代戊酸和2-甲基丁酰CoA的浓度,阿维菌素a组分的合成得到了充足的前体供应,从而使B1a组分的产量得到了进一步提高。
本发明通过对阿维链霉菌的支链氨基酸合成途径进行合理的重构和优化,将来自中央碳代谢的碳源更多地引入到(S)-3-甲基-2-氧代戊酸的合成,并减少3-甲基-2-氧代丁酸流入阿维菌素起始单元异丁酰CoA,改变不同前体分子参与阿维菌素PKS合成的比例,从而实现了阿维菌素B1a活性组分效价和比例的提高。

Claims (6)

1.一种提高阿维菌素B1a组分效价和比例的基因工程方法,其特征在于,针对支链氨基酸合成途径进行重构,改变阿维菌素生物合成起始单元前体的产生比例,具体包括如下步骤:
1)选择来源于大肠杆菌的ilvGM基因和来源于阿维链霉菌的ilvA基因进行过表达;
2)选择阿维链霉菌体内的ilvB1N基因进行失活;
3)构建包含步骤1)和2)所述功能基因元件的重组质粒;
4)将步骤3)中构建的重组质粒导入到出发菌株S.avermitilis中,筛选获得表型和基因型正确的突变型菌株;
5)将步骤4)中获得的突变型菌株进行摇瓶发酵验证阿维菌素的产量变化。
2.如权利要求1所述的一种提高阿维菌素B1a组分效价和比例的基因工程方法,其特征在于,大肠杆菌的ilvGM基因的核苷酸序列如SEQ ID NO.2所示,氨基酸序列如SEQ ID NO.6所示,阿维链霉菌的ilvA基因的核苷酸序列如SEQ ID NO.3所示,氨基酸序列如SEQ IDNO.7所示,ilvB1N基因的核苷酸序列如SEQ ID NO.1所示,氨基酸序列如SEQ ID NO.5所示。
3.如权利要求1所述的一种提高阿维菌素B1a组分效价和比例的基因工程方法,其特征在于,重组质粒核苷酸序列如SEQ ID NO.4所示。
4.如权利要求1所述的一种提高阿维菌素B1a组分效价和比例的基因工程方法,其特征在于,步骤2)中ilvB1N基因的失活通过在ilvB1N基因中缺失、插入或替换一个或多个碱基、抑制启动子方式实现。
5.如权利要求3所述的一种提高阿维菌素B1a组分效价和比例的基因工程方法,其特征在于,步骤4)中采用大肠杆菌-链霉菌属间接合转移的方法将构建的重组质粒导入到出发菌株S.avermitilis中,并整合到染色体上。
6.如权利要求1所述的一种提高阿维菌素B1a组分效价和比例的基因工程方法,其特征在于,步骤4)的筛选方法为将接合转移长出的接合子划线到含重组质粒对应抗性的MS固体培养基上以验证表型,并在30℃下培养7-10天后挑取单菌落PCR验证基因型,筛选基因型正确的突变型菌株。
CN202310549020.3A 2023-05-16 2023-05-16 一种提高阿维菌素B1a组分效价和比例的基因工程方法 Pending CN116426454A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310549020.3A CN116426454A (zh) 2023-05-16 2023-05-16 一种提高阿维菌素B1a组分效价和比例的基因工程方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310549020.3A CN116426454A (zh) 2023-05-16 2023-05-16 一种提高阿维菌素B1a组分效价和比例的基因工程方法

Publications (1)

Publication Number Publication Date
CN116426454A true CN116426454A (zh) 2023-07-14

Family

ID=87083438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310549020.3A Pending CN116426454A (zh) 2023-05-16 2023-05-16 一种提高阿维菌素B1a组分效价和比例的基因工程方法

Country Status (1)

Country Link
CN (1) CN116426454A (zh)

Similar Documents

Publication Publication Date Title
RU2482178C1 (ru) МИКРООРГАНИЗМЫ Corynebacterium С ПОВЫШЕННОЙ ПРОДУКЦИЕЙ 5'- ИНОЗИНОВОЙ КИСЛОТЫ И СПОСОБ ПОЛУЧЕНИЯ НУКЛЕИНОВЫХ КИСЛОТ С ИХ ИСПОЛЬЗОВАНИЕМ
CN114286858B (zh) 叶酸生产菌株及其制备和应用
CN101978043B (zh) 产生可用作抗癌药的蒽环类代谢物的遗传修饰菌株
CN101802168B (zh) 非天然型抗生素的制造方法
CN103834605B (zh) 一种阿维菌素产生菌及其制备方法和应用
CN117286203A (zh) 一种通过表达糖多孢红霉菌mms操纵子提高阿维菌素产量的方法
CN102533813A (zh) 友菌素的生物合成基因簇及其应用
CN114480461B (zh) 生产β-烟酰胺单核苷酸的重组微生物及构建方法和应用
CN116426454A (zh) 一种提高阿维菌素B1a组分效价和比例的基因工程方法
CN103626855B (zh) 一种与武夷菌素生物合成相关的蛋白及其编码基因与应用
ES2443099T3 (es) Cepa de Escherichia capaz de convertir el XMP en GMP y de mantener el estado inactivado del gen o de los genes asociados a la degradación del GMP y procedimientos para utilizarla
CN113801834B (zh) 一种基因工程高产丰加霉素的淀粉酶产色链霉菌及其构建方法和应用
CN101892186B (zh) 产表柔红霉素的天蓝淡红链霉菌的基因工程菌及其制备方法
CN107446944B (zh) 提高红霉素生产菌的碳源利用率和转化效率从而改进红霉素合成效率的方法
CN102199644B (zh) 胞苷三磷酸的基因工程制备方法
CN101892185B (zh) 产表柔红霉素的天蓝淡红链霉菌基因工程菌及其制备方法
CN110343650B (zh) 一种产两性霉素b的重组结节链霉菌及其应用
CN111690582B (zh) 一种降低新霉素杂质c的工程菌及用途
CN110305881B (zh) 一种聚酮类化合物neoenterocins的生物合成基因簇及其应用
CN108823137B (zh) 一种提高阿维菌素产量的方法及生产菌株
Ikeda et al. Genetic aspects of the selective production of useful components in the avermectin producer Streptomyces avermitilis
CN105018514A (zh) 一种链霉菌药物高效生物合成的构建方法
US6733998B1 (en) Micromonospora echinospora genes coding for biosynthesis of calicheamicin and self-resistance thereto
CN111454975B (zh) 一种与多杀菌素相关的ech基因的应用
CA2354030A1 (en) Micromonospora echinospora genes encoding for biosynthesis of calicheamicin and self-resistance thereto

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination