CN116332201A - 一种由酚类分子原位调控制备zsm-48分子筛的方法及应用 - Google Patents

一种由酚类分子原位调控制备zsm-48分子筛的方法及应用 Download PDF

Info

Publication number
CN116332201A
CN116332201A CN202310325313.3A CN202310325313A CN116332201A CN 116332201 A CN116332201 A CN 116332201A CN 202310325313 A CN202310325313 A CN 202310325313A CN 116332201 A CN116332201 A CN 116332201A
Authority
CN
China
Prior art keywords
molecular sieve
sample
sio
zsm
phenolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310325313.3A
Other languages
English (en)
Other versions
CN116332201B (zh
Inventor
李国柱
张香文
张明伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202310325313.3A priority Critical patent/CN116332201B/zh
Publication of CN116332201A publication Critical patent/CN116332201A/zh
Application granted granted Critical
Publication of CN116332201B publication Critical patent/CN116332201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7461MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种由酚类分子原位调控制备ZSM‑48分子筛的方法,包括向晶化釜中加入反应原料水、碱液、模板剂、硅源、铝源,搅拌均匀之后晶化的步骤,本发明在所述反应原料搅拌均匀之后,晶化之前原位添加酚类分子对ZSM‑48分子筛合成进行调控,该方法制备得到的分子筛同时具有高分散性和低酸性两种性能,以该分子筛为载体的催化剂可以提高长链正构烷烃加氢异构反应的异构产物收率,并且提高异构产物中单支链异构体的选择性。

Description

一种由酚类分子原位调控制备ZSM-48分子筛的方法及应用
技术领域
本发明属于化学催化剂制备领域,具体涉及一种由酚类分子原位调控制备ZSM-48分子筛的方法及应用。
背景技术
正构烷烃加氢异构化催化剂一般为双功能催化剂,分子筛作为载体并提供酸性位,负载贵金属以起到加氢脱氢的作用。ZSM-48分子筛结构类型为*MRE,具有一维平行直孔道,孔口大小为0.56nm×0.56nm。这些孔道特征适合长链正构烷烃的加氢异构化反应,对于异构产物具有较高的选择性。但按照一般方法合成得到的ZSM-48分子筛晶体倾向于形成较大的聚集体,会导致较小的晶间堆积孔,不利于反应物、中间体及产物的扩散。另外,ZSM-48分子筛的酸性较强,需要适当地降低,以降低裂解产物的选择性。
因此,为了提高催化剂对于异构产物的选择性和收率,应尽量提高ZSM-48分子筛晶体的分散度,促进分子扩散,同时适当降低分子筛酸性,降低反应物、中间体及产物与酸位过度接触而导致裂解的可能性。
为了解决上述问题,提出本发明。
发明内容
本发明旨在提供一种由酚类分子原位调控制备高分散低酸性ZSM-48分子筛的方法,并将之用于催化长链正构烷烃的加氢异构反应。
本发明第一方面提供了一种由酚类分子原位调控制备ZSM-48分子筛的方法,包括向晶化釜中加入反应原料水、碱液、模板剂、硅源、铝源,搅拌均匀之后晶化的步骤,其特征在于,在所述反应原料搅拌均匀之后,晶化之前原位添加酚类分子对ZSM-48分子筛的合成过程进行调控。
优选地,所述酚类分子为苯酚、邻苯二酚、对苯二酚、茶多酚、杨梅素、多巴胺、安石榴苷、鞣酸中的一种或几种。
优选地,所述的碱液为NaOH或KOH的水溶液,摩尔浓度为0.8~1.2mol/L。
优选地,所述的模板剂为溴化六甲铵、溴化五甲胺、1,6-己二胺的一种或几种。
优选地,所述的硅源为SiO2含量在30%~40%的硅溶胶、硅气溶胶、正硅酸四乙酯、硅酸钠中的一种或几种。
优选地,所述的铝源为十八水合硫酸铝、偏铝酸钠、铝溶胶中的一种或几种。
优选地,所述反应原料的摩尔比范围为:
范围
SiO2/Al2O3 130-200
H2O/SiO2 30-60
OH-/SiO2 0.2-0.3
Q/SiO2 0.05-0.15
M+/SiO2 0.5-1.0
ZGM/SiO2 0.03-0.14
其中Q代表模板剂,M代表碱金属,ZGM代表酚类分子。
优选地,所述晶化的温度为150~170℃,晶化时间为6~10天。
本发明第二方面提供了一种上述制备方法制备的ZSM-48分子筛在长链烷烃加氢异构反应中的应用,该分子筛为载体的催化剂可以提高长链正构烷烃加氢异构反应的异构产物收率,并且提高异构产物中单支链异构体的选择性。
相对于现有技术,本发明具有以下有益效果:
1、本发明首次以酚类分子作为调控剂原位调控制备ZSM-48分子筛,该方法采用简单可控的原位改性方法成功实现了对ZSM-48分子筛晶体分散度与酸性质的调控。
2、本发明不局限于某种单一调控剂分子,并对调控剂的选择起到了指导作用。
3、以酚类分子调控ZSM-48分子筛作为载体制备的铂负载长链烷烃加氢异构催化剂,具有很高的异构选择性以及异构收率,且具有较高的单支链异构体选择性。
附图说明
图1是对比样1和样品1-5的X射线衍射结果图;
图2是对比样1和样品1-5的扫描电镜图像;
图3是对比样1为载体的催化剂的异构收率、异构选择性;
图4是样品4为载体的催化剂的异构收率、异构选择性;
图5为对比样1和样品4的异构产物中多支链异构产物与单支链异构产物的产率比值。
具体实施方式
下面的实施例体现了本发明描述的过程,但本发明并不局限于这些实例。
对比例:(不添加酚类分子调控剂)
称取41.6g去离子水、2.4g氢氧化钠加入到有聚四氟内衬的反应器中,搅拌均匀。再向上述碱性溶液中加入5.0g硅气溶胶和3.0g溴化六甲铵、20.9g十八水合硫酸铝溶液,搅拌均匀。其中硫酸铝溶液需事先配制,每克硫酸铝溶于69.4g 0.88mol/L硫酸水溶液。将反应物凝胶装入带聚四氟乙烯内衬的水热合成釜中,密封,在自生压力160℃下,晶化6天。
取出晶化产物,冷却,离心分离,并用去离子水洗至中性,在120℃烘箱中干燥;然后将其置于马弗炉中,540℃焙烧3h,升温到595℃焙烧3h,以脱除模板剂。然后将粉末分散在1mol/L的氯化铵水溶液中,液固比为10,在80℃下回流4h,抽滤并在120℃烘箱中干燥,之后再重复进行离子交换两次。最后将粉末在550℃下焙烧4h,将分子筛转化为氢型。得到的产物为对比样1。
所得产品经XRD(X射线衍射仪)分析,确定其结构为ZSM-48分子筛,见图1。其SEM图像如图2所示,晶体存在着明显的团聚现象。晶体形成较密集的聚集体,晶体间较小的孔隙会导致分子扩散受到阻碍。产品的硅铝比、堆积密度和晶簇尺寸如表1所示。这里,硅铝比由XRF(X射线荧光光谱仪)测试,通过重复测量1cm3体积样品的质量10次并取平均值得到堆积密度,通过对SEM图中晶簇直径测量50次并取平均值得到晶簇尺寸,这里晶簇是指具有相同生长方向的晶体团簇。其中堆积密度和晶簇尺寸可以反应样品中晶体的分散度,晶体分散度越高,样品的堆积密度和晶簇尺寸越低。硅铝比可以反应样品的酸性,硅铝比越高,样品的酸性越低。
实施例1:(酚类分子调控剂为苯酚)
具体实施条件类似于对比例,但在合成液其他组分都添加并充分搅拌后,加入2.1g苯酚,之后继续搅拌30min。得到的产物为样品1。经XRD分析,确定为ZSM-48分子筛,见图1。经SEM图像分析,晶体分散度较对比样1有所提高,但仍存在较为明显的聚集,见图2。产品的堆积密度、晶簇尺寸和硅铝比如表1所示。样品1的堆积密度只有对比样1的一半,而晶簇尺寸稍高于对比样1,说明样品1的晶体分散度高于对比样1,但分散度提高有限。样品1的硅铝比高于对比样1,说明苯酚的添加可以降低分子筛的酸性。
实施例2:(酚类分子调控剂为邻苯二酚)
具体实施条件类似于实施例1,但将调控剂改为邻苯二酚,添加质量不变。得到的产物为样品2。邻苯二酚具有两个酚羟基基团,且两个酚羟基基团相邻。经XRD分析,确定为ZSM-48分子筛,见图1。经SEM图像分析,晶体分散度较样品1有所提高,但仍存在一定的聚集,见图2。产品的堆积密度、晶簇尺寸和硅铝比如表1所示。样品2的堆积密度低于样品1,只有对比样1的约四分之一。样品2的晶簇尺寸也明显下降,约为对比样1的四分之一。这说明相对于对比样1,样品2的晶体分散度得到明显的提高。样品2的硅铝比高于样品1,分子筛的酸性进一步降低。
实施例3:(酚类分子调控剂为杨梅素)
具体实施条件类似于实施例1,但将调控剂改为杨梅素,添加质量不变。得到的产物为样品3。杨梅素具有5个酚羟基基团,2个酚羟基对,分子尺寸要明显大于苯酚和邻苯二酚。经XRD分析,确定为ZSM-48分子筛,见图1。经SEM图像分析,晶体分散度较样品2有了明显提高,见图2。产品的堆积密度、晶簇尺寸和硅铝比如表1所示。样品3的堆积密度只有对比样1的约五分之一,其晶簇尺寸约为对比样1的七分之一,说明样品3的晶体分散度相比于样品2进一步提高。样品3的硅铝比高于样品2,分子筛的酸性进一步降低。
实施例4:(酚类分子调控剂为多巴胺)
具体实施条件类似于实施例1,但将调控剂改为多巴胺,添加质量不变。得到的产物为样品4。多巴胺在分子筛的碱性合成液中会发生自聚,形成较高聚合度的聚多巴胺。其中四聚多巴胺具有8个酚羟基基团,4个酚羟基对,且分子尺寸大大增加。经XRD分析,确定为ZSM-48分子筛,见图1。经SEM图像分析,晶体分散度较样品3有了进一步提高,晶体基本处于单分散状态,晶体之间存在充足的孔隙,利于客体分子的扩散,见图2。产品的堆积密度、晶簇尺寸和硅铝比如表1所示。样品4的堆积密度相比于样品3进一步下降,晶簇尺寸在所有样品中最小,基本和单个晶体的直径相等。样品4的硅铝比高于样品3,分子筛的酸性进一步降低。
实施例5:(酚类分子调控剂为乙二醇)
具体实施条件类似于实施例1,但将调控剂改为乙二醇,添加质量不变。得到的产物为样品5。经XRD分析,确定为ZSM-48分子筛,见图1。经SEM图像分析,晶体聚集严重,与对比样1相似,说明醇羟基在ZSM-48晶体分散度调控方面不起作用,见图2。产品的堆积密度、晶簇尺寸和硅铝比如表1所示。样品5的堆积密度与对比样1相近,晶簇尺寸稍高于对比样1,说明晶体的分散度未得到提高。样品5的硅铝比稍高于对比样1,酸性变化不明显。
以上结果表明,酚羟基对于ZSM-48分子筛的晶体分散以及酸性的调节有明显的调控作用,而醇羟基对此无明显的调控作用。对于具有不同结构的酚类分子,具有更多的酚羟基基团、更多的酚羟基对、更大的分子尺寸,可以得到更高的晶体分散度及更低的酸性。在我们所举例的酚类调控剂内,多巴胺作为调控剂时得到的晶体分散度最高,且酸性受到的抑制更明显。
实施例6:正十六烷加氢异构反应
将上述实施例4得到的多巴胺改性的分子筛样品4和对比例得到的普通分子筛对比样1分别作为载体,负载贵金属铂,应用到正十六烷的加氢异构反应中。铂的负载量为0.5wt%。负载方法为,将5g氯铂酸的乙醇溶液(0.02mol/L)加入到5g ZSM-48分子筛的乙醇分散液中(0.1g/mL),75℃下回流1h,使用旋转蒸发仪蒸干。之后在马弗炉中450℃下处理4h,并使用压片机造型为20~40目大小的颗粒。将催化剂装填在微型固定床反应器中,两端以碳化硅填充。评价开始前,在氢气气氛下400℃还原4h。反应条件为:压力3MPa,质量空速2h-1,氢油比1000(体积比),温度270~310℃。
以对比样1和样品4为载体的两种催化剂的异构率、异构选择性分别如图3、图4所示。在各自最佳异构反应温度下的产物分析结果如表2所示。
在测试的温度范围内,样品4的异构选择性始终高于90%,且明显高于对比样1,因此样品4的异构收率有着明显的提高。由表1可以看出,在各自的最佳异构反应温度下,即在每个催化剂分别达到最高异构收率的反应温度下,样品4相对于对比样1,异构收率由79.74%提升到89.03%,且在较高的转化率下保持了更高异构选择性。样品4具有较高的晶体分散度,反应物、中间体和产物的扩散阻力减小,与酸性位点接触的可能性降低,因此降低了裂解产物的选择性,提高了异构选择性。并且样品4具有相对较低的酸性,也可以减少裂解产物的产生。
图5为对比样1和样品4的异构产物中多支链异构产物与单支链异构产物的产率比值。相对于对比样1,在相同的转化率下,样品4的多支链产物较少,这是由于样品4的晶体分散度较高且酸性较低,单支链异构体可以尽快扩散而不会发生进一步的异构。多支链异构体的裂解活性相对较高,因此较低的多支链异构体占比可以抑制裂解的发生。
表1样品堆积密度、硅铝比和晶簇尺寸
样品 堆积密度(mg/cm3) 硅铝比 晶簇尺寸(nm)
对比样1 484.6 171 518
样品1 204.3 198 578
样品2 125.7 209 131
样品3 96.1 222 77
样品4 85.5 228 44
样品5 461.8 178 561
表2催化性能结果比较
反应温度,℃ 转化率/% ≤C15/wt% 异构C16/wt% 异构选择性/%
样品4 305 94.38 5.35 89.03 94.33
对比样1 290 86.31 6.58 79.74 92.38
【备注】表1中的“≤C15/wt%”表示产物中碳原子数小于等于15的物质的总质量分数;“异构C16/wt%”表示产物中正十六烷异构体的总质量分数;“异构选择性/%”表示反应物选择性生成正十六烷异构体的百分数。

Claims (9)

1.一种由酚类分子原位调控制备ZSM-48分子筛的方法,包括向晶化釜中加入反应原料水、碱液、模板剂、硅源、铝源,搅拌均匀之后晶化的步骤,其特征在于,在所述反应原料搅拌均匀之后,晶化之前原位添加酚类分子对ZSM-48分子筛的合成过程进行调控。
2.根据权利要求1所述的方法,其特征在于,所述酚类分子为苯酚、邻苯二酚、对苯二酚、茶多酚、杨梅素、多巴胺、安石榴苷、鞣酸中的一种或几种。
3.根据权利要求1所述的方法,其特征在于,所述的碱液为NaOH或KOH的水溶液,摩尔浓度为0.8~1.2mol/L。
4.根据权利要求1所述的方法,其特征在于,所述的模板剂为溴化六甲铵、溴化五甲胺、1,6-己二胺的一种或几种。
5.根据权利要求1所述的方法,其特征在于,所述的硅源为SiO2含量在30%~40%的硅溶胶、硅气溶胶、正硅酸四乙酯、硅酸钠中的一种或几种。
6.根据权利要求1所述的方法,其特征在于,所述的铝源为十八水合硫酸铝、偏铝酸钠、铝溶胶中的一种或几种。
7.根据权利要求1所述的方法,其特征在于,所述反应原料的摩尔比范围为:
范围 SiO2/Al2O3 130-200 H2O/SiO2 30-60 OH-/SiO2 0.2-0.3 Q/SiO2 0.05-0.15 M+/SiO2 0.5-1.0 ZGM/SiO2 0.03-0.14
其中Q代表模板剂,M代表碱金属,ZGM代表酚类分子。
8.根据权利要求1所述的方法,其特征在于,所述晶化的温度为150~170℃,晶化时间为6~10天。
9.一种权利要求1所述方法制备的ZSM-48分子筛在长链烷烃加氢异构反应中的应用,其特征在于,该分子筛为载体的催化剂可以提高长链正构烷烃加氢异构反应的异构产物收率,并且提高异构产物中单支链异构体的选择性。
CN202310325313.3A 2023-03-30 2023-03-30 一种由酚类分子原位调控制备zsm-48分子筛的方法及应用 Active CN116332201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310325313.3A CN116332201B (zh) 2023-03-30 2023-03-30 一种由酚类分子原位调控制备zsm-48分子筛的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310325313.3A CN116332201B (zh) 2023-03-30 2023-03-30 一种由酚类分子原位调控制备zsm-48分子筛的方法及应用

Publications (2)

Publication Number Publication Date
CN116332201A true CN116332201A (zh) 2023-06-27
CN116332201B CN116332201B (zh) 2024-10-18

Family

ID=86889216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310325313.3A Active CN116332201B (zh) 2023-03-30 2023-03-30 一种由酚类分子原位调控制备zsm-48分子筛的方法及应用

Country Status (1)

Country Link
CN (1) CN116332201B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010021369A1 (en) * 1999-12-24 2001-09-13 Min Lin Titanium-silicalite molecular sieve and the method for its preparation
US20080027260A1 (en) * 2006-07-28 2008-01-31 Wenyih Frank Lai MCM-22 family molecular sieve composition, its method of making, and use for hydrocarbon conversions
CN110127719A (zh) * 2018-02-02 2019-08-16 华东理工大学 一种低Si/Al比ZSM-48分子筛的制备方法
CN112830499A (zh) * 2021-01-15 2021-05-25 天津大学 一种单分散ssz-32分子筛、其制备方法和应用
CN113620309A (zh) * 2020-05-09 2021-11-09 中国石油化工股份有限公司 一种zsm-48分子筛及其合成方法和应用
CN114229869A (zh) * 2022-01-20 2022-03-25 天津大学 一种孔道酸分布度可调的级孔*mre分子筛、制备方法及用途
CN114644345A (zh) * 2020-12-17 2022-06-21 中国石油化工股份有限公司 Zsm-48分子筛、制备方法及加氢异构催化剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010021369A1 (en) * 1999-12-24 2001-09-13 Min Lin Titanium-silicalite molecular sieve and the method for its preparation
US20080027260A1 (en) * 2006-07-28 2008-01-31 Wenyih Frank Lai MCM-22 family molecular sieve composition, its method of making, and use for hydrocarbon conversions
CN110127719A (zh) * 2018-02-02 2019-08-16 华东理工大学 一种低Si/Al比ZSM-48分子筛的制备方法
CN113620309A (zh) * 2020-05-09 2021-11-09 中国石油化工股份有限公司 一种zsm-48分子筛及其合成方法和应用
CN114644345A (zh) * 2020-12-17 2022-06-21 中国石油化工股份有限公司 Zsm-48分子筛、制备方法及加氢异构催化剂
CN112830499A (zh) * 2021-01-15 2021-05-25 天津大学 一种单分散ssz-32分子筛、其制备方法和应用
CN114229869A (zh) * 2022-01-20 2022-03-25 天津大学 一种孔道酸分布度可调的级孔*mre分子筛、制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐玲;张强;陈衍川;周耿旭;高新;张淼;李丹丹;刘宗瑞;: "介孔Worm-like孔壁晶化制备微孔-介孔分子筛研究", 大连理工大学学报, no. 06, 22 November 2018 (2018-11-22) *

Also Published As

Publication number Publication date
CN116332201B (zh) 2024-10-18

Similar Documents

Publication Publication Date Title
CN103241745B (zh) 一种小粒径sapo-11分子筛的合成方法及用途
CN101759199A (zh) 一种硅、磷改性的zsm-5分子筛及其制备方法
CN112830499B (zh) 一种单分散ssz-32分子筛、其制备方法和应用
CN110586086B (zh) 精确调控氧化铝中五配位铝离子数目的Pd/介孔氧化铝催化剂及其制备与应用
CN112570015B (zh) 封装Pd基合金的分子筛催化剂及其制备方法和应用
CN111135859B (zh) 一种长链正构烷烃临氢异构化催化剂及其制备方法
CN107382646B (zh) 一种固体酸烷基化的方法
CN106669799A (zh) 最大量生产低凝柴油的加氢裂化催化剂制备方法
CN116332201B (zh) 一种由酚类分子原位调控制备zsm-48分子筛的方法及应用
CN103787368A (zh) 介孔zsm-5沸石、介孔zsm-5沸石负载金属硫化物催化剂以及应用
CN114229869B (zh) 一种孔道酸分布度可调的级孔*mre分子筛、制备方法及用途
CN110614118A (zh) 载体为三孔海泡石球形介孔复合材料的异丁烷脱氢催化剂及其制备方法和应用
FR3069460A3 (fr) Procede pour preparer un catalyseur a base de zeolite hierarchique pour l'aromatisation d'alcanes en c5 a c9
CN112536067B (zh) 一种多级孔sapo-11分子筛及长链烷烃异构化催化剂的制备方法与应用
CN114950416A (zh) 一种用于草酸二甲酯加氢合成乙醇酸甲酯的催化剂及其制备方法和应用
CN108862314B (zh) 一种具有多级孔且宽硅铝比euo结构分子筛及合成方法
CN102441415B (zh) 烷烃临氢异构化催化剂及其制备方法和应用
CN113800535A (zh) 一种应用于低碳烷烃芳构化的纳米BaKL沸石合成方法
CN113751061A (zh) 加氢异构化催化剂及烃油加氢异构方法
CN113751064A (zh) 加氢催化剂组合物及加氢异构化方法
CN115106119A (zh) 催化丙烷脱氢的催化剂及其制备方法和应用以及制备丙烯的方法
CN111530497A (zh) 能够提高mta反应稳定性的催化剂及其制备方法和应用方法
CN115181018B (zh) 一种利用γ-戊内酯定向合成戊酸的方法
CN117865174A (zh) 一种mtt结构分子筛、其制备方法及用途
CN116060103B (zh) 一种改性β分子筛及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant