CN116326594A - 一种用于海洋防腐防污的复合材料及其制备方法和应用 - Google Patents

一种用于海洋防腐防污的复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN116326594A
CN116326594A CN202310593682.0A CN202310593682A CN116326594A CN 116326594 A CN116326594 A CN 116326594A CN 202310593682 A CN202310593682 A CN 202310593682A CN 116326594 A CN116326594 A CN 116326594A
Authority
CN
China
Prior art keywords
htcc
composite material
nanospheres
mil
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310593682.0A
Other languages
English (en)
Other versions
CN116326594B (zh
Inventor
杜敏
池丽凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202310593682.0A priority Critical patent/CN116326594B/zh
Publication of CN116326594A publication Critical patent/CN116326594A/zh
Application granted granted Critical
Publication of CN116326594B publication Critical patent/CN116326594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/31Aluminium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Materials Engineering (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种用于海洋防腐防污的复合材料及其制备方法和应用,属于海洋防腐防污材料领域。本发明通过溶剂热法以水热碳化碳(HTCC)为核、以NH2‑MIL‑101(Al)为壳制得HTCC@NH2‑MIL‑101(Al)光催化抗菌纳米复合材料。具有核壳结构的HTCC@NH2‑MIL‑101(Al)纳米复合材料具有较快的光生载流子分离和转移效率,光催化活性得到增强。HTCC@NH2‑MIL‑101(Al)纳米复合材料在可见光照下以较短的时间对大肠杆菌、铜绿假单胞菌等实现光催化抗菌,由此达到预防微生物膜形成的目的,可用于预防海洋环境金属的微生物腐蚀和生物污损。

Description

一种用于海洋防腐防污的复合材料及其制备方法和应用
技术领域
本发明涉及一种海洋环境金属防腐防污材料,尤其是涉及一种用于海洋防腐防污的具有光催化抗菌活性的HTCC@NH2-MIL-101(Al) 纳米复合材料及其制备方法和应用。
背景技术
随着陆地资源的利用和耗竭,人类将目光放眼于丰富海洋资源的开发和利用。随之而来的是大量的舰船、海洋工程、海洋平台等的开发和建设,其中金属材料在其中发挥着十分重要的支撑作用。然而,海洋环境十分恶劣,金属在海洋环境中易遭受腐蚀和生物污损等侵害,其中微生物可以导致金属的微生物腐蚀并参与生物污损。材料一旦浸入海水,其表面就会被多糖、蛋白质有机物附着,形成条件膜;在此基础上,细菌、真菌等微生物就会在条件膜上附着、生长、繁殖,数小时内形成微生物膜,这将导致更严重的腐蚀和生物污损。其中微生物膜的形成和稳定是金属发生微生物腐蚀和生物污损的重要环节,如果能采取及时有效的措施快速杀灭微生物,就有望防止微生物在材料表面附着、生长、繁殖,防止微生物膜的形成,从根本上解决微生物带来的腐蚀和污损危害。因此,发展快速抗菌的技术至关重要。
光催化抗菌技术是一种对太阳能进行能量转换的具有节能、高效广谱、低成本、无二次污染等优势的技术,能够在分钟和小时为单位的时间里实现快速高效抗菌,是防止微生物膜形成的有效解决途径。光催化抗菌技术的基本原理是:光催化材料在合适光照下发生电子-空穴对(也称“光生载流子对”)的分离、跃迁和转移,电子和空穴可以直接参与抗菌;接着,电子和空穴也可与O2、OH-作用形成·O2 -、·OH、1O2等具有高活性的自由基。电子、空穴直接或间接参与抗菌的方式是:电子和空穴直接或产生的自由基对材料表面有机物,微生物的细胞膜和蛋白质、遗传物质等胞内物质进行分解,从而破坏微生物的活性或者将其杀灭,由此达到防止微生物膜形成的目的。光催化抗菌技术的关键是光能利用率、电子-空穴对的分离、转移率、活性物质的生成,以及在较短时间内对实现广谱、高效抗菌。
水热碳(Hydrothermal Carbonation Carbon,简称HTCC)是一种由生物质材料经150~350℃水热反应转换而来的半导体碳材料,因来源广、制备简单、环保低碳、成本低、宽谱光响应性(紫外到近红外区)、性能易调控、毒性低等优点广泛应用在光催化消毒、吸附、有机物降解等领域。然而,HTCC的呋喃结构中离散的sp2造成了聚呋喃链之间较差的电子转移和导电性,纳米颗粒易粘连,这使得HTCC的光催化活性低下。因此,有必要对HTCC进行改性,提高光生载流子的分离、转移效率,抑制复合,提高导电性,从而提高光催化抗菌性能。例如,纯HTCC的光催化活性低,但经氯离子掺杂后,Cl-HTCC的光催化活性比纯HTCC提升了4.53倍[Y. Zhang, Z. Shen, Z. Xin, Z. Hu, H. Ji, Interfacial charge dominatingmajor active species and degradation pathways: An example of carbon basedphotocatalyst, Journal of colloid and interface science, 554 (2019) 743-751.],与CoFe2O4结合之后,经可见光照射1 h后对大肠杆菌的抗菌量达到7 log10 cfu·mL−1 [T. Wang, Z. Jiang, T. An, G. Li, H. Zhao, P.K. Wong, Enhanced Visible-Light-Driven Photocatalytic Bacterial Inactivation by Ultrathin Carbon-CoatedMagnetic Cobalt Ferrite Nanoparticles, Environmental science & technology, 52(2018) 4774-4784.],复合材料的光催化抗菌活性得到明显提升。
发明内容
本发明的目的是提供一种用于海洋防腐防污的具有光催化抗菌活性的复合材料及其制备方法和应用,用于杀灭海洋环境中的微生物,防止其进一步形成的微生物膜并造成金属腐蚀或生物污损。
为实现上述目的,本发明采用的技术方案为:
在一个方面,本发明提供了一种用于海洋防腐防污的复合材料,所述材料是以HTCC纳米球为核,以NH2-MIL-101(Al)为壳形成的球状具有核壳结构的HTCC@NH2-MIL-101(Al)纳米复合材料。
本发明的用于海洋防腐防污的复合材料,首先通过水热法分解葡萄糖得到HTCC纳米球,然后在HTCC纳米球表面负载多孔的NH2-MIL-101(Al)纳米颗粒,从而形成具有核壳结构的HTCC@NH2-MIL-101(Al)纳米复合材料;以HTCC为核、以NH2-MIL-101(Al)为壳的核壳结构有利于形成异质结界面,减短光生载流子的传输距离,从而加速光生载流子的分离和转移;同时,NH2-MIL-101(Al)分布在HTCC纳米球表面后可有效防止HTCC纳米球的相互粘连,NH2-MIL-101(Al)的团聚现象也明显得到了改善;NH2-MIL-101(Al)与HTCC结合后,复合材料对可见光的响应能力得到加强;在可见光照射下,光生载流子从NH2-MIL-101(Al)与HTCC的能带结构中分离和跃迁,NH2-MIL-101(Al)中的电子从其导带转移至HTCC的价带并于HTCC价带上的空穴复合,最终NH2-MIL-101(Al)价带上的空穴和HTCC导带上的电子参与氧化还原反应,产生的·OH和·O2 -导致了微生物细胞结构的破坏,从而实现HTCC@NH2-MIL-101(Al)纳米复合材料的抗菌,达到预防微生物膜形成的目的。
作为一种优选的实施方案,所述HTCC@NH2-MIL-101(Al)纳米复合材料中, HTCC纳米球的平均粒径约为117 nm,HTCC@NH2-MIL-101(Al)纳米复合材料的平均粒径约为235nm。NH2- MIL-101(Al)在HTCC纳米球表面原位合成,形成的核壳结构有利于光生载流子的快速分离与转移,光生载流子与O2、H2O结合成活性自由基,有效分解微生物的细胞膜和细胞内物质,达到高效广谱的抗菌目的。
作为一种优选的实施方案,所述HTCC@NH2-MIL-101(Al)纳米复合材料中,NH2-MIL-101(Al)在HTCC表面沉积的颗粒尺寸变小,并且粒粒分明,团聚现象有所改善,不再是多头球状聚集状态,NH2-MIL-101(Al)在HTCC的沉积也改变了HTCC颗粒之间易粘连的特点,由此得到更大的比表面积和活性位点,这有利于增大与微生物的接触面积,从而发挥更高效的抗菌作用。
在另一个方面,本发明提供了一种所述用于海洋防腐防污的复合材料的制备方法,包括以下步骤:1)HTCC纳米球的制备:取无水葡萄糖溶于纯水中,混合均匀后,倒入高压反应釜中,于200~210℃反应24 h,自然冷却后,对反应产物进行离心洗涤、干燥、研磨并收集得到HTCC纳米球;2)HTCC@NH2-MIL-101(Al)纳米复合材料的制备:取HTCC、 2-氨基对苯二甲酸(H2ATA)和AlCl3·6H2O 同时加入N,N-二甲基甲酰胺(DMF),混合均匀,加入高压反应釜中,于130~150℃反应24~72 h,自然冷却后,对反应产物进行离心洗涤、干燥、研磨并收集得到HTCC@NH2-MIL-101(Al)纳米复合材料。
本发明的制备方法是先利用水热法将葡萄糖分解制备成HTCC纳米球,再通过溶剂热法再HTCC表面原位生长NH2-MIL-101(Al)纳米颗粒,NH2-MIL-101(Al)以HTCC为核,在其表面生长并包围HTCC,形成具有核壳结构HTCC@NH2-MIL-101(Al)纳米复合材料。这种通过一步水热法和一步溶剂热法合成HTCC@NH2-MIL-101(Al)的方法具有操作简单,工艺流程短,结构和性能易调控等特点,易于实现产业化。
作为一种优选的实施方案,所述步骤1)中,葡萄糖在纯水中的混合是通过搅拌10~30 min实现的,以更好地控制HTCC纳米球的形成和分散性。
作为一种优选的实施方案,所述步骤1)中,对反应产物进行离心洗涤,分别采用纯水和无水乙醇对反应产物依次进行至少3次的充分洗涤,从而得到更纯的HTCC。
作为一种优选的实施方案,所述步骤1)中,对洗涤后的粉末进行干燥,干燥条件为60~100℃真空干燥12~24 h,确保粉末得到充分干燥。
作为一种优选的实施方案,所述步骤1)中,对干燥后的粉末样品进行研磨并收集,研磨采用玛瑙研钵,收集粉末采用抗静电的牛角药匙。
作为一种优选的实施方案,所述步骤2)中,所述混合均匀是指对含有HTCC、H2ATA和AlCl3·6H2O的DMF溶液进行超声分散30~60 min,使H2ATA和AlCl3·6H2O与HTCC进行充分的接触,并在DMF中均匀分散。所述HTCC的质量分数为0.0174~0.1738%。
作为一种优选的实施方案,所述步骤2)中,对反应产物进行离心洗涤是指,分别采用纯水、DMF和无水甲醇对反应产物依次进行至少3次的充分洗涤,纯水洗涤是为了去除残余的AlCl3·6H2O,DMF洗涤是为了去除残余的H2ATA,无水甲醇是为了去除DMF。
作为一种优选的实施方案,所述步骤2)中,对洗涤后的产物进行干燥,干燥条件为60~100℃真空干燥12~24 h,真空干燥的温度低,干燥效果快,而且不会对HTCC@NH2-MIL-101(Al)纳米复合材料的结构造成破坏。
作为一种优选的实施方案,所述步骤2)中,对干燥后的粉末样品进行研磨并收集,研磨采用玛瑙研钵,收集粉末采用抗静电的牛角药匙。
在再一个方面,本发明提供了一种所述光催化抗菌纳米复合材料的在预防海洋环境金属的微生物腐蚀或生物污损中的应用,所述光催化抗菌纳米复合材料用在海洋环境中的光催化抗菌,通过产生活性自由基来杀灭微生物,防止微生物膜的形成,从而预防金属的微生物腐蚀或生物污损。
本发明的光催化抗菌纳米复合材料在光照条件下,由于电子-空穴对的分离、跃迁、转移并与环境中的O2和H2O结合生成·O2 -、·OH等自由基,自由基与铜绿假单胞菌、大肠杆菌等微生物结合,可以达到灭活或杀灭微生物的效果。因此,具有核壳结构的HTCC@NH2-MIL-101(Al)纳米复合材料可以实现光催化抗菌并预防金属发生微生物腐蚀和生物污损。
与现有技术相比,本发明的有益效果是:本发明的NH2-MIL-101(Al)纳米颗粒具有较好的可见光响应性,而HTCC也可以吸收来自紫外到近红外区的光,二者结合之后可提高太阳光利用率;尺寸均匀的NH2-MIL-101(Al)纳米颗粒在HTCC表面的沉积为HTCC@NH2-MIL-101(Al)提供了大的比表面积和更多的活性位点,从而增加了HTCC@NH2-MIL-101(Al)与微生物的接触面积,提高了光催化抗菌效率;NH2-MIL-101(Al)具有较窄的禁带宽度,与HTCC结合后得到较强的氧化还原性能,为自由基的生成提供了更大的动力,使HTCC@NH2-MIL-101(Al)具有更好的光催化抗菌活性;以HTCC为核,以NH2-MIL-101(Al)壳形成的核壳结构HTCC@NH2-MIL-101(Al)纳米复合材料具有较快的光生载流子分离和转移性能,从而得到较强的光催化抗菌性能。本发明的HTCC@NH2-MIL-101(Al)纳米复合材料是通过一步水热法和一步溶剂热法制备得到,操作简单,工艺流程短,低碳环保,易于实现产业化。本发明的HTCC@NH2-MIL-101(Al)纳米复合材料在可见光照条件下,可应用于海洋环境中的光催化抗菌,可在短时间内高效灭活或杀灭大肠杆菌、铜绿假单胞菌等微生物,具有高效、广谱的光催化抗菌性能,能防止微生物膜的形成,从而预防微生物造成的金属微生物腐蚀或生物污损。可用于预防海洋环境金属的微生物腐蚀和生物污损。
附图说明
图1为本发明实施例提供的HTCC纳米球表面形貌的SEM图。
图2为本发明实施例提供的NH2-MIL-101(Al)材料表面形貌的SEM图。
图3为本发明实施例提供的HTCC@NH2-MIL-101(Al)纳米复合材料表面形貌的SEM图。
图4为本发明实施例提供的HTCC、NH2-MIL-101(Al)和HTCC@NH2-MIL-101(Al)纳米复合材料的紫外可见漫反射曲线。
图5为本发明实施例提供的可见光照射下HTCC纳米球及HTCC添加量为0.01 g时的HTCC@NH2-MIL-101(Al)纳米复合材料(简称H0.01N)用于大肠杆菌抗菌时的细菌存活率随光照时间变化图。
图6为本发明实施例提供的可见光照射下HTCC纳米球及H0.01N纳米复合材料用于大肠杆菌抗菌时的抗菌率图。
图7为本发明实施例提供的可见光照射下HTCC纳米球及HTCC添加为0.05 g时的HTCC@NH2-MIL-101(Al)纳米复合材料(简称H0.05N)用于大肠杆菌抗菌时的细菌存活率随光照时间变化图。
图8为本发明实施例提供的可见光照射下HTCC纳米球及H0.05N纳米复合材料用于大肠杆菌抗菌时的抗菌率图。
图9为本发明实施例提供的可见光照射下HTCC纳米球及HTCC添加量为0.005 g时的HTCC@NH2-MIL-101(Al)纳米复合材料(简称H0.005N)用于大肠杆菌抗菌时的细菌存活率随光照时间变化图。
图10为本发明实施例提供的可见光照射下HTCC纳米球及H0.005N纳米复合材料用于大肠杆菌抗菌时的抗菌率图。
具体实施方式
下面结合实施例和附图对本发明做进一步的解释说明。
实施例1:
(1)HTCC纳米球的制备:
取0.72 g 无水葡萄糖于65 ml纯水中,搅拌混合30 min后,倒入不锈钢高压反应釜的聚四氟乙烯内衬中,置于鼓风干燥箱中,200℃反应24 h,反应结束后自然冷却至室温;用纯水、无水乙醇依次对反应产物进行至少3次的离心洗涤,之后放入真空干燥箱中,60℃干燥12 h;取出干燥好的固体黑色粉末,用玛瑙研钵进行研磨,再用牛角药匙收集带有强静电的粉末,即HTCC纳米球粉末;
(2)HTCC@NH2-MIL-101(Al)纳米复合材料的制备:
称取0.01g的HTCC,20.6 mM H2ATA和14.08 mM AlCl3·6H2O 同时放入30 mL DMF,超声30 min混合均匀,将混合液倒入不锈钢高压反应釜的聚四氟乙烯内衬中,置于鼓风干燥箱中,130℃反应24 h,待反应结束后自然冷却至室温;依次用纯水、DMF和无水甲醇对反应产物进行至少3次离心洗涤,置于真空干燥箱中60℃干燥12 h;用玛瑙研钵将得到的粉末进行研磨,收集得到H0.01N纳米复合材料。
(3)光催化抗菌性能测试:
抗菌测试均在超净台进行,涉及的器具均经过121℃高压灭菌20 min。首先分别准备两份10 mL含有108 CFU ml-1的活化后的大肠杆菌海水菌液于两个光化学反应器中,分别称取0.01 g的HTCC和H0.01N纳米复合材料在超净台中灭菌30 min后分别置于两个光化学反应器中,将装有抗菌材料和菌液的反应器密封,将石英玻璃窗口对准光源。在暗态下搅拌30min后开启可见光光源,每隔20 min取出100 μL的混合液体,稀释数倍后取100μL菌液置于含有LB培养基的培养皿中,用玻璃球摇匀后,放入恒温箱培养24 h后进行计数并计算细菌存活率和抗菌率。细菌存活率(Survival rate, S)的计算公式为:
Figure SMS_1
(1)
抗菌率(Antibacterial rate, A)的计算公式为:
Figure SMS_2
(2)
其中C0为初始菌液浓度,C为光催化杀菌后的菌液浓度。
从图1可以看出,本发明制备的HTCC纳米球的粒径分布为87~158 nm, 平均粒径约为117 nm,HTCC纳米球之间存在粘连的现象。
如图2所示,为NH2-MIL-101(Al)的SEM图,NH2-MIL-101(Al)材料呈多头球状聚集状态。图3为H0.01N纳米复合材料的SEM图。从图3可以看出,H0.01N纳米复合材料的粒径分布为154~391 nm,平均粒径大小约为235 nm,HTCC与NH2-MIL-101(Al)结合后HTCC之间不再粘连,HTCC表面被NH2-MIL-101(Al)纳米球颗粒包裹。图4为纳米复合材料的紫外可见漫反射曲线,可以看出经过复合后,HTCC@NH2-MIL-101(Al)的光吸收强度比NH2-MIL-101(Al)更高了,禁带宽度也变窄了,说明复合材料的光电性能增强了。
图5为本明实施例提供的HTCC纳米球及H0.01N纳米复合材料对大肠杆菌进行可见光照射后的细菌存活率图。从图中可以看出,经过40 min光照后,大肠杆菌的存活率约为0.39%,随后细菌存活率基本稳定,显然H0.01N对大肠杆菌的抗菌效果远优于HTCC纳米球。
图6为HTCC纳米球及H0.01N纳米复合材料对大肠杆菌进行光催化抗菌后的抗菌率图。从图中可以看出,可见H0.01N纳米复合材料的光催化抗菌效率高于HTCC纳米球,光照2 h后平均可达99.98%。
实施例2:
(1)HTCC纳米球的制备:
取0.72 g 无水葡萄糖于65 ml纯水中,搅拌混合10min后,倒入不锈钢高压反应釜的聚四氟乙烯内衬中,置于鼓风干燥箱中,210℃反应24 h,反应结束后自然冷却至室温;用纯水、无水乙醇依次对反应产物进行至少3次的离心洗涤,之后放入真空干燥箱中,100℃干燥24 h;取出干燥好的固体黑色粉末,用玛瑙研钵进行研磨,再用牛角药匙进行收集带有强静电的粉末,即HTCC纳米球粉末;
(2)HTCC@NH2-MIL-101(Al)纳米复合材料的制备:
称取0.05 g的HTCC,20.6 mM H2ATA和14.08 mM AlCl3·6H2O 同时放入30 mLDMF,超声60 min混合均匀,将混合液倒入不锈钢高压反应釜的聚四氟乙烯内衬中,置于鼓风干燥箱中,150℃反应24 h,待反应结束后自然冷却至室温;依次用纯水、DMF和无水甲醇对反应产物进行至少3次离心洗涤,置于真空干燥箱中100℃干燥24 h;用玛瑙研钵将得到的粉末进行研磨,收集得到HTCC@NH2-MIL-101(Al)纳米复合材料(简称H0.05N)。
(3)光催化抗菌性能测试:
首先准备两份10 mL含有108 CFU ml-1活化后的大肠杆菌菌液于两个光化学反应器中,分别称取0.01 g的HTCC和H0.05N纳米复合材料在超净台中灭菌30 min后分别置于两个光化学反应器中,将装有材料和菌液的反应器密封,将石英玻璃窗口对准光源。在暗态下搅拌30 min后开启可见光光源,每隔20 min取100 μL混合液体,稀释数倍后取100μL菌液置于含有LB培养基的培养皿中,用玻璃球摇匀后,放入恒温箱培养24 h后进行计数并按公式(1)和公式(2)计算细菌存活率和抗菌率。
图7为本明实施例提供的经HTCC纳米球及H0.05N纳米复合材料处理后的大肠杆菌存活率图。从图中可以看出,光照40 min后,大肠杆菌的存活率为4.71%,随后存活率基本稳定,显然H0.05N对大肠杆菌的抗菌效果远优于HTCC。
图8为HTCC纳米球及H0.05N纳米复合材料对大肠杆菌进行光催化抗菌后的抗菌率图,显然H0.05N纳米复合材料的光催化抗菌率相比HTCC有明显提高,光照2 h后平均可达99.41%。
实施例3:
(1)HTCC纳米球的制备:
取0.72 g 无水葡萄糖于65 ml纯水中,搅拌混合30min后,倒入不锈钢高压反应釜的聚四氟乙烯内衬中,置于鼓风干燥箱中,200℃反应24 h,反应结束后自然冷却至室温;用纯水、无水乙醇依次对反应产物进行至少3次的离心洗涤,之后放入真空干燥箱中,60℃干燥24 h;取出干燥好的固体黑色粉末,用玛瑙研钵进行研磨,再用牛角药匙进行收集带有强静电的粉末,即HTCC纳米球粉末;
(2)HTCC@NH2-MIL-101(Al)纳米复合材料的制备:
称取0.005 g的HTCC,20.6 mM H2ATA和14.08 mM AlCl3·6H2O 同时放入30 mLDMF,超声30 min混合均匀,将混合液倒入不锈钢高压反应釜的聚四氟乙烯内衬中,置于鼓风干燥箱中,130℃反应72 h,待反应结束后自然冷却至室温;依次用纯水、DMF和无水甲醇对反应产物进行至少3次离心洗涤,置于真空干燥箱中60℃干燥24 h;用玛瑙研钵将得到的粉末进行研磨,收集得到H0.005N纳米复合材料。
(3)光催化抗菌性能测试:
抗菌测试均在超净台进行,涉及的材料均经过121℃高压灭菌20 min。首先分别准备两份10 mL含有108 CFU ml-1的活化后的铜绿假单胞菌菌液于两个光化学反应器中,分别称取0.01 g的HTCC和H0.005N纳米复合材料在超净台中灭菌30 min后分别置于两个光化学反应器中,将装有材料和菌液的反应器密封,将石英玻璃窗口对准光源。在暗态下搅拌30 min后开启可见光光源,每隔20 min取100 μL的混合液体,稀释数倍后取100μL菌液置于含有LB培养基的平板中,用玻璃球摇匀后,放入恒温箱培养24 h后进行计数。
图9为HTCC纳米球及H0.005N纳米复合材料对铜绿假单胞菌进行光催化抗菌后细菌存活率图。从图中可以看出,经过20 min的可见光照射后,经由H0.005N纳米复合材料处理的铜绿假单胞菌存活率急剧降到13.4%,随后保持较低存活水平。与纯HTCC纳米球相比,H0.005N的抗菌效果明显更好。
图10为HTCC纳米球及H0.005N纳米复合材料对铜绿假单胞菌进行光催化抗菌后的抗菌率图。从图中可以看出,可见H0.005N纳米复合材料的光催化抗菌效率比HTCC纳米球的高,光照2 h后平均可达66.0%。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (8)

1.一种用于海洋防腐防污的复合材料,其特征在于,所述材料是以HTCC纳米球为核,以NH2-MIL-101(Al)为壳形成的球状核壳结构的HTCC@NH2-MIL-101(Al)纳米复合材料。
2.一种如权利要求1所述复合材料的制备方法,其特征在于,包括以下步骤:1)HTCC纳米球的制备:取无水葡萄糖溶于纯水中,混合均匀后,倒入高压反应釜中,于200~210℃反应24 h,自然冷却后,对反应产物进行离心洗涤、干燥、研磨并收集得到HTCC纳米球;2)HTCC@NH2-MIL-101(Al)纳米复合材料的制备:取HTCC纳米球、 2-氨基对苯二甲酸和AlCl3·6H2O同时加入N,N-二甲基甲酰胺,混合均匀,加入高压反应釜中,于130~150℃反应24~72 h,自然冷却后,对反应产物进行离心洗涤、干燥、研磨并收集得到HTCC@NH2-MIL-101(Al)纳米复合材料。
3.如权利要求2所述复合材料的制备方法,其特征在于,步骤2)中所述HTCC纳米球的质量分数为0.0174~0.1738%。
4.如权利要求2所述复合材料的制备方法,其特征在于,步骤2)中所述混合均匀是指对含有HTCC纳米球、2-氨基对苯二甲酸和AlCl3·6H2O的N,N-二甲基甲酰胺溶液进行超声分散30~60 min。
5.如权利要求2所述复合材料的制备方法,其特征在于,步骤1)中所述离心洗涤是指分别采用纯水和无水乙醇进行至少3次的充分洗涤。
6.如权利要求2所述复合材料的制备方法,其特征在于,步骤2)中所述离心洗涤是指分别采用纯水、N,N-二甲基甲酰胺、无水甲醇进行至少3次的充分洗涤。
7.如权利要求2所述复合材料的制备方法,其特征在于,步骤1)和步骤2)中所述干燥条件为60~100℃真空干燥12 ~24 h。
8.如权利要求1所述复合材料在杀灭微生物和预防海洋环境金属的微生物腐蚀或生物污损中的应用。
CN202310593682.0A 2023-05-25 2023-05-25 一种用于海洋防腐防污的复合材料及其制备方法和应用 Active CN116326594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310593682.0A CN116326594B (zh) 2023-05-25 2023-05-25 一种用于海洋防腐防污的复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310593682.0A CN116326594B (zh) 2023-05-25 2023-05-25 一种用于海洋防腐防污的复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116326594A true CN116326594A (zh) 2023-06-27
CN116326594B CN116326594B (zh) 2023-09-15

Family

ID=86893252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310593682.0A Active CN116326594B (zh) 2023-05-25 2023-05-25 一种用于海洋防腐防污的复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116326594B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701512A (zh) * 2013-12-09 2015-06-10 纳米及先进材料研发院有限公司 用于锂离子高性能阳极的Si@C核/壳纳米材料
CN110152741A (zh) * 2019-05-28 2019-08-23 浙江天蓝环保技术股份有限公司 一种核壳结构的高效复合可见光催化剂及其制备方法和应用
CN113827726A (zh) * 2021-11-08 2021-12-24 陕西科技大学 一种具有光动力-光热协同抗菌活性的三元复合抗菌材料及其制备方法和应用
CN114622206A (zh) * 2022-02-16 2022-06-14 中国科学院海洋研究所 一种NH2-MIL-101(Cr)/TiO2复合光阳极及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701512A (zh) * 2013-12-09 2015-06-10 纳米及先进材料研发院有限公司 用于锂离子高性能阳极的Si@C核/壳纳米材料
CN110152741A (zh) * 2019-05-28 2019-08-23 浙江天蓝环保技术股份有限公司 一种核壳结构的高效复合可见光催化剂及其制备方法和应用
CN113827726A (zh) * 2021-11-08 2021-12-24 陕西科技大学 一种具有光动力-光热协同抗菌活性的三元复合抗菌材料及其制备方法和应用
CN114622206A (zh) * 2022-02-16 2022-06-14 中国科学院海洋研究所 一种NH2-MIL-101(Cr)/TiO2复合光阳极及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TIANQI WANG 等: "Efficient Z-scheme visible-light-driven photocatalytic bacterial inactivation by hierarchical MoS2-encapsulated hydrothermal carbonation carbon coreshell nanospheres", 《APPLIED SURFACE SCIENCE》, pages 43 - 52 *
TIANQI WANG 等: "Enhanced Visible-Light-Driven Photocatalytic Bacterial Inactivation by Ultrathin Carbon-Coated Magnetic Cobalt Ferrite Nanoparticles", 《ENVIRON. SCI. TECHNOL.》, vol. 52, pages 4774 - 4784 *
Y. ZHANG 等: "Interfacial charge dominating major active species and degradation pathways: An example of carbon based photocatalyst", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》, pages 743 - 751 *
李赛赛;曹迎楠;王军凯;梁峰;段红娟;张海军;: "水热碳化法制备碳纳米材料", 材料导报, no. 09, pages 17 - 23 *

Also Published As

Publication number Publication date
CN116326594B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN108283178B (zh) ZnO/Ag/石墨烯纳米复合材料及制备方法和应用
Gao et al. Dimensional-matched two dimensional/two dimensional TiO2/Bi2O3 step-scheme heterojunction for boosted photocatalytic performance of sterilization and water splitting
CN107570191B (zh) 一种可见光催化剂的制备方法及用途
Wang et al. Heterogeneous interfacial photocatalysis for the inactivation of Karenia mikimotoi by Bi2O3 loaded onto a copper metal organic framework (Bi2O3@ Cu-MOF) under visible light
CN111184026A (zh) 一种纳米铜/钒酸铋复合抗菌剂的制备方法
Chen et al. Sulfur doped Bi-MOF with adjustable band gap for tetracycline removal under visible light
Zhang et al. Extensive solar light utilizing by ternary C-dots/Cu2O/SrTiO3: Highly enhanced photocatalytic degradation of antibiotics and inactivation of E. coli
CN107312204B (zh) 用于去除污水有机物的壳聚糖铁钛聚合材料及其制备
CN111389469A (zh) 一种用于去除水体藻类的光催化异质结纳米复合材料的制备方法
CN104528919B (zh) 一种螺旋沟槽复合生物填料的制备方法
Wang et al. Engineering hierarchical FeS2/TiO2 nanotubes on Ti mesh as a tailorable flow-through catalyst belt for all-day-active degradation of organic pollutants and pathogens
CN109603906B (zh) 一种蒽醌-2-磺酸钠/氧化石墨烯复合光催化杀菌剂及其制备方法和应用
CN105457663A (zh) 一种Bi2WO6/Ag3PO4复合光催化杀菌剂及其制备方法
CN107619810A (zh) 可持续降解河涌黑臭水体中氨氮总氮的混合菌种、菌种载体及方法
CN107628668A (zh) 可持续降解河涌黑臭水体中石油类污染物的混合菌种、菌种载体及方法
CN113769762A (zh) 一种超薄ZnIn2S4纳米片光触媒材料及其制备方法和应用
Tong et al. Bimetallic CoxCuy-CAT-1 metal-organic frameworks for synergistic antibacterial contribution of photocatalytic-photothermal effect
Li et al. Photocatalytic production of H2O2 and its in situ sterilization over Zn-based ZIFs materials
CN112375804B (zh) 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理
CN116326594B (zh) 一种用于海洋防腐防污的复合材料及其制备方法和应用
CN113499773A (zh) 一种纳米氧化锌负载钯纳米粒子的纳米酶及其制备方法和应用
Wang et al. Multiple synergistic effects of indole derivative modified fluorinated acrylate polymer and Z-scheme heterojunction over hollow spherical Mo2C/Bi2WO6 for efficient antifouling
CN107628669A (zh) 可持续降解河涌黑臭水体中挥发酚类污染物的混合菌种、菌种载体及方法
CN107619809A (zh) 可持续降解河涌黑臭水体中总磷的混合菌种、菌种载体及方法
CN109420497A (zh) 一种InVO4-AgVO3异质结催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant