CN116332153A - 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用 - Google Patents

一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用 Download PDF

Info

Publication number
CN116332153A
CN116332153A CN202310194804.9A CN202310194804A CN116332153A CN 116332153 A CN116332153 A CN 116332153A CN 202310194804 A CN202310194804 A CN 202310194804A CN 116332153 A CN116332153 A CN 116332153A
Authority
CN
China
Prior art keywords
lithium
philic
carbon material
doped carbon
material loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310194804.9A
Other languages
English (en)
Inventor
谢堂超
李艺娟
汪邦海
肖宏
王怡琪
黄少铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202310194804.9A priority Critical patent/CN116332153A/zh
Publication of CN116332153A publication Critical patent/CN116332153A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂金属电池技术领域,具体涉及一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用。该材料的制备方法包括:首先通过溶剂热的方法合成CoAl层状双氢氧化物,再与钴盐和2‑甲基咪唑反应并碳化制得负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料。采用本发明制备方法得到的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料,不仅含有均匀分布的超细钴纳米颗粒作为亲锂位点,同时具有连续的三维蜂窝孔结构。将本发明的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料应用于锂金属电池负极材料,可以起到降低金属锂成核势垒,缓冲金属锂的体积膨胀和诱导金属锂限域均匀沉积的作用,从而获得无锂枝晶、长循环寿命的锂金属电池。

Description

一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及 其应用
技术领域
本发明涉及锂金属电池技术领域,具体涉及一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用。
背景技术
金属锂凭借其超高的理论比容量(3860mAh g-1)、最低的氧化还原电位(与标准氢电极相比为-3.04V)以及较低的密度(0.534g cm-3)而被广泛认为是最理想的下一代高能量密度电池负极材料。然而,锂金属不能直接作为负极,因为锂金属负极存在着不可控的枝晶生长,“死锂”的大量产生,不稳定的固体电解质膜,电解液的过量消耗,库伦效率低以及巨大的体积膨胀的严重问题,这降低了锂金属负极的循环稳定性,也对电池的安全性造成了极大的影响。
为了实现无锂枝晶金属锂负极的制备,最近的一些研究成果表明,构建三维多孔集流体可以有效抑制枝晶的生成以及避免过多电解液的消耗,三维多孔集流体具有大的比表面积,这能降低电极表面的局部电流密度,实现稳定的锂成核。因而采用含有氮掺杂的三维多孔碳基框架(如碳纳米球、碳纳米片和石墨烯等)作为金属锂负极宿主材料,被认为是抑制锂枝晶的有效策略。将金属锂沉积到具有大表面积的三维碳骨架中不仅可以有效缓解金属锂在充放电过程中的体积膨胀,还能通过降低局部电流密度从而在一定程度上抑制金属锂的生长。但是纯碳基底与金属锂之间的亲和性一般较差;文献【Nat.Nanotechnol.2016.11,626~623】报道利用真空抽滤得到层状氧化石墨烯薄膜,并于熔融锂发生活化反应,制备膨松的还原氧化石墨烯薄膜,这种薄膜具有丰富的空隙结构和亲锂位点(羰基和烷氧基),但上述骨架材料制备方法复杂,不利于大规模生产。所以锂金属电池负极碳基框架材料仍然需要进一步研究。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法。该方法为先将Co基金属有机框架材料(ZIF-67颗粒)原位成核,并定向外延生长至CoAl层状双氢氧化物表面,然后进行碳化处理,制得负载超细亲锂纳米颗粒的蜂窝状氮掺杂碳材料,本发明方法简单,操作简便,温度低,后期处理简单,设备要求简单,成本适中,适合大规模生产,制得的材料能有效抑制锂枝晶的形成,具有成核过电位低,循环稳定性良好等优点。
为实现上述目的,本发明所采用的技术方案为:
本发明提供了一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,包括以下步骤:
S1、CoAl-LDH的制备:将钴源、铝源和尿素溶于溶剂中,混匀至形成粉色混合液后进行加热反应,反应后收集固体产物,经洗涤和干燥后得到CoAl层状双氢氧化物,记为CoAl-LDH;
S2、CoAl-LDH@ZIF-67前驱体的制备:将钴盐、2-甲基咪唑和S1制得的CoAl-LDH分别溶于有机溶剂中,依次将含有钴盐的有机溶剂、含有2-甲基咪唑的有机溶剂分别加入到含有CoAl-LDH的有机溶剂中,搅拌至形成紫色混合溶液,随后分离得到沉淀物,经洗涤和干燥后得到CoAl-LDH@ZIF-67前驱体;
S3、CoNP@HNC的制备:将S2制得的CoAl-LDH@ZIF-67前驱体在惰性气氛中进行高温碳化,得到负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料,记为CoNP@HNC。
优选地,步骤S1中,所述溶剂为去离子水,所述钴源为六水氯化钴、所述铝源为六水三氯化铝。
优选地,步骤S1中,所述六水氯化钴、六水三氯化铝和尿素与溶剂的固液比分别为1.05~1.35g:300~400mL、0.45~0.83g:300~400mL、1.02~1.16g:300~400mL。
优选地,步骤S1中,所述加热反应的温度为80~100℃,时间为36~48h。
优选地,步骤S2中,所述钴盐为六水合硝酸钴,所述钴盐、2-甲基咪唑和CoAl-LDH的质量比为(1.39~1.55):(3.18~3.28):(0.08~0.12)。
优选地,步骤S2中,所述有机溶剂为甲醇。
优选地,步骤S3中,所述高温碳化条件为在氮气气氛中先以3~5℃/min的升温速率升温至800~900℃,再以800~900℃持续碳化反应2~3h。
本发明还提供一种锂金属负极材料的制备方法,以N-甲基吡咯烷酮为溶剂,将上述制备方法制得的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料、导电剂和粘结剂制成电极浆料,将电极浆料涂覆在铜箔集流体上,制得基于负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的锂金属负极材料。
优选地,所述负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料、导电剂和粘结剂以质量比8:1:1混合,所述导电剂为炭黑,所述粘结剂为聚偏二氟乙烯。
与现有技术相比,本发明的有益效果是:
本发明公开了一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法。该方法为先将Co基金属有机框架材料(ZIF-67颗粒)原位成核,并定向外延生长至CoAl层状双氢氧化物表面,然后进行高温碳化处理,制得负载超细亲锂纳米颗粒的蜂窝状氮掺杂碳材料,本发明方法简单,操作简便,温度低,后期处理简单,设备要求简单,成本适中,适合大规模生产。而且,基于本发明的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的锂金属电池具有低成核过电位、无锂枝晶和长循环寿命的特点。
本发明制得的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料在抑制锂枝晶生长方面具有诸多优势:(1)该材料具有较大的比表面积,可以有效降低局部电流密度,均匀电场分布;(2)碳材料表面的蜂窝状空间不仅可以有效缓冲金属锂在充放电过程中的体积膨胀,而且可以避免亲锂位点在充放电过程中的团聚,同时可以有效限域金属锂的生长,从而抑制锂枝晶的形成;(3)其表面均匀分布的超细钴纳米颗粒位点与锂离子之间具有更强的亲合力,有利于锂离子的扩散与成核,从而减小金属锂的成核势垒,降低沉积阻力,诱导金属锂均匀沉积。
附图说明
图1为CoNP@HNC的扫描电镜图;
图2为CoNP@HNC作为锂金属电池负极材料的成核过电位图;
图3为CoNP@HNC和HNC分别作为锂金属对称电池材料的长循环性能图;
图4为CoNP@HNC和HNC分别作为锂金属全电池负极材料的循环性能图。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。
实施例1CoNP@HNC及其锂金属电池负极材料的制备
1、CoNP@HNC的制备步骤如下:
S1、取1.19g六水氯化钴、0.61g六水三氯化铝和1.06g尿素溶解在400mL去离子水中,超声至形成粉色混合溶液,并将粉色混合溶液置于97℃油浴中进行磁力搅拌48h;
S2、将S1油浴后的粉色混合溶液通过离心进行离心分离后收集固体产物,离心转度为9000rpm,离心时间为5min,用去离子水和无水乙醇各洗涤3次,以去除残存杂质,最后将所得固体产物置于鼓风烘干箱中以80℃干燥12h,得到CoAl层状双氢氧化物,标记为CoAl-LDH;
S3、将1.45g六水合硝酸钴、3.28g 2-甲基咪唑和0.1g CoAl-LDH分别溶于50mL甲醇溶液中,依次将含有六水合硝酸钴的甲醇溶液、含有2-甲基咪唑的甲醇溶液分别加入到含有CoAl-LDH的甲醇溶液中,并轻轻搅拌15min,得到紫色混合溶液;
S4.将S3制得的紫色混合溶液进行离心分离后收集固体产物,离心转速为5000rpm,离心时间为5min,用甲醇溶液洗涤三次,以除残存的溶剂和杂质,放入鼓风烘干箱以80℃干燥12h,所得紫色粉末标记为CoAl-LDH@ZIF-67前驱体;
S5、将S4制得的CoAl-LDH@ZIF-67前驱体置于管式炉中,N2气氛下以5℃/min的升温速率升到800℃,保持800℃持续碳化2h,待反应结束回到室温后即可得到负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料,标记为CoNP@HN;
CoNP@HNC扫描电镜图如图1所示,该材料表面为蜂窝状空间,具有较大的比表面积。
2、基于CoNP@HNC的锂金属负极材料的制备步骤如下:
将CoNP@HNC、炭黑、聚偏二氟乙烯以8:1:1的质量比充分均匀后,再加入适量的N-甲基吡咯烷酮作为溶剂制得有粘结性的浆料,用刮刀均匀地涂覆在铜箔上,放入100℃真空烘箱中干燥12h后得到蜂窝状氮掺杂碳材料极片。
对比例1HNC及其锂金属电池负极材料的制备
将实施例1的S5制得的CoNP@HNC取500mg添加到150mL质量分数为20%的氢氟酸溶液中进行酸洗处理,并搅拌12h,得到不含钴纳米颗粒的蜂窝状氮掺杂碳材料,标记为HNC,其锂金属电池负极材料的制备方法同实施例1。
实验例1锂金属电池性能表征对比
将干燥后的实施例1和对比例1的蜂窝状氮掺杂碳材料极片裁成12mm的圆形极片,分别作为锂金属电池负极宿主材料进行电化学性能测试,其中HNC极片作为对比样起到对照作用。
1、成核过电位的表征
半电池的组装:将直径为12mm的两种蜂窝状氮掺杂碳材料极片与金属锂片在充满氩气且水氧含量均低于0.01ppm的手套箱中分别组装成Li||CoNP@HNC和Li||HNC半电池,电解液体系选择含有2wt%硝酸锂(LiNO3)和1mol/L双三氟甲烷磺酰亚胺锂(LiTFSI)的1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)(v/v=1:1)溶液,隔膜采用商业化聚丙烯多孔膜。
电化学测试:Li||CoNP@HNC半电池先在0.05mA/cm2的电流下于0.01~3V之间循环5次,然后在1mA/cm2的电流下反复沉积/剥离1mAh/cm2的金属锂,其成核过电位如图2所示,成核过电位的大小是锂沉积时的电压最低值与稳定电压值之间的差值,Li||CoNP@HNC半电池的成核过电位仅为11mV,表明CoNP@HNC上均匀分布的超小钴纳米颗粒在降低金属锂沉积阻力方面起到显著作用。
2、长循环性能的表征
对称电池的组装:先对Li||CoNP@HNC和Li||HNC半电池进行电沉积,放电电流为0.5mA/cm2,预沉积20mAh/cm2的金属锂;然后在手套箱中将该半电池拆开,取出复合金属锂负极Li@CoNP@HNC和Li@HNC,并用过量的DME清洗表面残留的电解液,取两片含相同金属锂容量的复合极片Li@CoNP@HNC、Li@HNC组装成Li@CoNP@HNC||Li@CoNP@HNC和Li@HNC||Li@HNC对称电池,电解液体系同上述表征。
电化学测试:Li@CoNP@HNC||Li@CoNP@HNC和Li@HNC||Li@HNC对称电池在20mA/cm2的电流下反复沉积/剥离10mAh/cm2的金属锂,其循环性能如图3所示,Li@CoNP@HNC对称电池展现了2000小时(即2000个循环)的稳定长循环性能,表明金属锂在CoNP@HNC电极中的无锂枝晶沉积。作为对比,Li@HNC||Li@HNC对称电池在650h出现了严重的极化现象,表明电池内部形成了不稳定的SEI界面,引发枝晶生长,导致电池失效。
3、全电池循环性能的表征
全电池的组装:先对Li||CoNP@HNC和Li||HNC半电池进行电沉积,放电电流为0.5mA/cm2,预沉积10mAh/cm2的金属锂;然后在手套箱中将该半电池拆开,取出复合金属锂负极Li@CoNP@HNC和Li@HNC,并用过量的DME清洗表面残留的电解液;将活性物负载量约为4mg/cm2的磷酸铁锂(LFP)正极极片与复合金属锂负极放置于手套箱中组装成Li@CoNP@HNC||LFP和Li@HNC||LFP全电池。使用电解液的体系为含1mol/L六氟磷酸锂(LiPF6)的碳酸乙烯酯(EC)/碳酸二乙酯(DEC)(v/v=1:1)溶液,聚丙烯多孔膜作为隔膜材料。
电化学测试:Li@CoNP@HNC||LFP和Li@HNC||LFP全电池在1C倍率下于2.4~4V之间进行充放电测试,其循环性能如图4所示,Li@CoNP@HNC||LFP全电池在1C下的可逆容量高达130mAh/g,在稳定循环100圈后的容量保持率高达99%,表明CoNP@HNC电极的亲锂骨架和蜂窝状沉积空间可有效缓冲金属锂在充放电过程中的巨大体积膨胀,使得该全电池具有优良的循环性能,而经过酸洗处理后不含钴纳米颗粒的HNC电极为负极的Li@HNC||LFP全电池在1C倍率下的循环稳定性远远差于Li@CoNP@HNC||LFP全电池,在100圈循环后的容量低于40mAh/g。
综上所述,CoNP@HNC上均匀分布的超小钴纳米颗粒在降低金属锂沉积阻力方面起到显著作用,另外其亲锂骨架和蜂窝状沉积空间可有效缓冲金属锂在充放电过程中的巨大体积膨胀,因此基于本发明的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的锂金属电池具有低成核过电位、无锂枝晶和长循环寿命的特点。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (8)

1.一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,其特征在于,包括以下步骤:
S1、CoAl-LDH的制备:将钴源、铝源和尿素溶于溶剂中,混匀至形成粉色混合液后进行加热反应,反应后收集固体产物,经洗涤和干燥后得到CoAl层状双氢氧化物,记为CoAl-LDH;
S2、CoAl-LDH@ZIF-67前驱体的制备:将钴盐、2-甲基咪唑和S1制得的CoAl-LDH分别溶于有机溶剂中,依次将含有钴盐的有机溶剂、含有2-甲基咪唑的有机溶剂分别加入到含有CoAl-LDH的有机溶剂中,搅拌至形成紫色混合溶液,随后分离得到沉淀物,经洗涤和干燥后得到CoAl-LDH@ZIF-67前驱体;
S3、CoNP@HNC的制备:将S2制得的CoAl-LDH@ZIF-67前驱体在惰性气氛中进行高温碳化,得到负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料,记为CoNP@HNC。
2.根据权利要求1所述的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,其特征在于,步骤S1中,所述溶剂为去离子水,所述钴源为六水氯化钴、所述铝源为六水三氯化铝。
3.根据权利要求1所述的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,其特征在于,步骤S1中,所述六水氯化钴、六水三氯化铝和尿素与溶剂的固液比分别为1.05~1.35g:300~400mL、0.45~0.83g:300~400mL、1.02~1.16g:300~400mL。
4.根据权利要求1所述的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,其特征在于,步骤S1中,所述加热反应的温度为80~100℃,时间为36~48h。
5.根据权利要求1所述的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,其特征在于,步骤S2中,所述钴盐为六水合硝酸钴,所述钴盐、2-甲基咪唑和CoAl-LDH的质量比为(1.39~1.55):(3.18~3.28):(0.08~0.12)。
6.根据权利要求1所述的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法,其特征在于,步骤S3中,所述高温碳化条件为在氮气气氛中先以3~5℃/min的升温速率升温至800~900℃,再以800~900℃持续碳化反应2~3h。
7.一种锂金属负极材料的制备方法,其特征在于,以N-甲基吡咯烷酮为溶剂,将权利要求1~6任一项所述制备方法制得的负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料、导电剂和粘结剂制成电极浆料,将电极浆料涂覆在铜箔集流体上,制得基于负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的锂金属负极材料。
8.根据权利要求7所述的锂金属负极材料的制备方法,其特征在于,所述负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料、导电剂和粘结剂以质量比8:1:1混合,所述导电剂为炭黑,所述粘结剂为聚偏二氟乙烯。
CN202310194804.9A 2023-03-03 2023-03-03 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用 Pending CN116332153A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310194804.9A CN116332153A (zh) 2023-03-03 2023-03-03 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310194804.9A CN116332153A (zh) 2023-03-03 2023-03-03 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116332153A true CN116332153A (zh) 2023-06-27

Family

ID=86890755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310194804.9A Pending CN116332153A (zh) 2023-03-03 2023-03-03 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116332153A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789544A (zh) * 2021-09-15 2021-12-14 北京化工大学 一种钴和氮掺杂碳基催化剂的制备方法及其电化学催化合成过氧化氢的应用
CN114229825A (zh) * 2021-12-24 2022-03-25 北京航空航天大学 一种金属单原子掺杂的三维多孔碳材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789544A (zh) * 2021-09-15 2021-12-14 北京化工大学 一种钴和氮掺杂碳基催化剂的制备方法及其电化学催化合成过氧化氢的应用
CN114229825A (zh) * 2021-12-24 2022-03-25 北京航空航天大学 一种金属单原子掺杂的三维多孔碳材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110649267B (zh) 一种复合金属锂负极、制备方法及金属锂电池
CN112909234A (zh) 一种锂负极或钠负极的制备方法与应用
CN113054183A (zh) 一种CoNi双金属有机框架衍生碳硫复合材料的制备方法
CN114220947B (zh) 一种锂金属电池负极、集流体及其制备方法和电池
CN111646459A (zh) 一种硼掺杂石墨烯材料的制备方法及其应用
CN109950523A (zh) 锂离子电池负极材料过渡金属氧化物/碳的制备方法
CN115133023A (zh) 一种掺杂改性焦磷酸铁钠正极材料的制备方法
CN112736245A (zh) 一种锂离子电池负极材料及其制备方法和应用
CN110165179B (zh) 一种锂电池负极材料及其制备方法与包含该负极材料的锂电池
CN114989059A (zh) 一种锂离子电池补锂剂及其制备方法、应用
CN114203976A (zh) 一种可提高金属锂负极稳定性的混合溶液及制备方法和应用
CN117096279A (zh) 一种含锂复合负极的制备,其在锂二次电池中的应用
CN116960357A (zh) 一种梯度磷化铜/氧化铜/泡沫铜锂金属阳极集流体的制备方法和应用
CN116435467A (zh) 一种自支撑正极及其制备方法和应用
CN115810733A (zh) 一种改性磷酸锰铁锂材料、其制备方法以及锂离子电池
CN115924957A (zh) 封装氧化锌纳米颗粒的石榴状碳球及其制备方法与应用
CN109346726A (zh) 一种高温型锰系锂电池正极
CN112768663B (zh) 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池
CN114583137A (zh) 一种在碳表面进行硫掺杂磷修饰的方法及其应用
CN116332153A (zh) 一种负载亲锂纳米颗粒的蜂窝状氮掺杂碳材料的制备方法及其应用
CN111261857B (zh) 一种钠离子电池用FePS3/NC复合负极材料及其制备方法、钠离子电池
CN115939374B (zh) 一种镍锰氧化物正极材料及其制备方法与用途
CN115000412B (zh) 一种表面改性碳布3d骨架的制备方法及其应用
CN115360356B (zh) 一种改性锂包覆结构及其制备方法和应用
CN110165178B (zh) 一种锂电池正极材料及其制备方法与包含该正极材料的锂电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination