CN116410703A - 含离子液体链段的泥页岩抑制封堵剂及其制备和应用 - Google Patents

含离子液体链段的泥页岩抑制封堵剂及其制备和应用 Download PDF

Info

Publication number
CN116410703A
CN116410703A CN202111670262.5A CN202111670262A CN116410703A CN 116410703 A CN116410703 A CN 116410703A CN 202111670262 A CN202111670262 A CN 202111670262A CN 116410703 A CN116410703 A CN 116410703A
Authority
CN
China
Prior art keywords
ionic liquid
shale
plugging agent
chain segment
inhibition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111670262.5A
Other languages
English (en)
Inventor
赵冲
牟庭波
陈安亮
邱正松
钟汉毅
黄达全
高鑫
张现斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
CNPC Bohai Drilling Engineering Co Ltd
Original Assignee
China National Petroleum Corp
CNPC Bohai Drilling Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, CNPC Bohai Drilling Engineering Co Ltd filed Critical China National Petroleum Corp
Priority to CN202111670262.5A priority Critical patent/CN116410703A/zh
Publication of CN116410703A publication Critical patent/CN116410703A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/426Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/487Fluid loss control additives; Additives for reducing or preventing circulation loss
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/12Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/18Bridging agents, i.e. particles for temporarily filling the pores of a formation; Graded salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开一种含离子液体链段的泥页岩抑制封堵剂,有效成分为离子液体链段改性的无机纳米粒子;其中,所述离子液体链段为采用硅氧烷修饰的离子液体链段,如式(1)所示:
Figure DDA0003452785910000011
其中,n=1~3;R1、R2和R3分别独立地选自碳原子数1~4的烷氧基或碳原子数1~3的烷基,三者不能同时为烷基;R+选自以下结构式中的一种:
Figure DDA0003452785910000012
其中,R4为碳原子数1~12的烷基或带有官能团的烷基。本发明还涉及上述含离子液体链段的泥页岩抑制封堵剂的制备和应用。本发明提供的泥页岩抑制封堵剂不仅能有效封堵泥页岩孔隙,同时对泥页岩的粘土矿物有很好的抑制作用;其与泥页岩的作用时效较长,具有良好的高温稳定性,环保无毒,大大增加了其对不同环境的适用范围。

Description

含离子液体链段的泥页岩抑制封堵剂及其制备和应用
技术领域
本发明涉及含离子液体链段的泥页岩抑制封堵剂及其制备和应用。
背景技术
页岩油气作为非常规油气资源,在钻遇地层中泥页岩地层约占70%,而约90%的井壁稳定问题由泥页岩井壁失稳导致。泥页岩主要由粘土矿物组成,具有极强的水敏性,水基钻井液钻进过程中,滤液极易侵入泥页岩孔隙结构中,导致粘土矿物水化膨胀,孔隙压力显著增加,进而造成钻井液液柱压力与地层孔隙压力的失衡,引发井壁坍塌等一系列井下复杂问题。
泥页岩中的粘土矿物极易水化,产生水化膨胀压,进一步增加泥页岩孔隙中的孔隙压力,导致井壁应力状态改变,进而发生井壁失稳等问题。随着钻井工程技术的不断发展,所钻遇的泥页岩地层条件也越来越苛刻,对钻井液处理剂的技术要求以及环保要求也越来越高。尽管泥页岩地层相关的处理剂种类较多,但也存在许多的技术问题使得应用范围较为局限,例如作用形式比较单一,不能兼顾物理封堵与化学抑制作用;且大多数处理剂具有作用时效短、抑制能力有限、温度依赖性强、毒性大等缺点,逐渐不能满足钻井环境的相关要求。
发明内容
为了至少部分地解决现有技术存在的技术问题和弊端,作出本发明。
作为本发明的一个方面,涉及一种含离子液体链段的泥页岩抑制封堵剂,有效成分为离子液体链段改性的无机纳米粒子;其中,所述离子液体链段为采用硅氧烷修饰的离子液体链段,如式(1)所示:
Figure BDA0003452785890000021
其中,n=1~3;R1、R2和R3分别独立地选自碳原子数1~4的烷氧基或碳原子数1~3的烷基,三者不能同时为烷基;
在至少一个具体实施方式中R1为—O—C2H4,R2为—O—C2H4,R3为—O—C2H4
R+选自以下结构式中的一种:
Figure BDA0003452785890000022
其中,R4为碳原子数1~12的烷基或带有官能团的烷基。
在至少一个具体实施方式中,R4为—C2H4和—CH3
在至少一个具体实施方式中,所述无机纳米粒子为纳米Fe3O4、纳米Fe2O3
作为本发明的另一个方面,涉及制备上述含离子液体链段的泥页岩抑制封堵剂的方法,包括:
(1)取一定量的硅氧烷和离子液体于烧瓶内,加入过量的有机溶剂,氮气保护下搅拌,加热反应后冷却至室温,洗涤、分离,干燥后得到硅氧烷修饰的离子液体链段。
可选的,步骤(1)中所述硅氧烷与离子液体的摩尔比为1∶1,硅氧烷可稍微过量;所述有机溶剂可为乙腈、甲苯,优选乙腈;所述加热反应为60~90℃下反应8~24h;所述搅拌速度为300~700r/min;所述真空干燥箱的干燥温度为40~70℃,干燥时间为24h以上。
(2)取一定量的无机纳米粒子分散于纯水和2-丙醇混合溶剂中,超声分散,加入正硅酸四乙酯和氨溶液,调节溶液PH至9-11,通入氮气并搅拌,对产物进行洗涤,离心过滤,干燥后得二氧化硅包覆的无机纳米颗粒;氨溶液在反应中作为正硅酸四乙酯水解催化剂,保证溶液为碱性条件(最优PH为9-11)即可。
可选的,步骤(2)中所述无机纳米粒子为溶剂的1~3w/v%;所述分散无机纳米粒子的溶剂为体积比1∶5的纯水和2-丙醇;所述无机纳米粒子与正硅酸四乙酯的摩尔比为1∶1~1∶2;,所述无机纳米粒子可为Fe3O4、Fe2O3,优选为Fe3O4;无机纳米粒子粒径为5~200nm;所述超声振荡时间为30min以上;所述搅拌的转速为100~700r/min;所述反应为在常温条件下反应12~48h;所述洗涤采用去离子水,洗涤至滤液pH=7;所述离心为8000rpm,20min条件下离心3次。
(3)将步骤(2)所得的产物分散在甲苯中,超声分散;然后加入硅氧烷修饰的离子液体链段,通入氮气升温搅拌反应,高速离心分离,洗涤,真空干燥,粉碎研磨后得到离子液体改性的无机纳米粒子,即为本发明的含离子液体链段的泥页岩抑制封堵剂。
可选的,步骤(3)中所述步骤(2)的产物与所述硅氧烷修饰的离子液体的质量比为1∶1~1∶5;所述加热反应为100~120℃下反应16~24h;所述搅拌速度为300~700r/min;所述洗涤首先采用去离子水洗涤2~3次,再采用乙醇洗涤3~4次;所述真空干燥箱的干燥温度为40~70℃,干燥时间为24h以上;所述离心为8000rpm,20min条件下离心3次。
作为本发明的又一个方面,涉及上述含离子液体链段的泥页岩抑制封堵剂在油气钻井工程中的应用。
作为本发明的又一个方面,涉及一种油气开采方法,使用上述含离子液体链段的泥页岩抑制封堵剂。具体来说,是在钻井液中作为添加剂使用上述含离子液体链段的泥页岩抑制封堵剂。
本发明提供的泥页岩抑制封堵剂不仅能有效封堵泥页岩孔隙,同时对泥页岩的粘土矿物有很好的抑制作用,克服了传统泥页岩封堵剂作用形式的单一性;同时,其与泥页岩的作用时效较长,具有良好的高温稳定性,环保无毒,大大增加了其对不同环境的适用范围。
(1)本发明提供的抑制封堵剂具有纳米级尺度,可对纳米孔隙进行架桥,表面的离子液体链段可对多余孔隙进行变形充填,二者协同作用使得孔隙被完美充填,有效的起到物理封堵作用;
(2)本发明提供的抑制封堵剂可具有季铵、吡啶以及咪唑等强抑制性官能团,在低浓度条件下即可有效抑制泥页岩水化效应;
(3)本发明提供的抑制封堵剂表面接枝的离子液体链段为阳离子链段,可通过阳离子部分形成离子键吸附在粘土颗粒表面,不易解吸附,能长期发挥稳定作用;
(4)离子液体、SiO2以及Fe3O4均具有高度的热稳定性,本发明提供的泥页岩抑制封堵剂也具有良好的抗高温能力;
(5)离子液体具有丰富的结构多样性,因此本发明所述的高温稳定性以及抗污染性可通过改变离子液体的结构方便的进行调节;
(6)本发明提供的降滤失剂原料十分环保,对环境无毒无害;
(7)本发明提供的降滤失剂制备原理可靠,反应条件可控,操作简便。
附图说明
图1为实施例1所得的样品的透射电镜图片。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。本发明实施例所用试剂或仪器或方法指导未注明提供来源者,均为可以通过市购获得的常规产品或可从申请人处获得。
实施例1
(1)取7.20g 3-氯丙基三乙氧基硅烷(购自上海阿拉丁生化科技股份有限公司,商业名称为KH-230)和5.73g 1-乙基-3-甲基咪唑溴盐(购自上海凯赛化工有限公司)于烧瓶内,加入50mL乙腈,通入氮气,油浴升温至70℃,设定搅拌速度350rpm,机械搅拌8h,旋转蒸发去除溶剂及未反应物,乙酸乙酯分离得白色固体,即为硅氧烷修饰的离子液体链段70℃真空干燥12h后研磨备用;
(2)取0.6g的纳米Fe3O4分散于10mL去离子水和50mL 2-丙醇中,常温下使用SB-3200DT型超声波清洗仪超声分散30分钟,在室温下加入10mL氨溶液和4mL的正硅酸四乙酯(购自上海阿拉丁生化科技股份有限公司,商业名称为IV),设定搅拌速度500rpm,常温磁力搅拌搅拌12h,8000rpm离心20min条件下分离提纯,得二氧化硅包覆的无机纳米颗粒,去离子水洗涤至pH=7,70℃干燥,粉碎研磨备用;
(3)取1g步骤(1)获得的材料分散在100mL甲苯中,常温下使用SB-3200DT型超声波清洗仪超声分散45min,然后加入1g步骤(2)获得的材料;设定搅拌速度400rpm,将混合物在100℃下搅拌48h。8000rpm,20min条件下分离产物,将产物用水洗涤两次,并用乙醇洗涤三次。最后,在真空下于70℃干燥24小时,得到离子液体改性的无机纳米粒子,粉碎研磨得到含离子液体链段的泥页岩抑制封堵剂。
(4)将制备的泥页岩抑制封堵剂在水溶液中超声分散后滴在铜质微栅上,烘干后采用透射电子显微镜(TEM)观察其在水溶液中的分散形貌,得到透射电镜照片如图1所示。
本实施例中R1为—O—C2H4,R2为—O—C2H4,R3为—O—C2H4,R+为
Figure BDA0003452785890000061
实施例2
(1)取5.48g氯丙基甲基二甲氧基硅烷(购自上海阿拉丁生化科技股份有限公司)和8.60g氯化1-十二烷基-3-甲基咪唑(购自青岛奥立科新材料科技有限公司)于烧瓶内,加入50mL甲苯,油浴升温至90℃,设定搅拌速度400rpm,机械搅拌10h,冷却,乙酸乙酯洗涤,70℃真空干燥12h后研磨备用;
(2)取1.0g的纳米Fe2O3分散于10mL去离子水和50mL 2-丙醇中,常温下使用SB-3200DT型超声波清洗仪超声分散30分钟,在室温下加入10mL氨溶液和4mL的正硅酸四乙酯,设定搅拌速度600rpm,常温磁力搅拌搅拌12h,8000rpm离心20min条件下分离提纯,去离子水洗涤至pH=7,70℃干燥,粉碎研磨备用;
(3)取1.3g步骤(1)获得的材料分散在80mL甲苯中,常温下使用SB-3200DT型超声波清洗仪超声分散60min;然后加入1g步骤(2)获得的材料,设定搅拌速度400rpm,将混合物在120℃下搅拌48h。8000rpm,20min条件下分离产物,将产物用水洗涤两次,并用乙醇洗涤三次。最后,在真空下于70℃干燥24小时,粉碎研磨得到含离子液体链段的泥页岩抑制封堵剂。
本实施例中R1为—O—CH3,R2为—O—CH3,R3为—CH3,R+为
Figure BDA0003452785890000062
实施例3
(1)取12.9g喹啉(购自上海阿拉丁生化科技股份有限公司)和13.7g溴代丁烷(购自上海阿拉丁生化科技股份有限公司)混合,水浴升温至65℃,冷凝回流反应24h,采用乙酸乙酯洗涤三次得到溴化正丁基喹啉。
(2)取1.36g甲基三甲氧基硅烷(购自上海阿拉丁生化科技股份有限公司)和8.60g溴化正丁基喹啉于烧瓶内,加入60mL丙酮,油浴升温至60℃,设定搅拌速度500rpm,机械搅拌12h,冷却,乙酸乙酯洗涤,70℃真空干燥12h后研磨备用;
(3)取3.0g的纳米Fe3O4分散于16mL去离子水和80mL 2-丙醇中,常温下使用SB-3200DT型超声波清洗仪超声分散30分钟,在室温下加入15mL氨溶液和6mL的正硅酸四乙酯,设定搅拌速度1000rpm,常温磁力搅拌搅拌12h,8000rpm离心20min条件下分离提纯,去离子水洗涤至pH=7,70℃干燥,粉碎研磨备用;
(4)取6.0g步骤(1)获得的材料分散在100mL甲苯中,常温下使用SB-3200DT型超声波清洗仪超声分散60min;然后加入1.2g步骤(2)获得的材料,设定搅拌速度800rpm,将混合物在110℃下搅拌24h。8000rpm,20min条件下分离产物,将产物用水洗涤两次,并用乙醇洗涤三次。最后,在真空下于70℃干燥24小时,粉碎研磨得到含离子液体链段的泥页岩抑制封堵剂。
本实施例中R1为—O—CH3,R2为—O—CH3,R3为—O—CH3,R+为
Figure BDA0003452785890000071
实施例4
(1)取33.25g 3-甲基丙烯酰氧基丙基三异丙氧基硅烷(购自杭州杰西卡化工有限公司)和15.86g 1-烯丙基-3-甲基氯化咪唑(购自上海阿拉丁生化科技股份有限公司)于烧瓶内,加入100mL异丙醇,通入氮气,油浴升温至70℃,加入0.15g过氧化苯甲酰,设定搅拌速度400rpm,机械搅拌8h,旋转蒸发去除溶剂及未反应物,乙酸乙酯分离得白色固体,即为硅氧烷修饰的离子液体链段,70℃真空干燥12h后研磨备用;
(2)取0.6g的纳米Fe3O4分散于10mL去离子水和50mL 2-丙醇中,常温下使用SB-3200DT型超声波清洗仪超声分散30分钟,在室温下加入10mL氨溶液和4mL的正硅酸四乙酯(购自上海阿拉丁生化科技股份有限公司,商业名称为IV),设定搅拌速度500rpm,常温磁力搅拌搅拌12h,8000rpm离心20min条件下分离提纯,得二氧化硅包覆的无机纳米颗粒,去离子水洗涤至pH=7,70℃干燥,粉碎研磨备用;
(3)取0.67g步骤(1)获得的材料分散在80mL丙酮中,常温下使用SB-3200DT型超声波清洗仪超声分散45min,然后加入0.5g步骤(2)获得的材料;设定搅拌速度450rpm,将混合物在100℃下搅拌48h。8000rpm,20min条件下分离产物,将产物用水洗涤两次,并用乙醇洗涤三次。最后,在真空下于70℃干燥24小时,得到离子液体改性的无机纳米粒子,粉碎研磨得到含离子液体链段的泥页岩抑制封堵剂。
本实施例中R1为—O—CH3,R2为—O—CH3,R3为—O—CH3,R+为
Figure BDA0003452785890000081
实施例5
(1)取2.64g三(叔丁氧基)硅烷醇(购自上海阿拉丁生化科技股份有限公司)和0.89g N,N-二甲基乙醇胺(购自上海阿拉丁生化有限公司)于烧瓶内,加入60mL丙酮,油浴升温至65℃,设定搅拌速度400rpm,机械搅拌8h,冷却,乙酸乙酯洗涤,70℃真空干燥12h后研磨备用;
(2)取1.0g的纳米Fe2O3分散于10mL去离子水和50mL 2-丙醇中,常温下使用SB-3200DT型超声波清洗仪超声分散30分钟,在室温下加入10mL氨溶液和4mL的正硅酸四乙酯,设定搅拌速度600rpm,常温磁力搅拌搅拌12h,8000rpm离心20min条件下分离提纯,去离子水洗涤至pH=7,70℃干燥,粉碎研磨备用;
(3)取3.1g步骤(1)获得的材料分散在90mL甲苯中,常温下使用SB-3200DT型超声波清洗仪超声分散60min;然后加入0.8g步骤(2)获得的材料,设定搅拌速度500rpm,将混合物在90℃下搅拌16h。8000rpm,20min条件下分离产物,将产物用水洗涤两次,并用乙醇洗涤三次。最后,在真空下于70℃干燥24小时,粉碎研磨得到含离子液体链段的泥页岩抑制封堵剂。
本实施例中R1为—O—C(CH3)3,R2为—O—C(CH3)3,R3为—O—C(CH3)3,R+为
Figure BDA0003452785890000091
下面对实施例的产品性能进行说明。
测试例1泥页岩抑制封堵剂的抑制性能评价
分别采用页岩滚动分散实验和页岩膨胀实验评价泥页岩抑制封堵剂的化学抑制性能。实验测试步骤如下:
页岩滚动分散实验测试步骤:配制350mL浓度为1w/v%的泥页岩抑制封堵剂水溶液,超声分散后转入老化罐中,然后加入50g粒径为2~5mm的岩屑(取自四川涪陵地区龙马溪组)。在77℃条件下热滚16h后用40目标准筛筛选岩屑,用标准盐水洗净岩屑表面残余物后在105℃下烘6h后称重,烘干后的岩屑质量与初始岩屑质量的比值为岩屑回收率,以百分数表示。
页岩膨胀实验测试步骤:称取10g粒径<0.15mm的岩屑(取自四川涪陵地区龙马溪组),在105℃条件下烘12h;然后将烘干后的岩屑在10MPa下压制5min制得实验岩样,量取其原始高度;采用NP-1页岩膨胀仪分别测试岩样在浓度为1w/v%的泥页岩抑制封堵剂水溶液中的膨胀高度变化,8h后记录岩样总的膨胀高度,与原始高度的比值即为泥页岩的膨胀率,以百分数表示。
表1不同泥页岩抑制封堵剂抑制性能评价结果
Figure BDA0003452785890000092
Figure BDA0003452785890000101
从表1测试结果可知,泥页岩在浓度为1w/v%的泥页岩抑制封堵剂水溶液环境条件下,实施例1~3能有效地降低岩样的线性膨胀率,同时岩屑的回收率均达80%以上,显著优于强抑制剂氯化钾,且远高于聚合醇的实验结果;实施例4~5也能降低岩样的线性膨胀率,提高岩屑的回收率,单抑制效果显然不如实施优选例1~3,说明本发明的泥页岩抑制封堵剂具有良好的抑制泥页岩水化分散和水化膨胀的能力。
测试例2泥页岩抑制封堵剂的封堵性能评价
借助高温高井壁力学耦合模拟实验装置,选取四川涪陵地区龙马溪组页岩岩心,制备成24.6mm×7mm的实验岩样,利用压力传递实验评价泥页岩抑制封堵剂的封堵性能。实验方法如下:将页岩岩心岩样置于装置的岩心加持器中,施加一定的轴压与围压,充分模拟实际地层压力环境;选定岩心上游、下游试液,建立岩心上游、下游的初始压差,保持上游压力不变,通过压力传感器和差压传感器实时检测岩心下端封闭流体的动态压力变化,并以实验前后岩心渗透率作为技术指标来评价泥页岩抑制封堵剂的封堵性能。
表2泥页岩抑制封堵剂封堵性能测试结果
Figure BDA0003452785890000102
Figure BDA0003452785890000111
由表2可知,加入实施例1~5的上游试液与岩心相互作用后,岩心的渗透率得到显著的降低,且降低率均达80%以上,说明本发明的泥页岩抑制封堵剂能有效地阻缓试液的压力传递与滤液侵入,对泥页岩地层孔隙、裂缝有良好的封堵效果,可有效提高泥页岩地层的井壁稳定性。
测试例3生物毒性检测
表3生物毒性检测结果
测试样品 EC50/(mg/L)
实施例1 1.3×105
实施例2 1.6×105
实施例3 0.7×105
实施例4 0.9×105
实施例5 1.1×105
根据行标SY/T 6788-2010中的相关规定,EC50大于0.25×105mg/L则说明产品无毒;本发明的泥页岩抑制封堵剂的EC50值均大于标准中的规定值,表明其具有良好的环保型。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (16)

1.一种含离子液体链段的泥页岩抑制封堵剂,其特征在于,有效成分为离子液体链段改性的无机纳米粒子;其中,所述离子液体链段为采用硅氧烷修饰的离子液体链段,如式(1)所示:
Figure FDA0003452785880000011
其中,n=1~3;R1、R2和R3分别独立地选自碳原子数1~4的烷氧基或碳原子数1~3的烷基,三者不能同时为烷基;
R+选自以下结构式中的一种:
Figure FDA0003452785880000012
其中,R4为碳原子数1~12的烷基或带有官能团的烷基。
2.权利要求1所述含离子液体链段的泥页岩抑制封堵剂,其特征在于,R1为—O—C2H4,R2为—O—C2H4,R3为—O—C2H4
3.权利要求1所述含离子液体链段的泥页岩抑制封堵剂,其特征在于,R4为—C2H4和—CH3
4.权利要求1所述含离子液体链段的泥页岩抑制封堵剂,其特征在于,所述无机纳米粒子为纳米Fe3O4、纳米Fe2O3
5.制备权利要求1-4任一所述含离子液体链段的泥页岩抑制封堵剂的方法,包括:
(1)取硅氧烷和离子液体混合,加入过量的有机溶剂,氮气保护下搅拌,加热反应得到硅氧烷修饰的离子液体链段;
(2)取无机纳米粒子分散于纯水和2-丙醇混合溶剂中,加入正硅酸四乙酯和氨溶液,调节溶液PH为碱性,反应得二氧化硅包覆的无机纳米颗粒;
(3)将步骤(2)所得产物分散于甲苯中,然后加入步骤(1)制备的硅氧烷修饰的离子液体链段,反应物干燥粉碎研磨后得到含离子液体链段的泥页岩抑制封堵剂。
6.权利要求5所述方法,其特征在于,步骤(1)中,所述硅氧烷与离子液体的摩尔比为1∶1。
7.权利要求5所述方法,其特征在于,步骤(1)中,所述有机溶剂为乙腈、甲苯,优选乙腈。
8.权利要求5所述方法,其特征在于,步骤(1)中,所述加热反应为60~90℃下反应8~24h。
9.权利要求5所述方法,其特征在于,步骤(2)中,所述无机纳米粒子为所述纯水和2-丙醇混合溶剂的1~3w/v%。
10.权利要求5所述方法,其特征在于,步骤(2)中,所述纯水和2-丙醇混合溶剂中,纯水和2-丙醇的体积比为1∶5。
11.权利要求5所述方法,其特征在于,步骤(2)中,所述无机纳米粒子与所述正硅酸四乙酯的摩尔比为1∶1~1∶2。
12.权利要求5所述方法,其特征在于,步骤(2)中,所述无机纳米粒子为Fe3O4或Fe2O3;所述无机纳米粒子粒径为5~200nm。
13.权利要求5所述方法,其特征在于,步骤(3)中,所述步骤(2)所得产物与所述步骤(1)制备的硅氧烷修饰的离子液体链段的质量比为1∶1~1∶5。
14.权利要求1-4任一所述含离子液体链段的泥页岩抑制封堵剂在油气钻井工程中的应用。
15.一种油气开采方法,其特征在于,使用权利要求1-4任一项所述含离子液体链段的泥页岩抑制封堵剂。
16.权利要求7所述油气开采方法,其特征在于,权利要求1-4任一项所述含离子液体链段的泥页岩抑制封堵剂在钻井液中作为添加剂使用。
CN202111670262.5A 2021-12-31 2021-12-31 含离子液体链段的泥页岩抑制封堵剂及其制备和应用 Pending CN116410703A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111670262.5A CN116410703A (zh) 2021-12-31 2021-12-31 含离子液体链段的泥页岩抑制封堵剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111670262.5A CN116410703A (zh) 2021-12-31 2021-12-31 含离子液体链段的泥页岩抑制封堵剂及其制备和应用

Publications (1)

Publication Number Publication Date
CN116410703A true CN116410703A (zh) 2023-07-11

Family

ID=87048368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111670262.5A Pending CN116410703A (zh) 2021-12-31 2021-12-31 含离子液体链段的泥页岩抑制封堵剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN116410703A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118652672A (zh) * 2024-08-13 2024-09-17 陕西延长石油(集团)有限责任公司 一种钻进煤岩水平井用阳离子纳米封堵剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090029880A1 (en) * 2007-07-24 2009-01-29 Bj Services Company Composition containing lonic liquid clay stabilizers and/or shale inhibitors and method of using the same
CN104497994A (zh) * 2014-11-19 2015-04-08 中国地质大学(北京) 一种钻井液及离子液体在其中的用途
CN106519254A (zh) * 2016-11-03 2017-03-22 中国石油大学(华东) 一种树枝状季铵盐页岩抑制剂及其制备方法与应用
CN108192107A (zh) * 2017-12-29 2018-06-22 中国石油大学(华东) 一种泥页岩稳定剂及其制备方法
US20190241791A1 (en) * 2018-02-07 2019-08-08 Southwest Petroleum University Strong plugging drilling fluid suitable for shale gas wells and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090029880A1 (en) * 2007-07-24 2009-01-29 Bj Services Company Composition containing lonic liquid clay stabilizers and/or shale inhibitors and method of using the same
CN104497994A (zh) * 2014-11-19 2015-04-08 中国地质大学(北京) 一种钻井液及离子液体在其中的用途
CN106519254A (zh) * 2016-11-03 2017-03-22 中国石油大学(华东) 一种树枝状季铵盐页岩抑制剂及其制备方法与应用
CN108192107A (zh) * 2017-12-29 2018-06-22 中国石油大学(华东) 一种泥页岩稳定剂及其制备方法
US20190241791A1 (en) * 2018-02-07 2019-08-08 Southwest Petroleum University Strong plugging drilling fluid suitable for shale gas wells and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE, YANG;ZHOU, LIHUA;GOU, SHAOHUA;YU, JIE;GAO, QINQIN;PU, SIYING;ZHANG, QIN;WU, YUANPENG: "Synergy of imidazolium ionic liquids and flexible anionic polymer for controlling facilely montmorillonite swelling in water", JOURNAL OF MOLECULAR LIQUIDS, vol. 317, 1 November 2020 (2020-11-01) *
张卫东;韩磊;王富华;蓝强;朱海涛;杨海荣;赵清源: "页岩抑制剂的抑制机理及研究进展", 钻井液与完井液, vol. 38, no. 1, 7 August 2020 (2020-08-07), pages 1 - 8 *
赵元元,任红轩: "纳米科技与艺术实验", 31 December 2019, 苏州大学出版社 , pages: 132 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118652672A (zh) * 2024-08-13 2024-09-17 陕西延长石油(集团)有限责任公司 一种钻进煤岩水平井用阳离子纳米封堵剂及其制备方法

Similar Documents

Publication Publication Date Title
Cheraghian Evaluation of clay and fumed silica nanoparticles on adsorption of surfactant polymer during enhanced oil recovery
CN109370549B (zh) 适用于油基钻井液用携屑剂的二氧化硅的超双疏Janus粒子及其制备方法和应用
CN111019621B (zh) 一种解堵剂及其制备方法
CN111732940B (zh) 水基钻井液用增效剂及其制备方法、水基钻井液和应用
CN112980401B (zh) 疏水型纳米二氧化硅及其制备方法和应用
CN111944507A (zh) 一种纳米活性剂体系及其制备方法和应用
CN110819314B (zh) 一种钻井液纳米封堵剂及其制备方法及含该封堵剂的水基钻井液
WO2014011587A1 (en) Breaker fluid
CN116410703A (zh) 含离子液体链段的泥页岩抑制封堵剂及其制备和应用
CN111333792B (zh) 改性的纳米锂皂石防塌剂及降滤失剂与其制备方法和应用
WO2018194670A1 (en) Hydrobically treated particulates for improved return permeability
CN104610935B (zh) 一种油基钻井液用随钻封堵剂及其制备方法
CN106479469A (zh) 超低渗油藏注水开发降压增注用纳米液及其制备方法
CN113337258B (zh) 一种油基钻井液用纳米封堵剂及其制备方法以及油基钻井液
Huang et al. Development of a high temperature resistant nano-plugging agent and the plugging performance of multi-scale micropores
CN114752064A (zh) 一种聚氨基硅烷接枝氧化石墨烯封堵剂及油基钻井液
Lai et al. CO2/N2-responsive nanoparticles for enhanced oil recovery during CO2 flooding
Bai et al. Preparation, characterization and properties of SiO 2 expansible composite microspheres for water-based drilling fluid
CN113666686B (zh) 选择性堵水剂以及油气田耐高温高压长效稳油控水方法
CN113136179A (zh) 氟化纳米二氧化硅以及改性纳米分散液及其制备方法和应用
CN116948609A (zh) 一种纳米封堵剂的制备及油基钻井液
CN114426815B (zh) 一种适用于强水敏易垮塌地层的油基钻井液及其制备方法和应用
CN115260404B (zh) 一种水基钻井液用抗高温疏水纳米封堵剂及其制备方法与应用
CN114196384B (zh) 一种纳米级封堵材料及其制备方法和应用
Elochukwu et al. Improved filtration properties of polystyrene nanoparticle additives to water based drilling fluid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination