CN116364875A - 用于正电极的锂化添加剂 - Google Patents

用于正电极的锂化添加剂 Download PDF

Info

Publication number
CN116364875A
CN116364875A CN202210598833.7A CN202210598833A CN116364875A CN 116364875 A CN116364875 A CN 116364875A CN 202210598833 A CN202210598833 A CN 202210598833A CN 116364875 A CN116364875 A CN 116364875A
Authority
CN
China
Prior art keywords
equal
lithium
positive electrode
less
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210598833.7A
Other languages
English (en)
Inventor
胡佳智
齐共新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN116364875A publication Critical patent/CN116364875A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本公开提供了一种循环锂离子的电化学电池。所述电化学电池包括正电极和负电极。所述正电极包含正极电活性材料和与所述正极电活性材料掺混的锂化添加剂。所述锂化添加剂包含含锂材料和一种或多种金属。所述含锂材料由LiX表示,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)、或硫(S)。所述一种或多种金属选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。所述负电极可以包含体积膨胀型负极电活性材料。

Description

用于正电极的锂化添加剂
技术领域
本发明涉及用于正电极的锂化添加剂。
背景技术
本部分提供与本公开相关的背景信息,其不一定是现有技术。
为了满足包括诸如启停系统(例如12V启停系统)、电池组辅助系统、混合动力电动车(“HEV”)和电动车(“EV”)的汽车产品的各种产品对能量和/或功率的要求,需要先进的储能装置和系统。典型的锂离子电池组包括至少两个电极和电解质和/或隔离件。两个电极中的一个可充当正电极或阴极,且另一个电极可充当负电极或阳极。可以在负电极和正电极之间设置隔离件和/或电解质。电解质适于在所述电极(如两个电极)之间传导锂离子,可以是固体和/或液体形式和/或其混合物(hybrid)形式。在包括固态电极和固态电解质的固态电池组的情况下,固态电解质可以物理地隔离电极,使得不需要单独的隔离件。
传统的可再充电锂离子电池组是通过在负电极和正电极之间可逆地来回传递锂离子来运行。例如,在电池组充电的过程中,锂离子可以从正电极移动到负电极,而在电池组放电的过程中,锂离子可以在相反的方向上移动。这样的锂离子电池组可以根据需要向相关的负载设备可逆地提供电力。更具体地说,电力可以由锂离子电池组提供给负载设备,直到负电极的锂内容物(content)被有效地耗尽。然后可以通过在电极之间在相反的方向上传递合适的直流电流对电池组进行再充电。
在放电过程中,负电极可含有相对高浓度的嵌入锂,其被氧化成锂离子并释放电子。锂离子可以从负电极移动到正电极,例如,穿过所插入的多孔隔离件的孔隙内所含的离子传导电解质溶液。同时,电子通过外部电路从负电极传递到正电极。这样的锂离子可以通过电化学还原反应被同化成正电极的材料。电池组可在部分或全部释放其可用容量之后通过外部电源进行再充电或再生,这逆转了放电过程中发生的电化学反应。
然而,在各种情况下,由于例如转化反应和/或在第一次循环过程中在负电极上固体电解质界面(SEI)层的形成,以及由于例如连续的固体电解质界面破损而导致的持续锂损失,导致在第一次循环之后负电极保留有一部分嵌入锂。锂离子的这种永久损失可导致电池组中比能量和功率的下降,这是因为例如增加的正电极物质不参与到电池组的可逆操作中。例如,锂离子电池组在第一次循环之后可经历大于或等于约5%至小于或等于约30%的不可逆的容量损失,并且在含硅负电极或其它体积膨胀型负极电活性材料(例如锡(Sn)、铝(Al)、锗(Ge))的情况下,第一次循环之后的不可逆的容量损失大于或等于约20%至小于或等于约40%。
目前补偿第一次循环锂损失的方法包括,例如,其中使用电解质浴对含硅阳极进行锂化的电化学方法。然而,这样的方法易受电解质污染的影响,并因此导致不稳定性。另一种补偿方法包括,例如,电池内锂化,其包括将锂添加至电池。然而,这样的方法需要使用网状集流体,其具有高材料成本和涂层成本。然而,又一种补偿方法包括,例如,将锂沉积(例如,喷涂或挤出或物理气相沉积(PVD))在阳极或阳极材料上。然而,在这种情况下,难以产生均匀沉积的锂层(而且成本很高)。因此,将合意的是开发出可以解决这些挑战的改善的电极和电活性材料以及使用所述电极和材料的方法。
发明内容
本部分提供了本公开的总体概述,而不是其全部范围或其全部特征的全面公开。
本公开涉及在循环锂离子的电化学电池中使用(例如在正电极中并与正极电活性材料混合使用)的锂化添加剂及其使用方法。
在各种方面,本公开提供了用于正电极的锂化添加剂。所述锂化添加剂可包含含锂材料和一种或多种金属。所述含锂材料可以由LiX表示,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)或硫(S)。所述一种或多种金属可以选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。
在一方面,所述锂化添加剂可包含大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料,和大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
在一方面,所述正电极可包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
在一方面,所述含锂材料可以是氟化锂(LiF),并且所述一种或多种金属可以包含铁(Fe)。
在一方面,所述正电极可包含正极电活性材料,并且所述锂化添加剂可与所述正极电活性材料掺混。
在一方面,所述正极电活性材料可以选自:NCM 111、NCM 532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
在各种方面,本公开提供了正极电活性材料层。所述正极电活性材料层可包含正极电活性材料和与所述正极电活性材料掺混的锂化添加剂。所述锂化添加剂可包含含锂材料和一种或多种金属。所述含锂材料可以由LiX表示,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)、或硫(S)。
在一方面,所述一种或多种金属可以选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。
在一方面,所述锂化添加剂可包含大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料,和大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
在一方面,所述正电极可包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
在一方面,所述正极电活性材料可以选自:NCM 111、NCM 532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
在一方面,所述含锂材料可以是氟化锂(LiF),并且所述一种或多种金属可以包含铁(Fe)。
在各种方面,本公开提供了循环锂离子的电化学电池。所述电化学电池可包括正电极。所述正电极可包含正极电活性材料和与所述正极电活性材料掺混的锂化添加剂。所述锂化添加剂可包含含锂材料和一种或多种金属。所述含锂材料可以由LiX表示,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)、或硫(S)。
在一方面,所述一种或多种金属可以选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。
在一方面,所述锂化添加剂可包含大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料,和大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
在一方面,所述正电极包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
在一方面,所述正极电活性材料可以选自:NCM 111、NCM 532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
在一方面,所述电化学电池可以进一步包括负电极。所述负电极包含负电性材料。
在一方面,所述负极电活性材料可以是体积膨胀型负极电活性材料。
在一方面,所述含锂材料可以是氟化锂(LiF),并且所述一种或多种金属包含铁(Fe)。
本发明公开了以下技术方案:
1. 一种用于正电极的锂化添加剂,所述锂化添加剂包含:
由LiX表示的含锂材料,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)或硫(S);和
一种或多种选自铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合的金属。
2. 根据技术方案1所述的锂化添加剂,其中所述锂化添加剂包含:
大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料;和
大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
3. 根据技术方案1所述的锂化添加剂,其中所述正电极包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
4. 根据技术方案1所述的锂化添加剂,其中所述含锂材料是氟化锂(LiF),并且所述一种或多种金属包含铁(Fe)。
5. 根据技术方案1所述的锂化添加剂,其中所述正电极包含正极电活性材料,并且所述锂化添加剂与所述正极电活性材料掺混。
6. 根据技术方案5所述的锂化添加剂,其中所述正极电活性材料选自:NCM 111、NCM 532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
7. 一种正极电活性材料层,其包含:
正极电活性材料;和
与所述正极电活性材料掺混的锂化添加剂,其中所述锂化添加剂包含由LiX表示的含锂材料,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)或硫(S),以及一种或多种金属。
8. 根据技术方案7所述的正极电活性材料层,其中所述一种或多种金属选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。
9. 根据技术方案7所述的正极电活性材料层,其中所述锂化添加剂包含:
大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料;和
大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
10. 根据技术方案7所述的正极电活性材料层,其中所述正电极包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
11. 根据技术方案7所述的正极电活性材料层,其中所述正极电活性材料选自:NCM 111、NCM 532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
12. 根据技术方案7所述的正极电活性材料层,其中所述含锂材料是氟化锂(LiF),并且所述一种或多种金属包含铁(Fe)。
13. 一种循环锂离子的电化学电池,其中所述电化学电池包括:
正电极,其包含:
正极电活性材料;和
与所述正极电活性材料掺混的锂化添加剂,其中所述锂化添加剂包含由LiX表示的含锂材料,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)或硫(S),以及一种或多种金属。
14. 根据技术方案13所述的电化学电池,其中所述一种或多种金属选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。
15. 根据技术方案13所述的电化学电池,其中所述锂化添加剂包含:
大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料;和
大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
16. 根据技术方案13所述的电化学电池,其中所述正电极包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
17. 根据技术方案13所述的电化学电池,其中所述正极电活性材料选自:NCM111、NCM 532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
18. 根据技术方案13所述的电化学电池,其中所述电化学电池进一步包括:
负电极,其包含负极电活性材料。
19. 根据技术方案18所述的电化学电池,其中所述负极电活性材料是体积膨胀型负极电活性材料。
20. 根据技术方案13所述的电化学电池,其中所述含锂材料是氟化锂(LiF),并且所述一种或多种金属包含铁(Fe)。
进一步适用领域通过本文提供的描述将变得显而易见。本发明内容中的描述和具体实例仅意在举例说明的目的而无意限制本公开的范围。
附图说明
本文中描述的附图仅用于所选实施方案而非所有可能实施方式的说明目的,并且无意限制本公开的范围。
图1是示例性电化学电池组电池的示意图;以及
图2是示意性图示根据本公开的各种方面制备的示例性电池组电池的放电容量和充电容量的曲线图。
遍及附图的几个视图,相应的附图标记指示相应的部件。
发明详述
提供示例性实施方案从而使得本公开将为完全的,并使本公开将向本领域技术人员充分传达范围。阐述了许多具体细节,例如具体组合物、组件、装置和方法的实例,以提供对本公开的实施方案的充分理解。对本领域技术人员将显而易见的是,不需要采用具体细节,示例性实施方案可以以许多不同的形式表现,并且它们都不应被解释为限制本公开的范围。在一些示例性实施方案中,没有详细描述公知的方法、公知的装置结构和公知的技术。
本文中所用的术语仅为了描述特定的示例性实施方案,并且无意作为限制。除非上下文清楚地另行指明,如本文所用,单数形式“一”、“一个”和“该”可旨在也包括复数形式。术语“包含”、“包括”、“涵盖”和“具有”是可兼的,并且因此指定了所述特征、元件、组合物、步骤、整数、操作和/或组件的存在,但不排除一个或多个其它特征、整数、步骤、操作、元件、组件和/或其群组的存在或加入。尽管开放式术语“包括”应被理解为用于描述和要求保护本文中所述的各种实施方案的非限制性术语,但在某些方面,该术语或可被理解成替代性地为更具限制性和局限性的术语,如“由……组成”或“基本由……组成”。由此,对叙述组合物、材料、组件、元件、特征、整数、操作和/或方法步骤的任意给定实施方案,本公开还具体包括由或基本由此类所叙述组合物、材料、组件、元件、特征、整数、操作和/或方法步骤组成的实施方案。在“由……组成”的情况下,替代实施方案排除任何附加的组合物、材料、组件、元件、特征、整数、操作和/或方法步骤,而在“基本由……组成”的情况下,从此类实施方案中排除了实质上影响基本和新颖特性的任何附加的组合物、材料、组件、元件、特征、整数、操作和/或方法步骤,但是不在实质上影响基本和新颖特性的任何组合物、材料、组件、元件、特征、整数、操作和/或方法步骤可以包括在实施方案中。
本文中描述的任何方法步骤、工艺和操作不应解释为必定要求它们以所论述或举例说明的特定次序执行,除非明确确定为执行次序。还要理解的是,除非另行说明,可采用附加或替代的步骤。
当组件、元件或层被提到在另一元件或层“上”,“啮合”、“连接”或“耦合”到另一元件或层上时,其可直接在另一组件、元件或层上,啮合、连接或耦合到另一组件、元件或层上,或可存在居间元件或层。相较之下,当元件被提到“直接在另一元件或层上”,“直接啮合”、“直接连接”或“直接耦合”到另一元件或层上时,可不存在居间元件或层。用于描述元件之间关系的其它词语应以类似方式解释(例如“在…之间”相对“直接在…之间”,“相邻”相对“直接相邻”等)。如本文所用,术语“和/或”包括一个或多个相关罗列项的任何和所有组合。
尽管术语第一、第二、第三等在本文中可用于描述各种步骤、元件、组件、区域、层和/或区段,但除非另行说明,这些步骤、元件、组件、区域、层和/或区段不应受这些术语限制。这些术语可仅用于将一个步骤、元件、组件、区域、层或区段与另一步骤、元件、组件、区域、层或区段进行区分。除非上下文清楚表明,术语如“第一”、“第二”和其它数值术语在本文中使用时并不暗示次序或顺序。因此,下文论述的第一步骤、元件、组件、区域、层或区段可以被称作第二步骤、元件、组件、区域、层或区段而不背离示例性实施方案的教导。
为了易于描述,在本文中可使用空间或时间上相对的术语,如“之前”、“之后”、“内”、“外”、“下”、“下方”、“下部”、“上方”、“上部”等描述如附图中所示的一个元件或特征与其它(一个或多个)元件或(一个或多个)特征的关系。除了在附图中所示的取向之外,空间或时间上的相对术语可旨在涵盖装置或系统在使用或操作中的不同取向。
遍及本公开,数值代表近似测量值或范围界限以涵盖与给定值的轻微偏差和大致具有所提及值的实施方案以及确切具有所提及值的实施方案。除了在详细描述最后提供的工作实例中之外,本说明书(包括所附权利要求)中的(例如量或条件)参数的所有数值应被理解为在所有情况中被术语“约”修饰,无论在该数值前是否实际出现“约”。“约”是指所述数值允许一定的轻微不精确(在一定程度上接近该值的精确值;大致或合理地近似该值;几乎是)。如果在本领域中不以这种普通含义另行理解由“约”提供的不精确性,那么本文所用的“约”是指可由测量和使用此类参数的普通方法造成的至少偏差。例如,“约”可包括小于或等于5%、任选小于或等于4%、任选小于或等于3%、任选小于或等于2%、任选小于或等于1%、任选小于或等于0.5%,和在某些方面任选小于或等于0.1%的偏差。
此外,范围的公开包括对在整个范围内的所有值和进一步细分范围的公开,包括对该范围所给出的端点和子范围的公开。
现在将参照附图更充分描述示例性实施方案。
典型的锂离子电池组包括与第二电极(例如负电极或阳极)相对的第一电极(例如正电极或阴极),以及设置在其间的隔离件和/或电解质。通常,在锂离子电池包中,电池组或电池可以以堆叠或卷绕的配置电连接以增加总输出。锂离子电池组通过在第一电极和第二电极之间可逆地传导锂离子来运行。例如,在电池组充电的过程中,锂离子可以从正电极移动到负电极,而在电池组放电的过程中,锂离子可以在相反的方向上移动。电解质适于传导锂离子(或在钠离子电池组的情况下为钠离子等),并且可以是液体、凝胶或固体形式。例如,图1中示出了电化学电池(也称为电池组)20的示例性和示意性图示。
这样的电池用于车辆或汽车运输应用(例如,摩托车、船、拖拉机、公共汽车、摩托车、移动房屋、露营车和坦克)。然而,本发明技术可用于多种其它行业和应用中,作为非限制性的实例包括航空航天组件、消费品、设备、建筑物(例如房屋、办公室、棚屋和仓库)、办公设备和家具,以及工业机械设备、农业或农场设备、或重型机械。此外,尽管图示的实例包括单个正电极(阴极)和单个阳极,但本领域技术人员将认识到,本发明的教导适用于各种其它配置,包括具有一个或多个阴极和一个或多个阳极、以及具有设置在其一个或多个表面上或与其一个或多个表面相邻设置的电活性层的各种集流体的那些。
电池组20包括负电极22(例如阳极)、正电极24(例如阴极)以及设置在两个电极22和24之间的隔离件26。隔离件26在电极22和电极24之间提供电气隔离—防止物理接触。隔离件26还在锂离子的循环过程中为锂离子(以及在某些情况下的相关阴离子)的内部通行提供最小电阻路径。在各种方面,隔离件26包括电解质30,在某些方面,电解质30还可以存在于负电极22和正电极24中。在某些变型中,隔离件26可以由固态电解质形成。例如,隔离件26可以由多个固态电解质粒子(未示出)限定。
负电极集流体32可以布置在负电极22处或附近。负电极集流体32可以是包含铜或本领域技术人员已知的任何其它合适的导电材料的金属箔、金属网格或筛网或多孔金属网(expanded metal)。正电极集流体34可以布置在正电极24处或附近。正电极集流体34可以是包含铝或本领域技术人员已知的任何其它合适的导电材料的金属箔、金属网格或筛网或多孔金属网。负电极集流体32和正电极集流体34分别将自由电子收集并移动到外部电路40并从外部电路40收集并移动自由电子。例如,可中断外部电路40和负载设备42可以连接负电极22(通过负电极集流体32)和正电极24(通过正电极集流体34)。
电池组20可以通过在外部电路40闭合(以连接负电极22和正电极24)且负电极22具有低于正电极的电势时发生的可逆电化学反应在放电过程中产生电流。正电极24和负电极22之间的化学势差将在负电极22处通过反应(例如嵌入锂的氧化)产生的电子通过外部电路40朝正电极24驱动。同样,也在负电极22处产生的锂离子同时跨过隔离件26中所含的电解质30超正电极24转移。电子流经外部电路40且锂离子穿过含有电解质30的隔离件26迁移以在正电极24处形成嵌入锂。如上文所述,电解质30通常还存在于负电极22和正电极24中。可以通过负载设备42利用和引导流经外部电路40的电流,直到负电极22中的锂被耗尽且电池组20的容量降低。
可在任何时间通过将外部电源连接到锂离子电池组20以逆转电池组放电过程中发生的电化学反应,来为电池组20充电或重新供能。将外部电源连接到电池组20促进了正电极24处的反应,例如嵌入锂的非自发氧化,使得产生电子和锂离子。锂离子跨过隔离件26穿过电解质30流回负电极22,以为负电极22补充在下一次电池组放电事件的过程中使用的锂(例如,嵌入锂)。因此,完整的放电事件接着完整的充电事件被认为是一次循环,其中锂离子在正电极24和负电极22之间循环。可用于为电池组20充电的外部电源可根据电池组20的尺寸、构造和特定的终端用途而变化。一些值得注意和示例性的外部电源包括但不限于通过壁装电源插座连接到AC电力网的AC-DC转换器和机动车交流发电机。
在许多锂离子电池组配置中,将负电极集流体32、负电极22、隔离件26、正电极24和正电极集流体34中的每一个制备为相对薄的层(例如,几微米至几分之一毫米或更小的厚度),并以电并联配置连接的层的形式进行组装,以提供合适的能量和功率包。在各种方面,电池组20还可以包括多种其它组件,这些组件虽然没有在本文中描述,但对于本领域技术人员来说是已知的。例如,电池组20可以包括外壳、垫圈、端子盖、极耳、电池组端子和可以位于电池组20内(包括位于负电极22、正电极24和/或隔离件26之间或其附近)的任何其它常规组件或材料。图1中所示的电池组20包括液体电解质30,并示出了电池组运行的代表性构思。然而,本技术也适用于包括固态电解质和/或固态电活性粒子的固态电池组,它们可以具有本领域技术人员已知的不同设计。
如上文所述,电池组20的尺寸和形状可根据设计其用于的特定应用而变化。例如,电池组供能的车辆和手持式消费电子设备是其中电池组20最有可能被设计为不同尺寸、容量和功率输出规格的两个实例。如果负载设备42需要的话,电池组20还可以与其它类似的锂金属电池或电池组串联或并联连接以产生更大的电压输出、能量和功率。因此,电池组20可以向作为外部电路40的一部分的负载设备42产生电流。负载设备42可由电池组20放电时流经外部电路40的电流来供电。虽然电气负载设备42可以是任何数量的已知电动装置,但一些具体实例包括电动车的电机、笔记本电脑、平板电脑、移动电话和无绳电动工具或电器。负载设备42还可以是为以存储电能为目的的电池组20充电的发电装置。
再次参照图1,正电极24、负电极22和隔离件26可以各自在其孔隙内包含能够在负电极22和正电极24之间传导锂离子的电解质溶液或电解质体系30。能够在负电极22和正电极24之间传导锂离子的任何合适的电解质30(无论是固体、液体或凝胶形式)均可用于锂离子电池组20中。在某些方面,电解质30可以是非水性液体电解质溶液(例如> 1M),其包含溶解在有机溶剂或有机溶剂的混合物中的锂盐。在锂离子电池组20中可以采用许多常规的非水性液体电解质30溶液。
在某些方面,电解质30可以是非水性液体电解质溶液,其包含溶解在有机溶剂或有机溶剂的混合物中的一种或多种锂盐。例如,可以溶解在有机溶剂中以形成非水性液体电解质溶液的锂盐的非限制性列表包括六氟磷酸锂(LiPF6)、高氯酸锂(LiClO4)、四氯铝酸锂(LiAlCl4)、碘化锂(LiI)、溴化锂(LiBr)、硫氰酸锂(LiSCN)、四氟硼酸锂(LiBF4)、四苯基硼酸(LiB(C6H5)4)、双(草酸根合)硼酸锂(LiB(C2O4)2)(LiBOB)、二氟草酸根合硼酸锂(LiBF2(C2O4))、六氟砷酸锂(LiAsF6)、三氟甲磺酸锂(LiCF3SO3)、双(三氟甲烷)磺酰亚胺锂(LiN(CF3SO2)2)、双(氟磺酰)亚胺锂(LiN(FSO2)2) (LiSFI)及其组合。
这些或其它类似的锂盐可以溶解在多种非水性非质子有机溶剂中,包括但不限于各种碳酸烷基酯,例如环状碳酸酯(例如,碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)),直链碳酸酯(例如,碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)),脂族羧酸酯(例如,甲酸甲酯、乙酸甲酯、丙酸甲酯),γ-內酯(例如,γ-丁內酯、γ-戊內酯),链状结构醚(例如,1,2-二甲氧基乙烷(DME)、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷),环状醚(例如,四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环),硫化合物(例如,环丁砜),及其组合。
在某些情况下,多孔隔离件26可以包括含有聚烯烃的微多孔聚合物隔离件。聚烯烃可以是均聚物(衍生自单一单体成分)或杂聚物(衍生自多于一种的单体成分),其可以是直链或支化的。如果杂聚物衍生自两种单体成分,则聚烯烃可以采取任何共聚物链排列,包括嵌段共聚物或无规共聚物的那些排列。类似地,如果聚烯烃是衍生自多于两种单体成分的杂聚物,则其同样可以是嵌段共聚物或无规共聚物。在某些方面,聚烯烃可以是聚乙烯(PE)、聚丙烯(PP)、或聚乙烯(PE)和聚丙烯(PP)的共混物,或PE和/或PP的多层结构的多孔膜。可商购的聚烯烃多孔隔离件26包括可从Celgard LLC.获得的CELGARD® 2500(单层聚丙烯隔离件)和CELGARD® 2320(三层聚丙烯/聚乙烯/聚丙烯隔离件)。
当隔离件26是微多孔聚合物隔离件时,其可以是单层或多层层压件,其可以由干法或湿法制作而成。例如,在某些情况下,单层聚烯烃可以形成整个隔离件26。在其它方面,隔离件26可以是具有在相对的表面之间延伸的大量孔隙的纤维膜,并且例如可以具有小于一毫米的平均厚度。然而,作为另一个实例,可以将多个相似或不相似的聚烯烃的离散层组装以形成微多孔聚合物隔离件26。除聚烯烃之外,隔离件26还可包含其它聚合物,例如但不限于聚对苯二甲酸乙二醇酯(PET)、聚偏二氟乙烯(PVdF)、聚酰胺、聚酰亚胺、聚(酰胺-酰亚胺)共聚物、聚醚酰亚胺和/或纤维素,或适于创建所需多孔结构的任何其它材料。聚烯烃层和任何其它任选的聚合物层可作为纤维层进一步包括在隔离件26中,以帮助为隔离件26提供合适的结构和孔隙率特性。
在某些方面,隔离件26可进一步包含一种或多种陶瓷材料和耐热材料。例如,隔离件26也可以掺混有陶瓷材料和/或耐热材料,或者隔离件26的一个或多个表面可以涂覆有陶瓷材料和/或耐热材料。在某些变型中,可以将陶瓷材料和/或耐热材料设置在隔离件26的一个或多个侧面上。所述陶瓷材料可以选自:氧化铝(Al2O3)、二氧化硅(SiO2)及其组合。所述耐热材料可以选自:Nomex、Aramid及其组合。
考虑了用于形成隔离件26的各种常规可用的聚合物和商业产品,以及可用于生产此类微多孔聚合物隔离件26的许多制造方法。在每种情况下,隔离件26可以具有大于或等于约1µm至小于或等于约50µm,并且在某些情况下,任选地大于或等于约1µm至小于或等于约20µm的厚度。隔离件26可以具有大于或等于1µm至小于或等于50µm,并且在某些情况下,任选地大于或等于1µm至小于或等于20µm的厚度。
在各种方面,如图1中所示的多孔隔离件26和/或设置在多孔隔离件26中的电解质30可以用固态电解质(“SSE”)层(未示出)替代,该固态电解质层充当电解质和隔离件二者。固态电解质层可以设置在正电极24和负电极22之间。在机械隔离并提供负电极22和正电极24之间的电绝缘的同时,固态电解质层促进锂离子的转移。作为非限制性的实例,固态电解质层可以包含多个固态电解质粒子,例如LiTi2(PO4)3、LiGe2(PO4)3、Li7La3Zr2O12、Li3xLa2/3-xTiO3、Li3PO4、Li3N、Li4GeS4、Li10GeP2S12、Li2S-P2S5、Li6PS5Cl、Li6PS5Br、Li6PS5I、Li3OCl、Li2.99Ba0.005ClO,或其组合。固态电解质颗粒可以是纳米大小的基于氧化物的固态电解质粒子。在再其它变型中,图1中的多孔隔离件26和/或电解质30可以用凝胶电解质代替。
负电极22可以由能够充当电池组20的负极端子的锂基质材料形成(或在钠离子电池组的情况下为钠基活性材料)。在各种方面,负电极22可由多个负极电活性材料粒子(未示出)限定。可以将这样的负极电活性材料粒子设置在一个或多个层中,以限定负电极22的三维结构。电解质30可以例如在电池组装之后引入,并包含在负电极22的孔隙(未示出)内。例如,在某些变型中,负电极22可以包含多个固态电解质粒子(未示出)。在每种情况下,负电极22(包括一个或多个层)可具有大于或等于约1µm至小于或等于约500µm,并且在某些方面,任选地大于或等于约10µm至小于或等于约200µm的厚度。负电极22(包括一个或多个层)可具有大于或等于1µm至小于或等于500µm,并且在某些方面,任选地大于或等于10µm至小于或等于200µm的厚度。
负电极22可包含含锂如锂金属的负极电活性材料。在某些变型中,负电极可以是由锂金属形成的膜或层。其它材料也可用于形成负电极22,包括例如碳质材料(例如石墨、硬碳、软碳),和/或锂-硅、含硅的二元和三元合金,和/或含锡的合金(例如Si、Li-Si、SiOx(其中0≤x≤2)、Si-Sn、SiSnFe、SiSnAl、SiFeCo、SnO2等),和/或其它体积膨胀型材料(例如铝(Al)、锗(Ge)、锡(Sn))。例如,在某些变型中,负极电活性材料可包括碳质硅基复合材料,包括例如约10重量%的SiOx(其中0≤x≤2)和约90重量%的石墨。负极电活性材料可包括碳质硅基复合材料,包括例如10重量%的SiOx(其中0≤x≤2)和90重量%的石墨。
在某些变型中,负电极22中的一种或多种负极电活性材料可任选地与一种或多种提供电子传导路径的导电材料和/或至少一种改善负电极22的结构完整性的聚合物粘合剂材料混杂。例如,负电极22中的一种或多种负极电活性材料可以任选地与粘合剂如聚酰亚胺、聚酰胺酸、聚酰胺、聚砜、聚偏二氟乙烯(PVdF)、聚四氟乙烯(PTFE)、三元乙丙(EPDM)橡胶、或羧甲基纤维素(CMC)、丁腈橡胶(NBR)、丁苯橡胶(SBR)、聚丙烯酸锂(LiPAA)、聚丙烯酸钠(NaPAA)、藻酸钠或藻酸锂混杂(例如浆料浇注)。导电材料可包括碳基材料、粉状镍或其它金属粒子,或导电聚合物。碳基材料可包括,例如石墨、乙炔黑(例如KETCHENTM黑或DENKATM黑)、碳纤维和纳米管、石墨烯等的粒子。导电聚合物的实例包括聚苯胺、聚噻吩、聚乙炔、聚吡咯等。在某些方面,可以使用导电材料的混合物。
在各种方面,负电极22可包含:大于或等于约5重量%至小于或等于约99重量%、任选地大于或等于约10重量%至小于或等于约99重量%、并且在某些变型中大于或等于约50重量%至小于或等于约95重量%的一种或多种负极电活性材料;大于或等于0重量至小于或等于约40重量%、并且在某些方面任选地大于或等于约1重量%至小于或等于约20重量%的导电材料;以及大于或等于0重量%至小于或等于约40重量%、并且在某些方面任选地大于或等于约1重量%至小于或等于约20重量%的至少一种聚合物粘合剂。
在各种方面,负电极22可包含:大于或等于5重量%至小于或等于99重量%、任选地大于或等于10重量%至小于或等于99重量%、并且在某些变型中大于或等于50重量%至小于或等于95重量%的一种或多种负极电活性材料;大于或等于0重量%至小于或等于40重量%、并且在某些方面任选地大于或等于1重量%至小于或等于20重量%的导电材料;以及大于或等于0重量%至小于或等于40重量%、并且在某些方面任选地大于或等于1重量%至小于或等于20重量%的至少一种聚合物粘合剂。
正电极24可以由锂基活性材料(或在钠离子电池组的情况下为钠基活性材料)形成,该锂基活性材料能够进行锂嵌入和脱嵌、合金化和去合金化、或镀覆和剥离,同时充当电池组20的正极端子。正电极24可以由多个电活性材料粒子(未示出)来限定。可以将这样的正极电活性材料粒子设置在一个或多个层中,以限定正电极24的三维结构。电解质30可以例如在电池组装之后引入,并包含在正电极24的孔隙(未示出)内。例如,在某些变型中,正电极24可以包括多个固态电解质粒子(未示出)。在每种情况下,正电极24可具有大于或等于约1µm至小于或等于约500µm,并且在某些方面,任选地大于或等于约10µm至小于或等于约200µm的厚度。正电极24可具有大于或等于1µm至小于或等于500µm,并且在某些方面,任选地大于或等于10µm至小于或等于200µm的厚度。
可用于形成正电极24的一类示例性常用已知材料是层状锂过渡金属氧化物。例如,在某些方面,正电极24可以包含一种或多种具有尖晶石结构的材料,例如锂锰氧化物(Li(1+x)Mn2O4,其中0.1≤x≤1)(LMO)、锂锰镍氧化物(LiMn(2-x)NixO4,其中0≤x≤0.5)(NMC)(例如,LiMn1.5Ni0.5O4);一种或多种具有层状结构的材料,例如锂钴氧化物(LiCoO2)、锂镍锰钴氧化物(Li(NixMnyCoz)O2,其中0≤x≤1,0≤y≤1,0≤z≤1,且x+y+z=1)(例如,LiMn0.33Ni0.33Co0.33O2),或锂镍钴金属氧化物(LiNi(1-x-y)CoxMyO2,其中0<x<0.2,y<0.2,且M可以是Al、Mg、Ti等);或具有橄榄石结构的锂铁多阴离子氧化物,例如磷酸铁锂(LiFePO4)(LFP)、磷酸锰铁锂(LiMn2-xFexPO4,其中0<x<0.3)(LMFP)或氟磷酸铁锂(Li2FePO4F)。在各种方面,正电极24可以包括一种或多种选自以下的电活性材料:NCM 111、NCM 532、NCM 622、NCM 811、NCMA、LFP、LMO、LFMP、LLC及其组合。
如上文所述,在放电过程中,负电极22可含有相对高浓度的嵌入锂,其被氧化成锂离子和电子。锂离子可以从负电极22移动到正电极24,例如,穿过所插入的多孔隔离件26的孔隙内所含的离子传导电解质30。同时,电子通过外部电路40从负电极22传递到正电极24。这样的锂离子可以通过电化学还原反应被同化成正电极22的材料。电池组20可在部分或全部释放其可用容量之后通过外部电源进行再充电或再生,这逆转了放电过程中发生的电化学反应。
然而,在某些情况下,尤其是体积膨胀型负极电活性材料(例如铝(Al)、锗(Ge)、锡(Sn))的情况下,负电极22通常保留有一部分嵌入锂。例如,由于转化反应和/或在第一次循环过程中在负电极22上形成的LixSi和/或固体电解质界面(SEI)层(未示出),以及由于例如连续的固体电解质界面(SEI)破损和重建而导致的持续锂损失。固体电解质界面(SEI)层可以在负电极22的表面上形成,这通常是由阳极材料(即负极电活性材料)的反应产物、电解质还原和/或锂离子还原产生的。锂离子的这种永久损失可导致电池组20中的比能量和功率的下降。例如,电池组20在第一次循环之后可经历大于或等于约5%至小于或等于约30%的不可逆的容量损失。
锂化,例如在并入电池组20中之前对电活性材料进行预锂化可以补偿循环过程中的这种锂损失。例如,预锂化的锂量与合适的负电极容量和/或正电极容量比(N/P比)一起可用于将电化学势控制在合适的窗口内,以提高电池组20的循环稳定性。预锂化可以使含硅电极的电势下降。作为非限制性的实例,由直接反应进行的硅锂化可以表示为:4.4xLi +Si → Li4.4xSi,其中0≤x≤1,而对于硅的电化学锂化,其可以表示为4.4xLi+ + 4.4xe- +Si → Li4.4xSi。在每种情况下,保留的锂可以补偿循环过程中的锂损失,包括在第一次循环过程中的锂损失,以减少经时容量损失。
常见的锂化方法,例如电化学、直接接触和层压方法;然而,其往往需要半电池制造和拆解和/或高温化学过程。此外,可能难以控制在这些过程中发生的锂化的程度。此外,这些过程往往涉及高反应性化学品,且需要额外的制造步骤。这些可能是耗时和潜在性昂贵的过程。此外,这些过程通常还产生难以处理的材料,例如具有非期望厚度的阳极。本公开提供了锂化添加剂,以及使用该锂化添加剂的方法,其可以帮助解决这些挑战。
例如,在各种方面,正电极24可进一步包含锂化添加剂(未示出),该锂化添加剂在电池20中提供或充当锂储库(reservoir)。锂化添加剂可以改善循环寿命和能量密度。在各种方面,锂化添加剂可以是含锂材料和一种或多种金属粒子的混合物。例如,锂化添加剂可包含大于或等于约0.1重量%至小于或等于约95重量%的含锂材料,和大于或等于约0.1重量%至小于或等于约95重量%的一种或多种金属粒子。锂化添加剂可包含大于或等于0.1重量%至小于或等于95重量%的含锂材料,和大于或等于0.1重量%至小于或等于95重量%的一种或多种金属粒子。
在各种方面,含锂材料可以由LiX表示,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)或硫(S)。所述一种或多种金属粒子(M)可以包括铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)或其任何组合。在某些变型中,可将锂化添加剂(例如LiF/Fe)与正极电活性材料(例如NCM 622)混合以形成浆料,将该浆料设置在正电极集流体34的一个或多个表面上或与正电极集流体34的一个或多个表面相邻设置,并在某些变型中进行干燥以形成正电极24。
在第一次或初始电池循环过程中,锂化添加剂发生反应以将锂释放到电池中。例如,在某些变型中,当锂化添加剂包含作为含锂材料的氟化锂和作为金属粒子的铁时,可发生以下反应中的一个或两个:
3LiF + Fe ⟶ 2Li+ + 2e- + LiFeF3 (I)
LiFeF3 ⟶ FeF3 + e- + Li+ (II)
具体地,当达到2.1V的电势(对Li/Li+)时,可以发生第一反应,而当达到3.4V的电势(对Li/Li+)时,可以发生第二反应。如图所示,在每种情况下,锂离子(Li+)被释放到周围的电池环境中。
可以通过改变正电极24中的锂化添加剂的量来控制预锂化的量。例如,在某些变型中,将正电极24中的锂化添加剂的量加倍,可以使衍生自锂化添加剂的容量加倍,从而改变负电极22中的预锂化程度。在各种方面,正电极24可包含大于或等于约0.1重量%至小于或等于约30重量%、任选地大于或等于约1重量%至小于或等于约15重量%的锂化添加剂。正电极24可包含大于或等于0.1重量%至小于或等于30重量%、任选地大于或等于1重量%至小于或等于15重量%的锂化添加剂。
在各种方面,在正电极24中包括锂化添加剂可有助于电池组20的轻量化。例如,石墨(4.4 mAh/cm2)可被用作负电极22中的负极电活性材料。在这种情况下,根据本公开的各种方面,1.43mg的锂化添加剂(例如LiF/Fe)可以包括在电池组20中,以补偿第一次循环容量损失,而补偿同样的容量损失将需要3.03mg的NMC 622,这佐证了轻量化。
再次参照图1,在某些变型中,正电极24中的一种或多种正极电活性材料可以任选地与提供电子传导路径的导电材料和/或至少一种改善电极24的结构完整性的聚合物粘合剂材料混杂。例如,正电极24中的一种或多种正极电活性材料可以任选地与粘合剂如聚酰亚胺、聚酰胺酸、聚酰胺、聚砜、聚偏二氟乙烯(PVdF)、聚四氟乙烯(PTFE)、三元乙丙(EPDM)橡胶、或羧甲基纤维素(CMC)、丁腈橡胶(NBR)、丁苯橡胶(SBR)、聚丙烯酸锂(LiPAA)、聚丙烯酸钠(NaPAA)、藻酸钠或藻酸锂混杂(例如浆料浇注)。导电材料可包括碳基材料、粉状镍或其它金属粒子,或导电聚合物。碳基材料可包括,例如,石墨、乙炔黑(例如KETCHENTM黑或DENKATM黑)、碳纤维和纳米管、石墨烯等的粒子。导电聚合物的实例包括聚苯胺、聚噻吩、聚乙炔、聚吡咯等。在某些方面,可以使用导电材料的混合物。
在各种方面,正电极24可包含:大于或等于约5重量%至小于或等于约99重量%、任选地大于或等于约10重量%至小于或等于约99重量%、并且在某些变型中大于或等于约50重量%至小于或等于约98重量%的一种或多种正极电活性材料;大于或等于0.1重量至小于或等于约30重量%、任选地大于或等于约1重量%至小于或等于约15重量%的锂化添加剂;大于或等于0重量至小于或等于约40重量%、并且在某些方面任选地大于或等于约1重量%至小于或等于约20重量%的导电材料;以及大于或等于0重量%至小于或等于约40重量%、并且在某些方面任选地大于或等于约1重量%至小于或等于约20重量%的至少一种聚合物粘合剂。
在各种方面,正电极24可包含:大于或等于5重量%至小于或等于99重量%、任选地大于或等于10重量%至小于或等于99重量%、并且在某些变型中大于或等于50重量%至小于或等于98重量%的一种或多种正极电活性材料;大于或等于0.1重量至小于或等于30重量%、任选地大于或等于1重量%至小于或等于15重量%的锂化添加剂;大于或等于0重量至小于或等于40重量%、并且在某些方面任选地大于或等于1重量%至小于或等于20重量%的导电材料;以及大于或等于0重量%至小于或等于40重量%、并且在某些方面任选地大于或等于1重量%至小于或等于20重量%的至少一种聚合物粘合剂。
在各种方面,本公开提供了在循环锂离子的电化学电池(例如图1中所示的电池组20)中创建锂储库的方法。例如,所述方法可包括形成正电极。如上文所述,所述正电极此外包括正极电活性材料和锂化添加剂。形成正电极可包括制备包括正极电活性材料和锂化添加剂以及其它阴极材料(例如,电解质、粘合剂和/或导电材料)的浆料,并将浆料设置或浇注到正电极集流体(例如,如图1中所示的正电极集流体34)的一个或多个表面上。在某些变型中,形成正电极可包括干燥设置或涂覆在正电极集流体上的浆料。
在各种方面,所述方法可进一步包括组装电池组。例如,包含正极电活性材料的正电极可以与负电极(例如,如图1中所示的负电极22)基本对齐。如上文所述,负电极可以包含含硅的负极电活性材料。在某些变型中,在组装电池组之前,所述方法可包括将负极电活性材料和其它阳极材料(例如,电解质、粘合剂和/或导电材料)浆料浇注到负电极集流体(例如,如图1中所示的负电极集流体32)的一个或多个表面上。在各种方面,所述电池组的对于锂的负电极容量与对于锂的正电极容量(N/P)的比可以为大于或等于约1至小于或等于约5。
再进一步地,所述方法可包括使组装的电池组进行循环。例如,所述方法可包括将电池组充电至第一预定电压窗口内,然后将电池放电至第二预定电压窗口,其中第二电压窗口小于第一电压窗口。例如,第一电压窗口可以为大于或等于约1.5V至小于或等于约4.6V,并且在某些方面任选地为约4.2V。第一电压窗口可以为大于或等于1.5V至小于或等于4.6V,并且在某些方面任选地为4.2V。第二电压窗口可以为大于或等于约2.5V至小于或等于约4.3V,任选地为约3.2V,并且在某些方面任选地为约3.0V。第二电压窗口可以为大于或等于2.5V至小于或等于4.3V,任选地为3.2V,并且在某些方面任选地为3.0V。在进行这样的电压变化时,负电极保留有一部分容量作为锂储库。
随后可以使包括锂储库的电池组进行循环。电池组的操作电压窗口可以为大于或等于约2.5V至小于或等于约4.5V,并且在某些方面任选地大于或等于约3.0V至小于或等于约4.2V。电池组的操作电压窗口可以为大于或等于2.5V至小于或等于4.5V,并且在某些方面任选地大于或等于3.0V至小于或等于4.2V。
在下文的非限制性实施例中进一步说明本技术的某些特征。
实施例
可以根据本公开的各种方面制备示例性电池。该示例性电池可以包括例如负电极,该负电极包含负极电活性材料(例如石墨),且与正电极基本对齐,该正电极包含正电极材料(例如NMC 622)和锂化添加剂,其中该锂化添加剂包含含锂材料(例如氟化锂(LiF))和一种或多种金属(例如铁(Fe))。
图2是示意性图示示例性电池的放电容量210和充电容量220二者的图示,其中x-轴200是容量(mAh),且y-轴202是电压(V)。如图所示,在第一次充电过程220中释放出容量,但在放电过程210中无容量释放,这表明在充电过程中释放的所有锂离子都被转移到负电极来预锂化负电极。
为了说明和描述的目的,已经提供了实施方案的前述描述。其并非意在穷举或限制本公开。特定实施方案的单个元件或特征通常不限于该特定实施方案,而是在适用的情况下是可互换的并可以在所选实施方案中使用,即使并未具体示出或描述。其同样也可以以多种方式变化。此类变化不应被视为背离本公开,并且所有此类修改均意在包括在本公开的范围内。

Claims (10)

1.一种循环锂离子的电化学电池,其中所述电化学电池包括:
正电极,其包含:
正极电活性材料;和
与所述正极电活性材料掺混的锂化添加剂,其中所述锂化添加剂包含由LiX表示的含锂材料,其中X是氢(H)、氧(O)、氮(N)、氟(F)、磷(P)或硫(S),以及一种或多种金属。
2.根据权利要求1所述的电化学电池,其中所述一种或多种金属选自:铁(Fe)、铜(Cu)、钴(Co)、锰(Mn)及其组合。
3.根据权利要求1所述的电化学电池,其中所述锂化添加剂包含:
大于或等于约0.1重量%至小于或等于约95重量%的所述含锂材料;和
大于或等于约0.1重量%至小于或等于约95重量%的所述一种或多种金属。
4.根据权利要求1所述的电化学电池,其中所述正电极包含大于或等于约0.1重量%至小于或等于约30重量%的所述锂化添加剂。
5.根据权利要求1所述的电化学电池,其中所述正极电活性材料选自:NCM 111、NCM532、NCM 622、NCM 611、NCMA、LFP、LMO、LFMP、LLC及其组合。
6.根据权利要求1所述的电化学电池,其中所述电化学电池进一步包括:
负电极,其包含负极电活性材料。
7.根据权利要求6所述的电化学电池,其中所述负极电活性材料是体积膨胀型负极电活性材料。
8.根据权利要求6所述的电化学电池,其中所述负极电活性材料是碳质负极电活性材料。
9.根据权利要求1所述的电化学电池,其中所述含锂材料是氟化锂(LiF),并且所述一种或多种金属包含铁(Fe)。
10.根据权利要求1所述的电化学电池,其中所述X是氢(H)、氧(O)、氮(N)、磷(P)或硫(S)。
CN202210598833.7A 2021-08-26 2022-05-30 用于正电极的锂化添加剂 Pending CN116364875A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/446,116 US11799083B2 (en) 2021-08-26 2021-08-26 Lithiation additive for a positive electrode
US17/446116 2021-08-26

Publications (1)

Publication Number Publication Date
CN116364875A true CN116364875A (zh) 2023-06-30

Family

ID=85174747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210598833.7A Pending CN116364875A (zh) 2021-08-26 2022-05-30 用于正电极的锂化添加剂

Country Status (3)

Country Link
US (1) US11799083B2 (zh)
CN (1) CN116364875A (zh)
DE (1) DE102022110692A1 (zh)

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871720A (en) 1997-11-20 1999-02-16 Colgate-Palmolive Company Cosmetic compositions with DBS and functionalized silicones
US6060184A (en) 1998-07-09 2000-05-09 Wilson Greatbatch Ltd. Inorganic and organic nitrate additives for nonaqueous electrolyte in alkali metal electrochemical cells
CA2268316C (fr) 1999-04-07 2003-09-23 Hydro-Quebec Composite enduction lipo3
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
US7087348B2 (en) 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7018607B2 (en) 2003-06-25 2006-03-28 General Motors Corporation Cathode material for lithium battery
JP4159954B2 (ja) 2003-09-24 2008-10-01 株式会社東芝 非水電解質電池
US7820327B2 (en) 2006-04-11 2010-10-26 Enerdel, Inc. Lithium titanate and lithium cells and batteries including the same
US7541016B2 (en) 2006-04-11 2009-06-02 Enerdel, Inc. Lithium titanate and method of forming the same
US7820137B2 (en) 2006-08-04 2010-10-26 Enerdel, Inc. Lithium titanate and method of forming the same
US20080025876A1 (en) 2006-07-26 2008-01-31 Ramamurthy Praveen C Vapor sensor materials having polymer-grafted conductive particles
KR100839369B1 (ko) 2006-11-27 2008-06-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 조성물, 이를 이용하여제조된 리튬 이차 전지용 음극 및 리튬 이차 전지
US7722994B2 (en) 2007-03-28 2010-05-25 Gm Global Technology Operations, Inc. Lithium-ion battery non-aqueous electrolytes
US8828481B2 (en) 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR101009993B1 (ko) 2007-05-07 2011-01-21 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
US7736805B2 (en) 2007-05-16 2010-06-15 Gm Global Technology Operations, Inc. Lithium hydride negative electrode for rechargeable lithium batteries
US7651732B2 (en) 2007-09-07 2010-01-26 Gm Global Technology Operations, Inc. Magnesium-titanium solid solution alloys
EP2190054B1 (en) 2007-09-12 2016-10-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
US7928690B2 (en) 2007-11-29 2011-04-19 GM Global Technology Operations LLC Method and system for determining a state of charge of a battery
US9356281B2 (en) 2008-05-20 2016-05-31 GM Global Technology Operations LLC Intercalation electrode based on ordered graphene planes
US8872519B2 (en) 2008-09-26 2014-10-28 GM Global Technology Operations LLC System and method to determine the state of charge of a battery using magnetostriction to detect magnetic response of battery material
DE102009032050A1 (de) 2009-07-07 2011-01-27 Li-Tec Battery Gmbh Sekundärbatterie mit Schnellladefähigkeit
US10056644B2 (en) 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
US8420259B2 (en) 2009-10-14 2013-04-16 GM Global Technology Operations LLC Electrodes including an embedded compressible or shape changing component
US8399138B2 (en) 2009-10-14 2013-03-19 GM Global Technology Operations LLC Liquid rechargeable lithium ion battery
US8802301B2 (en) 2009-11-06 2014-08-12 GM Global Technology Operations LLC Lithium ion battery electrolyte including a vitreous eutectic mixture
KR101419572B1 (ko) 2009-11-18 2014-07-16 주식회사 엘지화학 바이폴라 전극쌍/분리막 어셈블리, 이를 포함하는 바이폴라 전지, 및 이들의 제조방법
US8148455B2 (en) 2009-11-20 2012-04-03 GM Global Technology Operations LLC Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same
US8568930B2 (en) 2009-12-18 2013-10-29 GM Global Technology Operations LLC Lithium ion battery
US8785054B2 (en) 2009-12-18 2014-07-22 GM Global Technology Operations LLC Lithium ion battery
US8549264B2 (en) 2009-12-22 2013-10-01 Intel Corporation Add instructions to add three source operands
US8920681B2 (en) 2009-12-30 2014-12-30 Korea University Research And Business Foundation Electrically conductive polymers with enhanced conductivity
US8470468B2 (en) 2010-02-12 2013-06-25 GM Global Technology Operations LLC Lithium-ion batteries with coated separators
US8627928B2 (en) 2010-02-16 2014-01-14 GM Global Technology Operations LLC Fluid displacing transmission filler
US8170818B2 (en) 2010-03-10 2012-05-01 GM Global Technology Operations LLC Battery state estimator using multiple sampling rates
JP2011192402A (ja) 2010-03-11 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池
US8460591B2 (en) 2010-03-23 2013-06-11 GM Global Technology Operations LLC Porous membranes and methods of making the same
US8586222B2 (en) 2010-04-08 2013-11-19 GM Global Technology Operations LLC Lithium-ion cell with an array of reference electrodes
US8568925B2 (en) 2010-05-18 2013-10-29 Panasonic Corporation Lithium secondary battery
US8101152B1 (en) 2010-08-18 2012-01-24 GM Global Technology Operations LLC Sonochemical synthesis of titanium-containing oxides
US8163193B2 (en) 2010-08-27 2012-04-24 Tsinghua University Modifier of lithium ion battery and method for making the same
US9176194B2 (en) 2010-10-08 2015-11-03 GM Global Technology Operations LLC Temperature compensation for magnetic determination method for the state of charge of a battery
US20120100403A1 (en) 2010-10-26 2012-04-26 Gm Global Technology Operations, Inc. Electrolytic cell and method of estimating a state of charge thereof
US9091735B2 (en) 2010-10-26 2015-07-28 GM Global Technology Operations LLC Method for determining a state of a rechargeable battery device in real time
US20120109503A1 (en) 2010-10-29 2012-05-03 Gm Global Technology Operations, Inc. Li-ION BATTERY FOR VEHICLES WITH ENGINE START-STOP OPERATIONS
US8680815B2 (en) 2010-11-01 2014-03-25 GM Global Technology Operations LLC Method and apparatus for assessing battery state of health
US8531158B2 (en) 2010-11-01 2013-09-10 GM Global Technology Operations LLC Method and apparatus for assessing battery state of health
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
US8835058B2 (en) 2010-12-21 2014-09-16 GM Global Technology Operations LLC Battery separators with variable porosity
US9172075B2 (en) 2010-12-21 2015-10-27 GM Global Technology Operations LLC Battery separators with variable porosity
US9023520B2 (en) 2011-01-12 2015-05-05 GM Global Technology Operations LLC Lithium ion battery
US9077038B2 (en) 2011-01-12 2015-07-07 GM Global Technology Operations LLC Lithium ion batteries
US9153819B2 (en) 2011-02-27 2015-10-06 GM Global Technology Operations LLC Negative electrode for a lithium ion battery
US9362560B2 (en) 2011-03-08 2016-06-07 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
US20120229096A1 (en) 2011-03-08 2012-09-13 GM Global Technology Operations LLC Method of depositing silicon on carbon nanomaterials and forming an anode for use in lithium ion batteries
US20120231325A1 (en) 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US20120231321A1 (en) 2011-03-11 2012-09-13 GM Global Technology Operations LLC Integral bi-layer separator-electrode construction for lithium-ion batteries
US8658295B2 (en) 2011-03-25 2014-02-25 GM Global Technology Operations LLC Self healing lithium-ion battery negative electrodes, product including same, and methods of making and using same
US8642201B2 (en) 2011-03-25 2014-02-04 GM Global Technology Operations LLC Liquid-metal negative electrode for lithium-ion batteries
US8663840B2 (en) 2011-04-12 2014-03-04 GM Global Technology Operations LLC Encapsulated sulfur cathode for lithium ion battery
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
US8835056B2 (en) 2011-05-24 2014-09-16 GM Global Technology Operations LLC Lithium ion secondary battery electrode and method of forming same
US8470898B2 (en) 2011-05-31 2013-06-25 GM Global Technology Operations LLC Methods of making lithium ion battery separators
US9287540B2 (en) 2011-05-31 2016-03-15 GM Global Technology Operations LLC Separators for a lithium ion battery
US8679680B2 (en) 2011-06-03 2014-03-25 GM Global Technology Operations LLC Mitigation of mechanical degradation in lithium battery materials using biconcave electrode particles
US20120328927A1 (en) 2011-06-24 2012-12-27 GM Global Technology Operations LLC Electrochemical devices and rechargeable lithium ion batteries
US8394539B2 (en) 2011-06-24 2013-03-12 GM Global Technology Operations LLC Lithium salts of fluorinated borate esters for lithium-ion batteries
US8309644B1 (en) 2011-08-29 2012-11-13 GM Global Technology Operations LLC Methods of treating carbon fibers, fiber-reinforced resins, and methods of making the fiber-reinforced resins
US9142830B2 (en) 2011-09-16 2015-09-22 GM Global Technology Operations LLC Phase separated silicon-tin composite as negative electrode material for lithium-ion batteries
US20130099159A1 (en) 2011-10-25 2013-04-25 GM Global Technology Operations LLC Production of metal or metalloid nanoparticles
US8440350B1 (en) 2011-11-10 2013-05-14 GM Global Technology Operations LLC Lithium-ion battery electrodes with shape-memory-alloy current collecting substrates
US8993646B2 (en) 2011-11-18 2015-03-31 GM Global Technology Operations LLC Making a lithium ion battery separator
US9312702B2 (en) 2011-12-08 2016-04-12 GM Global Technology Operations LLC System and methods for controlled depowering of automobile batteries
US9362551B2 (en) 2011-12-20 2016-06-07 GM Global Technology Operations LLC Reinforced battery electrodes
US9583767B2 (en) 2012-01-05 2017-02-28 GM Global Technology Operations LLC Methods for making battery electrode systems
TWI473320B (zh) 2012-01-06 2015-02-11 Univ Nat Taiwan Science Tech 鋰離子電池其陽極保護層之結構及製造方法
US9012075B2 (en) 2012-01-23 2015-04-21 GM Global Technology Operations LLC Fade-resistant high capacity electrodes for a lithium-ion battery
US9138932B2 (en) 2012-02-29 2015-09-22 GM Global Technology Operations LLC Electrode-separator integral segment for a lithium ion battery
US20130284338A1 (en) 2012-04-26 2013-10-31 Gm Global Technology Operations Llc. Self assembly of graphene materials
US8455140B1 (en) 2012-05-17 2013-06-04 GM Global Technology Operations LLC Porous polymer separator layer having a non-uniform cross sectional thickness for use in a secondary liquid electrolyte battery
US8460829B1 (en) 2012-05-17 2013-06-11 GM Global Technology Operations LLC Porous polymer separator layer having a non-uniform cross-sectional thickness for use in a secondary liquid-electrolyte battery
JP6216154B2 (ja) 2012-06-01 2017-10-18 株式会社半導体エネルギー研究所 蓄電装置用負極及び蓄電装置
US9362552B2 (en) 2012-06-01 2016-06-07 GM Global Technology Operations LLC Lithium ion battery electrode materials and methods of making the same
US9346066B2 (en) 2012-06-05 2016-05-24 GM Global Technology Operations LLC Non-woven polymer fiber mat for use in a lithium ion battery electrochemical cell
US9350046B2 (en) 2012-07-18 2016-05-24 GM Global Technology Operations LLC Physically cross-linked gel electrolyte
US9028565B2 (en) 2012-07-31 2015-05-12 GM Global Technology Operations LLC Composite separator for use in a lithium ion battery electrochemical cell
KR101670327B1 (ko) 2012-08-08 2016-10-31 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 리튬 이온 배터리용 제어된 비가역 용량 손실을 갖는 복합체 캐소드 물질
US9059451B2 (en) 2012-10-18 2015-06-16 GM Global Technology Operations LLC Coatings for lithium titanate to suppress gas generation in lithium-ion batteries and methods for making and use thereof
US9034519B2 (en) 2013-01-18 2015-05-19 GM Global Technology Operations LLC Ultrathin surface coating on negative electrodes to prevent transition metal deposition and methods for making and use thereof
US9123939B2 (en) 2013-03-14 2015-09-01 GM Global Technology Operations LLC Anodes including mesoporous hollow silicon particles and a method for synthesizing mesoporous hollow silicon particles
US20140272526A1 (en) 2013-03-14 2014-09-18 GM Global Technology Operations LLC Porous separator for a lithium ion battery and a method of making the same
US20140272558A1 (en) 2013-03-14 2014-09-18 GM Global Technology Operations LLC Electrode for a lithium-based secondary electrochemical device and method of forming same
US8974946B2 (en) 2013-03-15 2015-03-10 Gm Global Technology Operations Coating for separator or cathode of lithium—sulfur or silicon—sulfur battery
US9093705B2 (en) 2013-03-15 2015-07-28 GM Global Technology Operations LLC Porous, amorphous lithium storage materials and a method for making the same
US9160036B2 (en) 2013-03-15 2015-10-13 GM Global Technology Operations LLC Electrolyte additives for lithium sulfur rechargeable batteries
US8999584B2 (en) 2013-03-15 2015-04-07 GM Global Technology Operations LLC Method for pre-lithiation of the negative electrode in lithium ion batteries
US9537144B2 (en) 2013-03-15 2017-01-03 GM Global Technology Operations LLC Single lithium ion conductor as binder in lithium-sulfur or silicon-sulfur battery
US20160111721A1 (en) 2013-05-07 2016-04-21 The Regents Of The University Of California Voltage-responsive coating for lithium-sulfur battery
US9379418B2 (en) 2013-06-20 2016-06-28 Hrl Laboratories, Llc Battery with reference electrode for voltage monitoring
US10062898B2 (en) 2013-07-10 2018-08-28 GM Global Technology Operations LLC Surface coating method and method for improving electrochemical performance of an electrode for a lithium based battery
US9742028B2 (en) 2013-08-21 2017-08-22 GM Global Technology Operations LLC Flexible membranes and coated electrodes for lithium based batteries
WO2015026951A1 (en) 2013-08-21 2015-02-26 GM Global Technology Operations LLC Lithium-based battery electrodes
US20150056493A1 (en) 2013-08-21 2015-02-26 GM Global Technology Operations LLC Coated porous separators and coated electrodes for lithium batteries
US9799916B2 (en) 2013-09-30 2017-10-24 GM Global Technology Operations LLC Lithium ion battery electrodes
US9865854B2 (en) 2013-09-30 2018-01-09 GM Global Technology Operations LLC Lithium ion battery separators and electrodes
US9362542B2 (en) 2013-09-30 2016-06-07 GM Global Technology Operations LLC Lithium ion battery components with chelating agents having oriented permanent dipole moments
US9373829B2 (en) 2013-10-11 2016-06-21 GM Global Technology Operations LLC Porous interlayer for a lithium-sulfur battery
US9252411B2 (en) 2013-11-22 2016-02-02 GM Global Technology Operations LLC Multifunction battery separator
US9647254B2 (en) 2013-12-05 2017-05-09 GM Global Technology Operations LLC Coated separator and one-step method for preparing the same
US9531004B2 (en) 2013-12-23 2016-12-27 GM Global Technology Operations LLC Multifunctional hybrid coatings for electrodes made by atomic layer deposition techniques
US9437871B2 (en) 2014-02-05 2016-09-06 GM Global Technology Operations LLC Sulfur based active material for a positive electrode
US10128481B2 (en) 2014-02-18 2018-11-13 GM Global Technology Operations LLC Lithium-based battery separator and method for making the same
CN105960732A (zh) 2014-02-18 2016-09-21 通用汽车环球科技运作有限责任公司 电解质与电解质的使用方法
US20150236343A1 (en) 2014-02-18 2015-08-20 GM Global Technology Operations LLC Coated electrodes for lithium batteries
US9302914B2 (en) 2014-02-28 2016-04-05 GM Global Technology Operations LLC Methods for making hollow carbon materials and active materials for electrodes
US9570752B2 (en) 2014-05-16 2017-02-14 GM Global Technology Operations LLC Negative electrode material for lithium-based batteries
KR20150136348A (ko) 2014-05-27 2015-12-07 삼성전자주식회사 레이 트레이싱 시스템에서의 가속 구조 탐색 장치 및 그 탐색 방법
US20150349307A1 (en) 2014-05-27 2015-12-03 GM Global Technology Operations LLC Method for preparing a coated lithium battery component
US9859554B2 (en) 2014-07-03 2018-01-02 GM Global Technology Operations LLC Negative electrode material for lithium-based batteries
US9379374B2 (en) 2014-07-15 2016-06-28 GM Global Technology Operations LLC Methods for forming negative electrode active materials for lithium-based batteries
US10084204B2 (en) 2014-07-21 2018-09-25 GM Global Technology Operations LLC Electrolyte solution and sulfur-based or selenium-based batteries including the electrolyte solution
US9979008B2 (en) 2014-11-14 2018-05-22 GM Global Technology Operations LLC Methods for making a solid electrolyte interface layer on a surface of an electrode
US9825285B2 (en) 2014-11-26 2017-11-21 GM Global Technology Operations LLC Methods for forming electrode materials for lithium-based batteries
US20160172706A1 (en) 2014-12-10 2016-06-16 GM Global Technology Operations LLC Electrolyte and electrode structure
US10312501B2 (en) 2014-12-10 2019-06-04 GM Global Technology Operations LLC Electrolyte and negative electrode structure
US20160172710A1 (en) 2014-12-10 2016-06-16 The Regents Of The University Of California Electrolyte and negative electrode structure
US9627716B2 (en) 2014-12-16 2017-04-18 GM Global Technology Operations LLC Electrolyte and lithium based batteries
US10199643B2 (en) 2014-12-16 2019-02-05 GM Global Technology Operations LLC Negative electrode for lithium-based batteries
US10122002B2 (en) 2015-01-21 2018-11-06 GM Global Technology Operations LLC Thin and flexible solid electrolyte for lithium-ion batteries
US9929435B2 (en) 2015-02-27 2018-03-27 GM Global Technology Operations LLC Electrolyte structure for metal batteries
US10243188B2 (en) 2015-06-09 2019-03-26 GM Global Technology Operations LLC Separator for lithium-based batteries
KR101913460B1 (ko) 2015-06-10 2018-10-30 주식회사 엘지화학 배터리 셀 스웰링 감지 시스템 및 방법
US10347904B2 (en) 2015-06-19 2019-07-09 Solidenergy Systems, Llc Multi-layer polymer coated Li anode for high density Li metal battery
US10665852B2 (en) 2015-06-30 2020-05-26 GM Global Technology Operations LLC Method for reducing residual water content in battery material
US10326142B2 (en) 2015-09-15 2019-06-18 GM Global Technology Operations LLC Positive electrode including discrete aluminum oxide nanomaterials and method for forming aluminum oxide nanomaterials
DE112016004175T5 (de) 2015-09-15 2018-06-07 GM Global Technology Operations LLC Aktivkohlefilter für Hybrid-Superkondensator-Batteriesysteme
US9985284B2 (en) 2015-11-18 2018-05-29 GM Global Technology Operations LLC Forming sulfur-based positive electrode active materials
US9905847B2 (en) 2015-11-18 2018-02-27 GM Global Technology Operations LLC Forming electrode active materials
US10243241B2 (en) 2015-12-01 2019-03-26 GM Global Technology Operations LLC Lithium ion battery with transition metal ion traps
US10211452B2 (en) 2015-12-17 2019-02-19 GM Global Technology Operations LLC Lithium ion battery components
US10141569B2 (en) 2015-12-17 2018-11-27 GM Global Technology Operations LLC Battery life by controlling the voltage window of the negative electrode
WO2017120887A1 (en) 2016-01-15 2017-07-20 GM Global Technology Operations LLC Additive for non-aqueous electrolyte
US10629941B2 (en) 2016-01-22 2020-04-21 GM Global Technology Operations LLC Making a pouch format cell and attaching a tab to an electrode
US9923189B2 (en) 2016-02-02 2018-03-20 GM Global Technology Operations LLC Electrophoretic deposition of an electrode for a lithium-based battery
US20170271678A1 (en) 2016-03-15 2017-09-21 GM Global Technology Operations LLC Primer Surface Coating For High-Performance Silicon-Based Electrodes
US10367201B2 (en) 2016-03-30 2019-07-30 GM Global Technology Operations LLC Negative electrode including a polymeric single-ion conductor coating
US10141564B2 (en) 2016-03-31 2018-11-27 GM Global Technology Operations LLC Lithium titanate structures for lithium ion batteries formed using element selective sputtering
US20190165410A1 (en) 2016-05-04 2019-05-30 GM Global Technology Operations LLC Removing residual water from lithium-based energy storage devices
US9896763B2 (en) 2016-05-13 2018-02-20 GM Global Technology Operations LLC Particle reactor for atomic layer deposition (ALD) and chemical vapor deposition (CVD) processes
US10396360B2 (en) 2016-05-20 2019-08-27 Gm Global Technology Operations Llc. Polymerization process for forming polymeric ultrathin conformal coatings on electrode materials
JP2018018581A (ja) * 2016-07-25 2018-02-01 日立化成株式会社 リチウムイオン電池
US10326166B2 (en) 2016-08-15 2019-06-18 GM Global Technology Operations LLC Gel electrolytes and precursors thereof
US10446884B2 (en) 2016-10-17 2019-10-15 GM Global Technology Operations LLC Three-electrode test cell
US10424784B2 (en) 2016-10-28 2019-09-24 GM Global Technology Operations LLC Negative electrode including silicon nanoparticles having a carbon coating thereon
US20180151887A1 (en) 2016-11-29 2018-05-31 GM Global Technology Operations LLC Coated lithium metal negative electrode
US9937481B1 (en) 2017-01-13 2018-04-10 GM Global Technology Operations LLC Processing equipment for using organic vapor to remove water from electrode materials and cell cores
US10381170B2 (en) 2017-03-29 2019-08-13 GM Global Technology Operations LLC Microporous and hierarchical porous carbon
US10727535B2 (en) 2017-04-19 2020-07-28 GM Global Technology Operations LLC Electrolyte system for silicon-containing electrodes
US10431849B2 (en) 2017-04-21 2019-10-01 GM Global Technology Operations LLC High energy density alkali metal batteries incorporating solid electrolytes
US10629949B2 (en) 2017-04-24 2020-04-21 GM Global Technology Operations LLC Passivation of sulfide, oxide, and oxysulfide glass electrolyte films for lithium metal batteries
US10734673B2 (en) 2017-06-23 2020-08-04 GM Global Technology Operations LLC Ionically-conductive reinforced glass ceramic separators/solid electrolytes
US10790538B2 (en) 2017-08-11 2020-09-29 Industrial Technology Research Institute Negative electrode and lithium ion battery
US10497927B2 (en) 2017-08-31 2019-12-03 GM Global Technology Operations LLC Methods of applying self-forming artificial solid electrolyte interface (SEI) layer to stabilize cycle stability of electrodes in lithium batteries
JP2018049848A (ja) * 2017-12-19 2018-03-29 トロノックス エルエルシー 改善されたリチウムマンガン酸化物組成物
JP7006510B2 (ja) * 2018-06-01 2022-01-24 トヨタ自動車株式会社 正極合材及びその製造方法
US10903491B2 (en) 2019-01-09 2021-01-26 GM Global Technology Operations LLC Rechargeable lithium-ion battery chemistry with fast charge capability and high energy density
US20200321617A1 (en) 2019-04-08 2020-10-08 GM Global Technology Operations LLC Electrodes including fluoropolymer-based solid electrolyte interface layers and batteries and vehicles utilizing the same
US20200350558A1 (en) 2019-05-02 2020-11-05 GM Global Technology Operations LLC Methods for fabricating electrodes comprising silicon-based host material and battery cells utilizing the same
US11011742B2 (en) 2019-06-10 2021-05-18 GM Global Technology Operations LLC Silicon embedded copper anodes and battery cells incorporating the same
US11575115B2 (en) 2019-07-15 2023-02-07 GM Global Technology Operations LLC Method and apparatus for pyrolyzing an electrode
US11316142B2 (en) 2019-09-17 2022-04-26 GM Global Technology Operations LLC Methods for fabricating silicon-based electrodes comprising naturally occurring carbonaceous filaments and battery cells utilizing the same
US11417888B2 (en) 2019-09-17 2022-08-16 GM Global Technology Operations LLC Electrode additives and coatings for minimizing cathode transition metal dissolution
US11515538B2 (en) 2019-10-11 2022-11-29 GM Global Technology Operations LLC In-situ polymerization to protect lithium metal electrodes
US11749832B2 (en) 2019-11-20 2023-09-05 GM Global Technology Operations LLC Methods for pre-lithiating lithium ion batteries
US11735725B2 (en) 2019-11-27 2023-08-22 GM Global Technology Operations LLC Ceramic coating for lithium or sodium metal electrodes
US11462765B2 (en) 2020-01-14 2022-10-04 GM Global Technology Operations LLC MOF based composite electrolyte for lithium metal batteries
US20220102756A1 (en) 2020-09-30 2022-03-31 GM Global Technology Operations LLC Methods for forming solid gel electrolyte membranes and batteries incorporating the same
US11637285B2 (en) 2020-10-02 2023-04-25 GM Global Technology Operations LLC Over-lithiated cathode material
US20220123279A1 (en) 2020-10-15 2022-04-21 GM Global Technology Operations LLC Self-lithiating battery cells and methods for pre-lithiating the same
CN113364138B (zh) 2021-05-19 2023-03-14 宁波微鹅电子科技有限公司 无线充电控制方法、无线充电器和无线充电系统
US20230006201A1 (en) 2021-06-30 2023-01-05 GM Global Technology Operations LLC Over-lithiated cathode materials and methods of forming the same

Also Published As

Publication number Publication date
DE102022110692A1 (de) 2023-03-02
US20230069776A1 (en) 2023-03-02
US11799083B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US20220173377A1 (en) Thick electrodes for electrochemical cells
US11728490B2 (en) Current collectors having surface structures for controlling formation of solid-electrolyte interface layers
US11637285B2 (en) Over-lithiated cathode material
US20220181629A1 (en) Elastic binding polymers for electrochemical cells
US20230006201A1 (en) Over-lithiated cathode materials and methods of forming the same
US11799083B2 (en) Lithiation additive for a positive electrode
US20230102190A1 (en) Negative electroactive materials and methods of forming the same
US20230411614A1 (en) Electrolyte additive for nickel-rich cathodes and silicon-containing anodes
US12009503B2 (en) Electroactive particles having electronically conductive coatings
US20230019313A1 (en) Lithium alloy reservoir for use in electrochemical cells that cycle lithium ions
US20240170720A1 (en) Electrolytes for electrochemical cells that cycle lithium ions
US20240047673A1 (en) Nitrate salt cathode additives and methods of using and forming the same
US20220367848A1 (en) Double-sided electrodes and electrochemical cells including the same
US20240079649A1 (en) Electrolytes for electrochemical cells that cycle lithium ions
US20240128512A1 (en) Electrolytes for electrochemical cells that cycle lithium ions
US20230231135A1 (en) Protective coatings for lithium metal electrodes and methods of forming the same
US20240055593A1 (en) Hybrid battery having improved thermal stability and power performance
US20230369568A1 (en) Lithium-containing particle coatings for positive electroactive materials
US20230246295A1 (en) Coated separators for electrochemical cells and methods of forming the same
US20240038962A1 (en) Pre-lithiating porous layer for electrochemical cell and methods of forming the same
US20220102704A1 (en) Electroactive particles having electronically conductive coatings
US20230402585A1 (en) Lithium-ion battery including anode-free cells
US20230335706A1 (en) Protective layers for lithium metal electrodes and methods of forming the same
US20230187612A1 (en) Lithium-containing coatings for cathode materials
CN117352730A (zh) 用于富锂层状阴极的电解质添加剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination