CN116408128A - 采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用 - Google Patents

采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用 Download PDF

Info

Publication number
CN116408128A
CN116408128A CN202310681764.0A CN202310681764A CN116408128A CN 116408128 A CN116408128 A CN 116408128A CN 202310681764 A CN202310681764 A CN 202310681764A CN 116408128 A CN116408128 A CN 116408128A
Authority
CN
China
Prior art keywords
gum
doped
hydrogel
complex
ethylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310681764.0A
Other languages
English (en)
Other versions
CN116408128B (zh
Inventor
王大伟
史正军
吴晓丽
杨静
杨海艳
李涛洪
刘守庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jinglong Environmental Protection Technology Co ltd
Original Assignee
Southwest Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Forestry University filed Critical Southwest Forestry University
Priority to CN202310681764.0A priority Critical patent/CN116408128B/zh
Publication of CN116408128A publication Critical patent/CN116408128A/zh
Application granted granted Critical
Publication of CN116408128B publication Critical patent/CN116408128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种采用苦樱桃树胶制备Cu‑N掺杂树胶炭催化剂的方法,该方法是将纯净苦樱桃树胶、铜盐置于去离子水中,在室温下搅拌使树胶充分溶胀并且络合Cu2+,制得树胶/Cu2+水凝胶;将树胶/Cu2+水凝胶浸泡在含乙二胺的水溶液中,在55~65℃下配位反应至水凝胶变为蓝色,制得树胶/乙二胺/Cu2+络合物水凝胶;将树胶/乙二胺/Cu2+络合物水凝胶干燥粉碎后,置于管式炉中,在惰性气氛、500~700℃下煅烧制得Cu‑N掺杂树胶炭催化剂;本发明方法制得的催化剂用于光催化降解污水中磺胺类抗生素,实验结果显示磺胺类抗生素在Cu‑N掺杂树胶炭催化剂作用下能完全降解。

Description

采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用
技术领域
本发明属于光-芬顿催化剂制备技术领域,具体涉及一种以苦樱桃树胶为原料制备Cu-N掺杂树胶炭催化剂的方法及其在光照下催化降解磺胺类抗生素的用途。
背景技术
天然树胶是蔷薇科核果类树木伤口分泌的一类粘稠的胶状物质,桃树胶是最常见的一种树胶。我国各类树胶的年采集量高达数百吨,由于树胶粘度高,且化学性质稳定,常被用于食品、医药等领域,中医认为桃树胶有保健作用。长期以来,人们对树胶的化学性质研究甚少,在树胶的改性利用方面的研究也相对滞后。近年来,国外一些学者首先对树胶的化学成分展开研究,他们的研究表明树胶是一类天然高分子杂多糖,其结构是由多种单糖通过糖苷键聚合而成的高度支链化的大分子多糖。树胶分子中有大量羟基(-OH),因而具有良好的亲水性,其吸水后形成水凝胶,溶解在水中则形成水溶胶。云南苦樱桃(Prunus emarginata)又叫云南樱花,是蔷薇科观赏乔木,雨水多的季节枝干会分泌大量树胶。
生物质炭材料是以生物质为原料在惰性气氛下经高温煅烧,形成内部孔隙结构发达、比表面积大、吸附能力强的微晶质活性炭。活性炭是第一代生物质炭材料,由于只含有碳一种元素,使其应用范围受到限制,目前常被用作吸附剂。随着现代工业对碳基功能材料的新需求,功能化的新型碳基催化剂是生物质炭材料发展的重要方向。以生物质炭作为载体,在炭的表面及内部构筑大量催化活性中心,可以得到化学性质稳定、催化活性优异的碳基催化材料。目前,制备生物质炭的原料主要是木材、竹材以及各种农林废弃物。现有研究表明,以木材、竹材以及各种农林废弃物制备的功能化生物质炭催化剂存在明显的结构缺陷,即催化活性中心无法均匀分布在生物质炭基体中。催化活性中心的不均匀分布直接导致生物质炭催化剂的催化活性降低,催化效果不稳定。因此,设计、合成催化活性中心分布均匀的生物质炭材料是目前生物质炭应用领域亟待解决的一项重要技术难题。
发明内容
针对现有技术存在的问题,本发明提供了一种采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法,本发明方法以过渡金属配位化学理论为基础,首先将云南苦樱桃树胶杂多糖、Cu2+、乙二胺置于水相中,通过分子自组装制备树胶/乙二胺/Cu2+络合物水凝胶,然后在惰性气体保护下将树胶/乙二胺/Cu2+络合物干凝胶在管式炉中高温煅烧,制得Cu-N掺杂树胶炭催化剂,具体制备过程如下:
(1)苦樱桃树胶/乙二胺/Cu2+络合物水凝胶的制备
将苦樱桃树胶浸泡在去离子水中,搅拌使其充分溶解,然后用纱布过滤除去不溶性杂质,鼓风干燥得到纯净苦樱桃树胶;在去离子水中加入纯净苦樱桃树胶和铜盐,室温下搅拌使树胶充分溶胀并且络合Cu2+,得到绿色的树胶/ Cu2+水凝胶;
所述铜盐为Cu(NO3)2;纯净苦樱桃树胶与铜盐的质量比为1 : 0.1~0.4;
将上述树胶/Cu2+水凝胶浸泡在含乙二胺的水溶液中,搅拌下升温至55~65℃反应2~6小时,乙二胺分子的-NH2与树胶分子中的-OH形成稳定的氢键,因而乙二胺分子被均匀地吸附在树胶中,随着反应的进行,可以观察到水凝胶颜色由绿色逐渐变为蓝色,表明树胶中的乙二胺已经与Cu2+发生配位反应,生成树胶/乙二胺/Cu2+络合物水凝胶;
所述纯净树胶与乙二胺的质量比为1:0.2~0.5;
(2)树胶/乙二胺/Cu2+络合物干凝胶的制备
将树胶/乙二胺/Cu2+络合物水凝胶放入烘箱内,鼓风干燥20~24 h得到失水后的树胶/乙二胺/Cu2+络合物干凝胶,粉碎;
(3)Cu-N掺杂树胶炭催化剂的制备
将树胶/乙二胺/Cu2+络合物干凝胶粉末放入管式炉中,通入氩气25min除去氧气,在氩气气氛下以5℃/min的速度从室温升温至500~700℃并在此温度下煅烧2~4h,使树胶/乙二胺/Cu2+络合物完全热解,自然冷却至室温后,得到黑色的Cu-N掺杂树胶炭催化剂。
本发明另一目的是将上述方法制得的Cu-N掺杂的树胶炭催化剂应用在光催化降解磺胺类抗生素中。
本发明的优点和技术效果:
(1)本发明采用天然高分子杂多糖--树胶作为原料,利用树胶独特的高枝化结构和优良的水溶性,使过渡金属铜离子均匀的络合到树胶大分子中,然后利用铜离子与含氮有机分子乙二胺的配位作用,在树胶中构筑分布均匀的铜-氮催化中心;
(2)在Cu-N掺杂树胶炭的结构中,氮原子掺杂在石墨相碳的六元环结构中,从而得到具有结构稳定、掺杂均匀、高光催化活性的Cu-N掺杂型炭催化剂;
(3)将Cu-N掺杂树胶炭用于光催化降解磺胺类抗生素,实验结果显示磺胺类抗生素在催化剂作用下能完全降解,本发明为解决抗生素污染提供了一种新的途径。
附图说明
图1为苦樱桃树胶在不同制备阶段下的颜色和形态图,其中a图为苦樱桃树胶,b图为树胶/Cu2+水凝胶,c图为树胶/乙二胺/Cu2+干凝胶粉末,d图为Cu-N掺杂树胶炭催化剂;
图2为Cu-N掺杂树胶炭催化剂的扫描电子显微镜图,其中A图为放大2000倍,B图为放大5000倍;
图3为Cu-N掺杂树胶炭催化剂的X-射线光电子能谱图,其中左图survey谱,右图为C1s谱;
图4为Cu-N掺杂树胶炭催化剂的X-射线光电子能谱图,其中左图N1s谱,右图为O1s谱;
图5为Cu-N掺杂树胶炭催化剂的X-射线光电子能谱图,其中左图Cu2p谱,右图为CuLM2谱;
图6为Cu-N掺杂树胶炭催化剂的X-射线粉末衍射图;
图7为600℃制备的Cu-N掺杂树胶炭光催化降解磺胺抗生素的实验结果,其中a图是在Cu-N掺杂树胶炭催化下磺胺嘧啶的吸收光谱随光照时间的变化图,b图为磺胺嘧啶降解率随光照时间的变化图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明,但所述内容不应看作对本发明的限制,本实施例中方法如无特殊说明的均按常规方法操作,所用试剂如无特殊说明的采用常规试剂或按常规方法配置的试剂。
实施例1
1、将苦樱桃树胶(图1的a图)浸泡在去离子水中12小时,搅拌使其充分溶解,然后用纱布过滤除去不溶性杂质,滤液置于鼓风干燥箱中50℃下干燥5h后得到纯净的树胶;在50mL去离子水中加入2.0g纯净的树胶和0.2g Cu(NO3)2,在室温下搅拌12小时使树胶充分溶胀并且络合Cu2+达到饱和,得到绿色的树胶/ Cu2+水凝胶(图1的b图);将树胶/Cu2+水凝胶浸泡在50mL含0.5g乙二胺的水溶液中,搅拌下升温至60℃反应,反应过程中,可以观察到水凝胶颜色由绿色逐渐变为蓝色,表明树胶中的乙二胺已经与Cu2+发生配位反应,生成树胶/乙二胺/Cu2+络合物水凝胶。
2、将上述树胶/乙二胺/Cu2+络合物水凝胶放入70℃的烘箱内,鼓风干燥20h得到失水后的树胶/乙二胺/Cu2+络合物干凝胶,为了在高温煅烧时受热均匀,把干凝胶粉碎成粉末,见图1的c图。
3、将5g树胶/乙二胺/Cu2+络合物干凝胶粉末放入管式炉中,通入氩气30min除去氧气,保持氩气气氛,以5℃/min升温至600℃,保持600℃煅烧3h后,自然降温至室温,得到黑色的Cu-N掺杂树胶炭催化剂,见图1的d图。
为了观察Cu-N掺杂树胶炭催化剂的微观结构,使用扫描电子显微镜对树胶炭催化剂的形貌进行了表征,结果见图2,由扫描电镜图可以看到,树胶炭的内部有很多泡孔,泡孔直径约为2~5μm,而且部分泡孔彼此连通,树胶炭内部泡孔的形成是由于在管式炉中高温煅烧时树胶有机质分解生成H2O分子和CO2分子膨胀外溢形成的。
Cu-N掺杂树胶炭催化剂的X-射线光电子能谱(XPS)见图3-5,XPS全谱显示制备的树胶炭中含有C、N、O、Cu四种元素,通过四种元素的精细谱进一步分析元素的价态和成键形式:C1s谱显示树胶炭中的碳元素以C-C和C=C键相连接,说明树胶炭主要以石墨相碳形式存在;C1s谱和N1s谱都显示有N-C=N键的存在,说明N元素直接以成键的方式掺杂在树胶炭中,即N原子掺杂在石墨相碳的六元环结构中;由Cu2p和CuLM2谱可以发现Cu元素以Cu+和Cu2+两种价态存在于树胶炭中,结合O1s谱可以得知Cu元素以CuO和Cu2O两种物质形式掺杂在树胶炭中;利用X-射线粉末衍射(XRD)进一步对Cu-N掺杂树胶炭进行表征,结果见图6,XRD谱表明Cu元素以CuO和Cu2O两种物质形式掺杂在树胶炭中,XRD谱位于23.7°的宽峰和位于42°的弱峰都是石墨相碳的特征衍射峰,XRD谱与XPS谱的结果一致;
上述结果表明铜元素和氮元素已经成功均匀的掺杂进树胶炭中,CuO和Cu2O的存在是树胶炭具有良好光-芬顿催化活性的主要原因。
4、Cu-N掺杂树胶炭催化剂光催化降解磺胺抗生素
实验中使用北京中教金源CEL-HXF300-T3型氙灯作为光源,调节功率至150 W,通过添加滤光片过滤掉紫外光,使设备输出波长为400~800nm的可见光辐射,实验过程中固定光源至液面的距离为5cm,降解溶液盛放于通有冷凝水的夹层石英烧杯中,以便在光照时保持恒温。
在通有冷凝水的夹层石英烧杯中依次加入50mL磺胺嘧啶抗生素溶液(20mg/L)、20mg Cu-N掺杂树胶炭催化剂,避光搅拌均匀后静置1h,使体系达到吸附平衡。取上清液在紫外-可见分光光度计上扫描磺胺嘧啶溶液的吸收光谱,记为t=0时的光谱曲线。在烧杯中加入0.1mL过氧化氢(质量浓度30%)作为氧化剂,将反应液置于光源下,打开光源,在持续搅拌下催化反应。每隔一段时间取适量反应液扫描光谱曲线,记为t时的光谱曲线。根据磺胺嘧啶在特征吸收峰(264nm)处的吸光度值跟踪监测浓度变化。磺胺嘧啶抗生素的降解率计算公式为:D= (A0-At) / A0 ×100%,式中A0为磺胺嘧啶在t=0时的初始吸光度值,At为光照t时间后的吸光度值。
实验结果显示,以树胶/乙二胺/Cu2+络合物干凝胶为前驱体,在600℃煅烧制备的Cu-N掺杂树胶炭在可见光照射下能快速催化降解磺胺嘧啶抗生素。由图7的a图磺胺嘧啶的紫外-可见吸收光谱可以看到,在20mg Cu-N掺杂树胶炭的催化下,磺胺嘧啶水溶液吸收峰的强度随着光照时间的延长逐渐减弱,表明溶液中的磺胺嘧啶逐渐被降解。由降解率图7的b图可以看到,光照30min后磺胺嘧啶的降解率为56%,光照60min后磺胺嘧啶的降解率高达87%,当光照90min后磺胺嘧啶的特征吸收峰完全消失,表明已经完全降解。
实施例2:本实施例制备方法同实施例1,不同之处在于树胶/乙二胺/Cu2+络合物干凝胶在500℃下煅烧3h后制得Cu-N掺杂树胶炭催化剂;以该Cu-N掺杂树胶炭为催化剂光催化降解磺胺嘧啶,其他光催化实验条件同实施例1,结果显示,光照30min后磺胺嘧啶的降解率为48%,光照60min后磺胺嘧啶的降解率为74%,光照90min后磺胺嘧啶的降解率为83%。
实施例3:本实施例制备方法同实施例1,不同之处在于树胶/乙二胺/Cu2+络合物干凝胶在700℃下煅烧3h后制得Cu-N掺杂树胶炭催化剂,以该Cu-N掺杂树胶炭为催化剂光催化降解磺胺嘧啶,其他光催化实验条件同实施例1,结果显示,光照30min后磺胺嘧啶的降解率为52%,光照60min后磺胺嘧啶的降解率为78%,光照90min后磺胺嘧啶的降解率为91%。

Claims (5)

1.一种采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法,其特征在于:将纯净苦樱桃树胶、铜盐置于去离子水中,在室温下搅拌使树胶充分溶胀并且络合Cu2+,制得树胶/ Cu2 +水凝胶;将树胶/ Cu2+水凝胶浸泡在含乙二胺的水溶液中,在55~65℃下配位反应至水凝胶变为蓝色,制得树胶/乙二胺/Cu2+络合物水凝胶;将树胶/乙二胺/Cu2+络合物水凝胶干燥粉碎后,置于管式炉中,在惰性气氛、500~700℃下煅烧,制得Cu-N掺杂树胶炭催化剂。
2.根据权利要求1所述的采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法,其特征在于:铜盐为Cu(NO3)2
3.根据权利要求2所述的采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法,其特征在于:纯净苦樱桃树胶是将苦樱桃树胶浸泡在去离子水中搅拌使其充分溶解,过滤除去不溶性杂质,干燥后制得,纯净苦樱桃树胶与铜盐的质量比为1 : 0.1~0.4。
4.根据权利要求1所述的采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法,其特征在于:纯净苦樱桃树胶与乙二胺的质量比为1 : 0.2~0.5。
5.权利要求1-4任一项所述的采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法制得的Cu-N掺杂树胶炭催化剂在光照条件下催化降解磺胺类抗生素中的应用。
CN202310681764.0A 2023-06-09 2023-06-09 采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用 Active CN116408128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310681764.0A CN116408128B (zh) 2023-06-09 2023-06-09 采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310681764.0A CN116408128B (zh) 2023-06-09 2023-06-09 采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用

Publications (2)

Publication Number Publication Date
CN116408128A true CN116408128A (zh) 2023-07-11
CN116408128B CN116408128B (zh) 2023-08-04

Family

ID=87054669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310681764.0A Active CN116408128B (zh) 2023-06-09 2023-06-09 采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用

Country Status (1)

Country Link
CN (1) CN116408128B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB777038A (en) * 1953-02-27 1957-06-19 Exxon Research Engineering Co Improvements in or relating to method of carrying out homogeneous vapor phase reactions
US20030104147A1 (en) * 2000-01-25 2003-06-05 Frank Bretschneider Hollow balls and a method for producing hollow balls and for producing light-weight structural components by means of hollow balls
WO2012001707A1 (en) * 2010-07-02 2012-01-05 Indian Council Of Agricultural Research Novel superabsorbents and the method(s) of obtaining the same
WO2018087484A1 (fr) * 2016-11-10 2018-05-17 Centre National De La Recherche Scientifique Nanocomposites nanomatériau/système polymoléculaire colloïdaux, et méthodes de préparation
CN108275682A (zh) * 2018-02-05 2018-07-13 江西理工大学 三维分级多孔空心碳球材料的制备方法
CN111437885A (zh) * 2020-04-10 2020-07-24 济南大学 一种多孔磁性掺杂量子点生物复合光催化剂的制备方法
CN114456279A (zh) * 2022-02-08 2022-05-10 西南林业大学 壳聚糖缩羟基萘醛席夫碱和壳聚糖缩羟基萘醛席夫碱铜配合物的制备方法及其产品和应用
CN115722251A (zh) * 2022-12-14 2023-03-03 昆明理工大学 异原子掺杂藻基生物炭负载纳米零价金属催化剂的制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB777038A (en) * 1953-02-27 1957-06-19 Exxon Research Engineering Co Improvements in or relating to method of carrying out homogeneous vapor phase reactions
US20030104147A1 (en) * 2000-01-25 2003-06-05 Frank Bretschneider Hollow balls and a method for producing hollow balls and for producing light-weight structural components by means of hollow balls
WO2012001707A1 (en) * 2010-07-02 2012-01-05 Indian Council Of Agricultural Research Novel superabsorbents and the method(s) of obtaining the same
WO2018087484A1 (fr) * 2016-11-10 2018-05-17 Centre National De La Recherche Scientifique Nanocomposites nanomatériau/système polymoléculaire colloïdaux, et méthodes de préparation
CN108275682A (zh) * 2018-02-05 2018-07-13 江西理工大学 三维分级多孔空心碳球材料的制备方法
CN111437885A (zh) * 2020-04-10 2020-07-24 济南大学 一种多孔磁性掺杂量子点生物复合光催化剂的制备方法
CN114456279A (zh) * 2022-02-08 2022-05-10 西南林业大学 壳聚糖缩羟基萘醛席夫碱和壳聚糖缩羟基萘醛席夫碱铜配合物的制备方法及其产品和应用
CN115722251A (zh) * 2022-12-14 2023-03-03 昆明理工大学 异原子掺杂藻基生物炭负载纳米零价金属催化剂的制备方法及应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MOMENI, S、SEDAGHATI, F: "CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation", 《MICROCHEMICAL JOURNAL》, pages 64 - 71 *
PARVEZ, AM等: "Enhancing the Reactivity of Petroleum Coke in CO2 via Co-Processing with Selected Carbonaceous Materials", 《ENERGY & FUELS》, pages 1555 - 1563 *
刘培芳: "多孔电化学材料的制备及其在能量存储与转化中的应用", 《中国优秀硕士学位论文全文数据库》, pages 020 - 973 *
李彬榕: "铁/钴基固载式类芬顿催化剂的功能化设计及其去除有机染料的研究", 《中国博士学位论文全文数据库》, pages 016 - 74 *
王大伟等: "云南苦樱桃树胶单糖成分分析及其接枝共聚物的合成与性质", 《林产化学与工业》, pages 65 - 71 *
黄保桃: "桃胶多糖基磁性复合材料的制备、性能及应用研究", 《中国优秀硕士学位论文全文数据库》, pages 020 - 281 *

Also Published As

Publication number Publication date
CN116408128B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN109331874B (zh) 一种三维多孔碳包覆Co-MOF催化剂材料的制备方法
CN110157423B (zh) 一种基于秸秆制备碳量子点的方法及应用
CN109364951B (zh) 一种可见光催化复合材料及其制备方法与应用
CN111167455B (zh) 一种石墨烯负载钴掺杂二氧化钛光催化剂及其制备方法
CN111822055A (zh) 一种BiOBr/COF复合光催化剂的制备方法及应用
US20210113992A1 (en) Biological morph-genetic wo3 photocatalyst and preparation method and application thereof
CN110586166A (zh) 一种氧化钼纳米片的制备及其在光催化固氮的应用
CN108855033B (zh) 以柚子内皮为模板制备多孔纳米片三维氧化锌光催化材料的方法
CN111530490A (zh) 一种Co3O4-TiO2异质结负载碳纳米管光催化降解材料及其制法
CN110694627A (zh) 一种三氧化二铁纳米环光催化剂及其制备方法
CN114933709A (zh) 一种高收率UiO-66金属有机框架材料的制备方法及应用
CN111701587A (zh) 一种核壳结构催化-光催化复合材料及其制备方法和应用
CN116408128B (zh) 采用苦樱桃树胶制备Cu-N掺杂树胶炭催化剂的方法及应用
CN114570402A (zh) 一种含碳缺陷和氧掺杂的氮化碳光催化材料的制备方法及去除水体中四环素的应用
US11896960B1 (en) High-efficiency visible-light catalytic material and preparation method and application thereof
CN112978687A (zh) 一种氮化钽介孔纳米球的制备方法
CN111170297B (zh) 一种油茶壳碳粉材料及其在净化抗生素废水中的应用
CN111185245A (zh) 一种氧化石墨烯负载钒酸铋纳米复合材料及其制备方法
CN116715223A (zh) 一种碳量子点及其制备方法和应用
CN111790409A (zh) 一种氧化镧-富铋型碘氧化铋复合材料及其制备方法
CN112973740B (zh) 一种生物炭基核壳固体酸催化剂及其制备与应用
CN114989549A (zh) 一种近红外纳米碳点转光膜及其制备方法和应用
CN113460995A (zh) 一种碳点和纳米氧化锌同时制备的方法
CN108752357B (zh) 具有高光热转换效率的水溶性酞菁纳米材料的制备方法及应用
CN113751027A (zh) 一种超薄MgIn2S4纳米片杀菌光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240924

Address after: 230000 Woye Garden Commercial Building B-1017, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee after: HEFEI JINGLONG ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: No. 300, bailongsi, Panlong District, Kunming City, Yunnan Province

Patentee before: SOUTHWEST FORESTRY University

Country or region before: China