CN116377384A - 一种氮化铪基涂层及其制备方法和应用 - Google Patents

一种氮化铪基涂层及其制备方法和应用 Download PDF

Info

Publication number
CN116377384A
CN116377384A CN202211713712.9A CN202211713712A CN116377384A CN 116377384 A CN116377384 A CN 116377384A CN 202211713712 A CN202211713712 A CN 202211713712A CN 116377384 A CN116377384 A CN 116377384A
Authority
CN
China
Prior art keywords
hfn
coating
substrate
hafnium nitride
based coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211713712.9A
Other languages
English (en)
Inventor
李宇涵
南勋
王博
王诗阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Jirui New Material Technology Co ltd
Original Assignee
Jiaxing Jirui New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Jirui New Material Technology Co ltd filed Critical Jiaxing Jirui New Material Technology Co ltd
Priority to CN202211713712.9A priority Critical patent/CN116377384A/zh
Publication of CN116377384A publication Critical patent/CN116377384A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明公开了一种氮化铪基涂层及其制备方法和应用,属于涉及涂层材料技术领域。所述氮化铪基涂层的制备步骤包括:先用离子源在氮气气氛下轰击基体表面,再在基体表面沉积纯HfN涂层或HfN复合涂层,得到所述氮化铪基涂层;所述HfN复合涂层为HfN与TiN和/或ZrN复合。本发明通过使用离子源在氮气气氛下轰击基体表面,使其表面氮化从而抑制涂层中HfN与基体中的Co,W,C反应生成η相,提高涂层结合强度,大幅降低了含HfN基涂层在使用时的剥落状况,进而提高其涂层刀具使用寿命,并通过与TiN,ZrN的复合使其获得更加全面的使用性能。

Description

一种氮化铪基涂层及其制备方法和应用
技术领域
本发明涉及涂层材料技术领域,特别涉及一种氮化铪基涂层及其制备方法和应用。
背景技术
氮化铪因为其较好的导热性和较高的硬度,使其成为潜力很大的硬质涂层材料。目前大多数氮化物硬质涂层的研究主要集中在TiN、TaN、NbN、A1N、CrN、ZrN等体系,HfN基硬质涂层材料的研究相对较少,仅少数道了运用PVD,CVD法沉积纯氮化铪硬质涂层,并对其使用性能进行测试,例如teledyne firth sterling公司开发出的氮化铪涂层系列道具,在较低切削速度下(1500~2800mm/s)比TiC涂层刀具使用寿命高出50%以上,这足以证明其巨大的应用潜力。然而HfN在沉积的过程中容易与基体中的Co,W,C反应生成η相,严重削弱了涂层和基体之间的结合力,使其在使用过程中容易剥落,并且HfN在高速切削耐磨性和抗热震性方面略逊于TiN,ZrN。
发明内容
为解决上述技术问题,本发明提供了一种氮化铪基涂层及其制备方法和应用。通过使用离子源在氮气气氛下轰击基体表面,使其表面氮化从而抑制涂层中HfN与基体中的Co,W,C反应生成η相,提高涂层结合强度,大幅降低了含HfN基涂层在使用时的剥落状况,进而提高其涂层刀具使用寿命,并通过与TiN,ZrN的复合使其获得更加全面的使用性能。
为实现上述目的,本发明提供了如下技术方案:
本发明技术方案之一:提供一种氮化铪基涂层的制备方法,包括以下步骤:
先用离子源在氮气气氛下轰击基体表面,再在基体表面沉积纯HfN涂层或HfN复合涂层,得到所述氮化铪基涂层;
所述HfN复合涂层为HfN与TiN和/或ZrN复合。
优选地,所述基体包括高速钢,硬质合金,金属陶瓷,陶瓷和立方氮化硼中的一种或多种复合。
优选地,所述轰击基体的偏压为-1200V,时间为1~2min,轰击时通入的氮气压强为0.2~0.5Pa。
优选地,在基体表面沉积纯HfN涂层或HfN复合涂层的方法包括磁控溅射或阴极电弧离子镀。
优选地,所述磁控溅射或阴极电弧离子镀的靶材成分按质量分数计,包括:Hf10%~100%,其余为Ti和/或Zr。
优选地,所述磁控溅射的具体条件为:载气为氩气和/或氪气,反应气为氮气;其中氩气流量为100~350sccm,氪气流量为60~230sccm,氮气流量为40~130sccm;沉积中基体偏压为-200~500V,辅助阳极电压为-200~400V。
优选地,所述阴极电弧离子镀的具体条件为:氮气总压为0.6~1.1Pa,弧电流为60~70A,弧电压为15~26V,沉积中基体偏压为-100~500V。
本发明技术方案之二:提供一种根据上述氮化铪基涂层的制备方法制得的氮化铪基涂层,所述氮化铪基涂层的厚度为5~30μm。
本发明技术方案之三:提供一种上述氮化铪基涂层在制备切削工具或耐磨零件的烧结体中的应用。
本发明的技术原理如下:
在进行涂层前,用离子源在氮气气氛下轰击基体表面,不仅可以使表面原子活化,增强HfN基层与基体的吸附性,还可以在轰击过程中使基体表面原子氮化,使基体表面化学反应位点被氮原子占据,从而抑制基体中的W,Co,C与HfN发生反应生成脆性η相,并且选用氮对基体表面化学反应位点进行占据可以使基体表面与HfN基层一样具有较高的含氮量,使基体和HfN基层拥有更好的化学相容性。在氮化基体的过程中,通入氮气压强低于本发明限定量时,基体表面氮化不充分;通入氮气压强高于本发明限定量时,由于氮化程度过高,导致基体力学性能下降。
若采用多层复合制备HfN基涂层,一方面会造成较多界面,导致HfN基涂层力学稳定性和高温强度降低,另一方面由于工艺时间较长,难以适应大规模生产的需要。而在本发明的技术方案中,为实现上述技术目的,本发明采用单层复合的方式制备HfN基涂层,通过采用不同成分的合金靶材控制HfN基层的具体成分的质量比。HfN、ZrN、TiN三者具有良好的化学相容性,在沉积涂层的过程中可独立存在,使TiN的高速耐磨性,ZrN出色的抗热震性以及HfN本身的高硬度和良好导热性线性叠加在一起,进而达到提高HfN基涂层使用寿命以及使其使用性能更加全面的技术目的,而且避免了多层复合造成的多界面的不稳定性以及复杂的工艺流程,更适合工业化生产要求。
本发明的有益技术效果如下:
本发明提出的在HfN基涂层制备前先氮化基体表面的技术,可以有效抑制HfN与基体中的Co,W,C反应生成η相,提高含HfN基层与基体间的结合强度,减少使用过程中涂层剥落的现象;通过HfN与TiN、ZrN的单层复合,不仅可以将TiN、ZrN以及HfN各自的优良性能融合在一起,还可以避免由于多层复合造成的层与层之间由于膨胀系数及抗热震性的差异,从而导致使用过程中的开裂,并且工艺周期较短,适合大规模生产。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
采用YG6硬质合金基体,将基体进行超声清洗、烘干后,送入涂层炉真空室中,并通入N2。在偏压为-1200V以及气压为0.3Pa的条件下,采用离子源对基体进行轰击,轰击时间为1min。之后进行阴极电弧离子镀,通入N2,打开Hf靶,在弧电流为60A、弧电压15V、偏压为-100V、气压为1.0Pa的条件下沉积7μm厚的HfN金属氮化物层,沉积时间为280min。
实施例2
同实施例1,区别仅在于,离子源对基体进行轰击时,氮气气压为0.1Pa。
实施例3
同实施例1,区别仅在于,离子源对基体进行轰击时,氮气气压为0.8Pa。
实施例4
同实施例1,区别仅在于,进行磁控溅射,载气为氩气,反应气为氮气,其中氩气流量为100sccm,氮气流量为40sccm,沉积中基体偏压为-100V,辅助阳极电压为-100V。
实施例5
同实施例1,区别仅在于,打开Hf-Zr合金靶,以质量分数计,合金靶成分为:Hf10%,Zr 90%,沉积7μm厚的HfN-ZrN金属氮化物层(成分以质量分数计:Hf占Hf+Zr的10%,Zr占Hf+Zr的90%),沉积时间为300min。
实施例6
同实施例1,区别仅在于,打开Hf-Ti合金靶,以质量分数计,合金靶成分为:Hf10%,Ti 90%,沉积7μm厚的HfN-TiN金属氮化物层(成分以质量分数计:Hf占Hf+Ti的10%,Ti占Hf+Ti的90%),沉积时间为290min。
实施例7
同实施例1,区别仅在于,打开Hf-Ti+Zr合金靶,以质量分数计,合金靶成分包括:Hf 20%,Ti 40%,Zr 40%,沉积7μm厚的HfN-TiN+ZrN金属氮化物层(成分以质量分数计:Hf占Hf+Ti+Zr的20%,Ti占Hf+Ti+Zr的40%,Zr占Hf+Ti+Zr的40%),沉积时间为325min。
实施例8
同实施例1,区别仅在于,省略离子源轰击基体过程;结果显示省略该步骤无法制得目标涂层。
实施例9
同实施例1,区别仅在于,YG6硬质合金替换为YG20硬质合金。
实施例10
同实施例1,区别仅在于,阴极电弧离子镀的偏压为-200V。
实施例11
同实施例1,区别仅在于,YG6硬质合金替换为氧化铝基陶瓷。
实施例12
同实施例1,区别仅在于,YG6硬质合金替换为碳氮化钛基金属陶瓷。
实施例13
同实施例1,区别仅在于,阴极电弧离子镀的氮气气压为0.4Pa。
实施例14
同实施例1,区别仅在于,阴极电弧离子镀的氮气气压为2Pa。
实施例15
同实施例1,区别仅在于,进行磁控溅射,载气为氩气,反应气为氮气,其中氩气流量为200sccm,氮气流量为130sccm,沉积中基体偏压为-200V,辅助阳极电压为-200V。
对实施例1~15制备的HfN基涂层进行热导率以及力学性能测定,测定结果见表1。
表1
Figure BDA0004027156700000061
Figure BDA0004027156700000071
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

1.一种氮化铪基涂层的制备方法,其特征在于,包括以下步骤:
先用离子源在氮气气氛下轰击基体表面,再在基体表面沉积纯HfN涂层或HfN复合涂层,得到所述氮化铪基涂层;
所述HfN复合涂层为HfN与TiN和/或ZrN复合。
2.根据权利要求1所述的制备方法,其特征在于,所述基体包括高速钢,硬质合金,金属陶瓷,陶瓷和立方氮化硼中的一种或多种复合。
3.根据权利要求1所述的制备方法,其特征在于,所述轰击基体的偏压为-1200V,时间为1~2min,轰击时通入的氮气压强为0.2~0.5Pa。
4.根据权利要求1所述的制备方法,其特征在于,在基体表面沉积纯HfN涂层或HfN复合涂层的方法包括磁控溅射或阴极电弧离子镀。
5.根据权利要求4所述的制备方法,其特征在于,所述磁控溅射或阴极电弧离子镀的靶材成分按质量分数计,包括:Hf10%~100%,其余为Ti和/或Zr。
6.根据权利要求4所述的制备方法,其特征在于,所述磁控溅射的具体条件为:载气为氩气和/或氪气,反应气为氮气;其中氩气流量为100~350sccm,氪气流量为60~230sccm,氮气流量为40~130sccm;沉积中基体偏压为-200~500V,辅助阳极电压为-200~400V。
7.根据权利要求4所述的制备方法,其特征在于,所述阴极电弧离子镀的具体条件为:氮气总压为0.6~1.1Pa,弧电流为60~70A,弧电压为15~26V,沉积中基体偏压为-100~500V。
8.根据权利要求1~7任一项所述氮化铪基涂层的制备方法制得的氮化铪基涂层,其特征在于,所述氮化铪基涂层的厚度为5~30μm。
9.权利要求8所述氮化铪基涂层在制备切削工具或耐磨零件的烧结体中的应用。
CN202211713712.9A 2022-12-29 2022-12-29 一种氮化铪基涂层及其制备方法和应用 Pending CN116377384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211713712.9A CN116377384A (zh) 2022-12-29 2022-12-29 一种氮化铪基涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211713712.9A CN116377384A (zh) 2022-12-29 2022-12-29 一种氮化铪基涂层及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116377384A true CN116377384A (zh) 2023-07-04

Family

ID=86964440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211713712.9A Pending CN116377384A (zh) 2022-12-29 2022-12-29 一种氮化铪基涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116377384A (zh)

Similar Documents

Publication Publication Date Title
KR960015546B1 (ko) 확산방지 피막물질
US5853873A (en) Hard composite material for tools
KR101779634B1 (ko) 혼합 결정 층을 증착하는 pvd 하이브리드 방법
EP2276874B1 (en) A coated cutting tool and a method of making thereof
EP2147132B1 (en) A coated cutting tool
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
KR20100017702A (ko) Pvd 코팅을 만들기 위한 방법
JPH0588310B2 (zh)
US4728579A (en) Wear resistant, coated, metal carbide body and a method for its production
JP4155641B2 (ja) 耐摩耗性被膜およびその製造方法ならびに耐摩耗部材
CN116438325A (zh) 切削工具用硬质涂膜
CN107815643A (zh) 一种用于高温服役的纳米多层涂层及其制备方法
JP5416429B2 (ja) 表面被覆切削工具
JP2979922B2 (ja) 超薄膜積層部材
WO2019239654A1 (ja) 表面被覆切削工具、及びその製造方法
JP3927621B2 (ja) 硬質皮膜及び硬質皮膜被覆部材並びに切削工具
CN116377384A (zh) 一种氮化铪基涂层及其制备方法和应用
JPH04297568A (ja) 耐摩耗性のすぐれた表面被覆部材及び皮膜形成方法
JP6583763B1 (ja) 表面被覆切削工具、及びその製造方法
JPH0588309B2 (zh)
JP2926882B2 (ja) 耐摩耗性に優れた表面被覆硬質部材
KR20010037811A (ko) 절삭공구/내마모성 공구용 표면 피복 경질합금
JP2913763B2 (ja) 切削工具・耐摩工具用表面被覆硬質部材
JPH0250948A (ja) 複合超硬材料
JP2022519709A (ja) ホウ化物を含む拡散バリア層を含むコーティングを施したコーティングされたツール

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination