CN116325219A - 正极材料及包括正极材料的电化学装置和电子装置 - Google Patents

正极材料及包括正极材料的电化学装置和电子装置 Download PDF

Info

Publication number
CN116325219A
CN116325219A CN202280006511.7A CN202280006511A CN116325219A CN 116325219 A CN116325219 A CN 116325219A CN 202280006511 A CN202280006511 A CN 202280006511A CN 116325219 A CN116325219 A CN 116325219A
Authority
CN
China
Prior art keywords
positive electrode
electrode material
peak
lithium
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280006511.7A
Other languages
English (en)
Inventor
程世杨
下羽淳平
郎野
徐磊敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Amperex Technology Ltd
Original Assignee
Ningde Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Amperex Technology Ltd filed Critical Ningde Amperex Technology Ltd
Publication of CN116325219A publication Critical patent/CN116325219A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种正极材料及包括该正极材料的电化学装置和电子装置。将包括所述正极材料的电极与锂金属组装成扣式电池,并使所述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电时,所获得的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰。该正极材料具有较高的能量密度以及改善的动力学性能和高温稳定性。

Description

正极材料及包括正极材料的电化学装置和电子装置
技术领域
本申请涉及储能技术领域,尤其涉及正极材料以及包括所述正极材料的电化学装置和电子装置。
背景技术
随着消费电子类的产品如笔记本电脑、手机、平板电脑、移动电源和无人机等的普及,对其中电池的要求越来越严格。例如,不仅要求电池轻便,而且还要求电池拥有高容量和较长的工作寿命。锂离子电池凭借其具有能量密度高、安全性高、无记忆效应和工作寿命长等突出的优点已经在市场上占据主流地位。为了追求更高的能量密度,对锂离子电池的研究一直在朝着提高电压、提高脱锂量的方向发展。在高电压、高脱锂量下,锂离子电池正极材料的表面释氧和结构相变问题也充分暴露出来,从而带来锂离子电池的循环跳水和产气等问题。
目前主要通过优化电解液和正极来改善锂离子电池的高温存储产气问题,例如,使用耐氧化的电解液或者对正极材料表面进行包覆。通常,使用纳米氧化物对正极材料表面进行包覆。纳米氧化物为非化学活性的物质,其包覆在正极材料的非活性表面不能起到保护作用,而包覆在正极材料的活性表面则会阻碍锂离子迁移,影响材料的容量发挥。一般耐氧化电解液的溶剂分子链较长,改善产气的同时会恶化锂离子传输动力学,进而会恶化锂离子电池的倍率性能和温升。
发明内容
本申请提供一种正极材料以试图在至少某种程度上解决至少一个存在于相关领域中的问题。
本申请提供了一种正极材料,将包括所述正极材料的电极与锂金属组装成扣式电池,并使所述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电时,所获得的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰。所述扣式电池的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰,表明所述正极材料由于内部氧缺陷的存在,在4.2V至4.5V的高电压区间存在可逆的充放电容量,从而使得正极材料具有较高的能量密度以及良好的结构稳定性。
根据本申请的一些实施例,基于所述正极材料的质量,所述第一氧化峰的峰高大于或等于300mAh/g/V。此时,正极材料在4.2V至4.5V的高电压区间充电的容量较高,从而使得正极材料具有更高的能量密度。根据本申请的一些实施例,基于所述正极材料的质量,所述第一氧化峰的峰高为300mAh/g/V至2000mAh/g/V。
根据本申请的一些实施例,基于所述正极材料的质量,所述第一还原峰的峰高的绝对值大于或等于300mAh/g/V。此时,正极材料在4.2V至4.5V的高电压区间放电的容量较高,从而使得正极材料具有更高的能量密度。根据本申请的一些实施例,基于所述正极材料的质量,所述第一还原峰的峰高的绝对值为300mAh/g/V至2000mAh/g/V。
根据本申请的一些实施例,所述第一氧化峰的峰值电压为Vo1,所述第一还原峰的峰值电压为Vr1,且|Vo1-Vr1|≤0.3V。此时,正极材料在4.2V至4.5V的高电压区间充放电的可逆性较好,并具有良好的结构稳定性。
根据本申请的一些实施例,所述电压容量微分dQ/dV曲线在3.6V至4.0V区间存在第二氧化峰和第二还原峰,所述第二氧化峰的峰值电压为Vo2,所述第二还原峰的峰值电压为Vr2,且|Vo2-Vr2|≤0.2V。此时,正极材料在3.6V至4.0V区间主要为六方相到单斜相的转变过程,该过程涉及锂离子和电子的输运过程,由于氧缺陷的存在,提升了材料整体的锂离子和电子的电导率,材料的动力学明显改善,因此,此过程的极化降低,使得第二氧化峰和第二还原峰的峰值电压差异更小。
根据本申请的一些实施例,所述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电时,所获得的电压容量曲线中的放电曲线在4.2V至4.5V区间存在平台,所述放电曲线在4.2V至4.5V区间的容量为Q1,所述放电曲线在3.0V至4.5V区间的容量为Qt,满足:0.14≤Q1/Qt≤0.35。此时,正极材料在4.2V至4.5V高电压区间的容量较高,从而使得正极材料具有更高的能量密度。
根据本申请的一些实施例,所述正极材料的晶胞参数a满足
Figure BDA0004133608720000021
根据本申请的一些实施例,所述正极材料的晶胞参数c满足
Figure BDA0004133608720000022
正极材料的晶胞参数c在上述范围内,正极材料的Li-O层间距较大,从而使得正极材料的动力学性能得到改善。
根据本申请的一些实施例,4.93≤c/a≤5.10。
根据本申请的一些实施例,所述正极材料的X射线衍射图谱在16°至20°、34°至38°以及42°至46°区间内均存在衍射峰。
根据本申请的一些实施例,所述正极材料包括锂过渡金属复合氧化物。
根据本申请的一些实施例,锂过渡金属复合氧化物包括元素M和元素T,所述元素M包括Na、K或Y中的至少一种,所述元素T包括Ni、Co或Mn中的至少一种。高离子半径的元素M在锂层掺杂,能够增大锂氧层间距,从而提升正极材料的动力学性能。
根据本申请的一些实施例,基于所述元素T的总摩尔量,Ni的摩尔百分含量大于或等于50%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,Mn的摩尔百分含量小于或等于50%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,Co的摩尔百分含量小于或等于50%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,所述元素M的摩尔百分含量为0.1%至5%。
根据本申请的一些实施例,锂过渡金属复合氧化物还包括元素Q,所述元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种,基于所述元素T的总摩尔量,所述元素Q的摩尔百分含量为0.1%至5%。元素Q可起到支撑过渡金属层的作用,从而提升正极材料的结构稳定性。
根据本申请的一些实施例,锂过渡金属复合氧化物还包括元素M1,M1包括F、Cl、Br、I、N或P中的至少一种;基于所述元素T的总摩尔量,所述元素M1的摩尔百分含量为0.1%至20%。
本申请进一步提供了一种上述正极材料的制备方法,其特征在于,包括如下步骤:1)在第一气氛条件下,将前驱体与锂源、元素M源、可选的元素Q源以及可选的元素M1源在第一温度下煅烧第一时间;2)降温至第二温度,在第二气氛条件下保持第二时间;3)最后降温至室温;所述第一气氛选自空气氛、氧气氛或空气与氧气混合气氛;所述前驱体包含元素T,所述元素T包括Ni、Co或Mn中的至少一种;所述元素M包括Na、K或Y中的至少一种;所述元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种;所述元素M1包括F、Cl、Br、I、N或P中的至少一种;所述第二气氛选自惰性气氛或惰性气体与H2混合气氛中的至少一种。
根据本申请的一些实施例,所述第一温度为700℃至1200℃;所述第一时间为10h至48h。
根据本申请的一些实施例,所述第二温度为350℃至600℃;所述第二时间为4h至24。
根据本申请的一些实施例,所述惰性气体选自N2、Ar或He中的至少一种。
根据本申请的一些实施例,所述步骤3)中的降温速率大于或等于50℃/min。
根据本申请的一些实施例,基于所述惰性气体与H2混合气氛的总体积,所述惰性气体与H2混合气氛中H2的体积百分含量小于或等于10%。
根据本申请的一些实施例,所述前驱体包括元素T的氢氧化物。
根据本申请的一些实施例,所述锂源包括碳酸锂或氢氧化锂中的至少一种。
根据本申请的一些实施例,所述元素M源包括元素M的碳酸盐或氢氧化物中的至少一种。
根据本申请的一些实施例,所述元素Q源包括元素Q的氧化物。
根据本申请的一些实施例,所述元素M1源包括元素M1的铵盐或锂盐中的至少一种。
根据本申请的一些实施例,基于所述元素T的总摩尔量,Ni的摩尔百分含量大于或等于50%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,Mn的摩尔百分含量小于或等于50%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,Co的摩尔百分含量小于或等于50%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,所述元素M的摩尔百分含量为0.1%至5%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,所述元素Q的摩尔百分含量为0.1%至5%。
根据本申请的一些实施例,基于所述元素T的总摩尔量,所述元素M1的摩尔百分含量为0.1%至20%。
本申请进一步提供了一种电化学装置,其包括以上任一种正极材料或以上任一制备方法制备得到的正极材料。
本申请进一步提供了一种电子装置,其包括以上任一种电化学装置。
本申请的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例或现有技术所必要的附图以便于描述本申请的实施例。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1示出了对比例1、对比例2和实施例11的扣式电池的充放电曲线。
图2示出了对比例1和实施例11的扣式电池的电压容量微分dQ/dV曲线。
图3示出了对比例1和实施例11的正极材料的X射线衍射图谱。
具体实施方式
本申请的实施例将会被详细的描示在下文中。在此所描述的实施例为说明性质的且用于提供对本申请的基本理解。本申请的实施例不应该被解释为对本申请的限制。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
三元材料为常用的正极材料。三元材料主要是通过镍和钴两种元素变价产生容量。三元材料的容量与其中的镍含量相关,镍含量越高,三元材料的容量越高。三元材料中的锰为+4价态,不提供容量,这限制了三元材料的能量密度。另外,锰的低电化学活性导致三元材料动力学较差。在深度脱锂的情况下,三元材料表面的氧离子活性高,容易与电解液发生副反应,导致界面阻抗增加或者产气。此外,三元材料中的锂氧层间距较低,通常在放电末端时候阻碍锂离子扩散,导致材料动力学迟滞,容量偏低。
发明人发现,在正极材料内部引入氧缺陷,一方面可以激活过渡金属的氧化还原性,从而大幅度提升正极材料的能量密度;另一方面,正极材料表面形成的氧空位可以降低正极材料表面氧的活性,稳定材料表面氧离子,从而抑制正极材料在高温循环中释氧产气。进一步地,发明人发现,在锂层掺杂高离子半径的元素,可以增大锂氧层间距,从而提升了材料的动力学性能。
本申请通过合成手段并结合锂层元素掺杂可以调控正极材料的内部氧缺陷和锂氧层间距,从而使本申请的正极材料具有较高的能量密度、较高的动力学性能以及改善的高温稳定性。
一、正极材料
本申请提供了一种正极材料,将包括所述正极材料的电极与锂金属组装成扣式电池,并使所述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电时,所获得的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰。
所述扣式电池的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰,表明所述正极材料由于内部氧缺陷的存在,在4.2V至4.5V的高电压区间存在可逆的充放电容量,从而使得正极材料具有较高的能量密度以及良好的结构稳定性。
在一些实施例中,基于正极材料的质量,第一氧化峰的峰高大于或等于300mAh/g/V。此时,正极材料在4.2V至4.5V的高电压区间充电的容量较高,从而使得正极材料具有更高的能量密度。在一些实施例中,基于正极材料的质量,第一氧化峰的峰高为300mAh/g/V至2000mAh/g/V。在一些实施例中,基于正极材料的质量,第一氧化峰的峰高可以为300mAh/g/V、400mAh/g/V、500mAh/g/V、600mAh/g/V、700mAh/g/V、800mAh/g/V、900mAh/g/V、1000mAh/g/V、1100mAh/g/V、1200mAh/g/V、1300mAh/g/V、1400mAh/g/V、1500mAh/g/V、1800mAh/g/V、2000mAh/g/V或可以为以上任意两数值组成的范围,例如300mAh/g/V至1000mAh/g/V、500mAh/g/V至1500mAh/g/V、600mAh/g/V至1500mAh/g/V、700mAh/g/V至1500mAh/g/V或1000mAh/g/V至1500mAh/g/V等。
在一些实施例中,基于正极材料的质量,第一还原峰的峰高的绝对值大于或等于300mAh/g/V。此时,正极材料在4.2V至4.5V的高电压区间放电的容量较高,从而使得正极材料具有更高的能量密度。在一些实施例中,基于正极材料的质量,第一还原峰的峰高的绝对值为300mAh/g/V至2000mAh/g/V。在一些实施例中,基于正极材料的质量,第一还原峰的峰高的绝对值可以为300mAh/g/V、400mAh/g/V、500mAh/g/V、600mAh/g/V、700mAh/g/V、800mAh/g/V、900mAh/g/V、1000mAh/g/V、1100mAh/g/V、1200mAh/g/V、1300mAh/g/V、1400mAh/g/V、1500mAh/g/V、1800mAh/g/V、2000mAh/g/V或可以为以上任意两数值组成的范围,例如300mAh/g/V至1000mAh/g/V、500mAh/g/V至1500mAh/g/V、600mAh/g/V至1500mAh/g/V、700mAh/g/V至1500mAh/g/V或1000mAh/g/V至1500mAh/g/V等。
在一些实施例中,第一氧化峰的峰值电压为Vo1,第一还原峰的峰值电压为Vr1,且|Vo1-Vr1|≤0.3V。此时,由于氧缺陷的存在,锂离子在二维通道内部的束缚力明显降低,因此,锂离子的扩散得到明显改善,且由于氧缺陷的存在激活了过渡金属小极化子缺陷,提升了材料的电子电导率,从而使得正极材料在4.2V至4.5V的高电压区间充放电的可逆性较好,并具有良好的结构稳定性。在一些实施例中,|Vo1-Vr1|可以为0.3V、0.27V、0.25V、0.23V、0.20V、0.17V、0.16V、0.15V、0.14V、0.13V、0.12V、0.11V、0.10V、0.09V、0.08V、0.07V、0.06V、0.05V、0.04V、0.03V、0.02V或0.01V等;或者可以为以上任意数值,例如0.3V、0.27V、0.25V、0.23V、0.20V、0.17V、0.16V、0.15V、0.14V、0.13V、0.12V、0.10V、0.09V、0.08V、0.07V、0.06V、0.05V、0.04V或0.03V等;或者可以为以上任意两数值组成的范围,例如0.03V至0.27V、0.05V至0.27V或0.01V至0.3V等。
在一些实施例中,电压容量微分dQ/dV曲线在3.6V至4.0V区间存在第二氧化峰和第二还原峰,第二氧化峰的峰值电压为Vo2,第二还原峰的峰值电压为Vr2,且|Vo2-Vr2|≤0.2V。此时,正极材料在3.6V至4.0V区间主要为六方相到单斜相的转变过程,该过程涉及锂离子和电子的输运过程,由于氧缺陷的存在,提升了材料整体的锂离子和电子的电导率,材料的动力学明显改善,因此,此过程的极化降低,使得第二氧化峰和第二还原峰的峰值电压差异更小。在一些实施例中,|Vo2-Vr2|可以为0.20V、0.19V、0.17V、0.16V、0.15V、0.14V、0.13V、0.12V、0.11V、0.10V、0.09V、0.08V、0.07V、0.06V、0.05V、0.04V、0.03V、0.02V、0.01V,或可以为以上任意两数值组成的范围,例如0.02V至0.19V、0.02V至0.12V或0.1V至0.20V等。
在一些实施例中,上述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电,所获得电压容量曲线中的放电曲线在4.2V至4.5V区间存在平台,所述放电曲线在4.2V至4.5V区间的容量为Q1,所述放电曲线在3.0V至4.5V区间的容量为Qt,满足:0.14≤Q1/Qt≤0.35。此时,正极材料在4.2V至4.5V高电压区间的容量较高,从而使得正极材料具有更高的能量密度。
在一些实施例中,Q1/Qt可以为0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34、0.35或可以为以上任意两数值组成的范围,例如0.14至0.28、0.16至0.28或0.20至0.35等。
在一些实施例中,正极材料的晶胞参数a满足
Figure BDA0004133608720000081
在一些实施例中,正极材料的晶胞参数c满足/>
Figure BDA0004133608720000082
在一些实施例中,4.93≤c/a≤5.10。一般来讲,六方晶系的a轴晶胞参数与过渡金属价态相关,c轴晶胞参数与锂层和过渡金属层间距相关。在氧缺陷存在下,降低了Li-O层间的束缚,Li-O层间距变大,过渡金属层间距降低,反应到c轴上相应增大,使得正极材料动力学改善。在a轴上主要与过渡金属价态相关,氧缺陷的存在会促使过渡金属向低价态变化,a轴会有一定程度的增大。
在一些实施例中,a可以为
Figure BDA0004133608720000083
Figure BDA0004133608720000084
或可以为以上任意两数值组成的范围,例如/>
Figure BDA0004133608720000085
至/>
Figure BDA0004133608720000086
至/>
Figure BDA0004133608720000087
至/>
Figure BDA0004133608720000088
或/>
Figure BDA0004133608720000089
至/>
Figure BDA00041336087200000810
等。
在一些实施例中,c可以为
Figure BDA00041336087200000811
Figure BDA00041336087200000812
或可以为以上任意两数值组成的范围,例如/>
Figure BDA00041336087200000813
至/>
Figure BDA00041336087200000814
至/>
Figure BDA00041336087200000815
至/>
Figure BDA00041336087200000816
或/>
Figure BDA00041336087200000817
至/>
Figure BDA00041336087200000818
等。
在一些实施例中,c/a可以为4.93、4.94、4.95、4.96、4.97、4.98、4.99、5.00、5.01、5.02、5.03、5.04、5.05、5.06、5.07、5.08、5.09、5.10或可以为以上任意两数值组成的范围,例如4.96至5.00、4.96至5.05、4.96至5.09或4.98至5.09等。
在一些实施例中,正极材料的X射线衍射图谱在16°至20°、34°至38°以及42°至46°区间内均存在衍射峰。
在一些实施例中,所述正极材料包括锂过渡金属复合氧化物。
在一些实施例中,锂过渡金属复合氧化物包括元素M和元素T,元素M包括Na、K或Y中的至少一种,元素T包括Ni、Co或Mn中的至少一种。高离子半径的元素M在锂层掺杂,能够增大锂氧层间距,从而提升了材料的动力学性能。
在一些实施例中,基于元素T的总摩尔量,Ni的摩尔百分含量大于或等于50%。
在一些实施例中,基于所述元素T的总摩尔量,Mn的摩尔百分含量小于或等于50%。在一些实施例中,Mn的摩尔百分含量大于或等于30%。
在一些实施例中,基于所述元素T的总摩尔量,Co的摩尔百分含量小于或等于50%。在一些实施例中,Co的摩尔百分含量大于或等于10%。
在一些实施例中,基于元素T的总摩尔量,元素M的摩尔百分含量为0.1%至5%。
在一些实施例中,正极材料可以为M元素掺杂的含Li元素和T元素的复合氧化物,元素M包括Na、K或Y中的至少一种,元素T包括Ni、Co或Mn中的至少一种。例如,正极材料可以为元素M掺杂的LiNi0.5Mn0.5O2(下文用LiMNi0.5Mn0.5O2表示),其中元素M可以为Na、K、Y或Na+Y,基于元素Ni和Mn的总摩尔量,元素M的掺杂浓度可以为0.10%、0.20%、0.50%、1.00%、2.00%、3.00%、4.00%或5.00%等。
在一些实施例中,锂过渡金属复合氧化物还可以包括元素Q,元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种。基于元素T的总摩尔量,元素Q的摩尔百分含量为0.1%至5%。元素Q可起到支撑过渡金属层的作用,从而提升正极材料的结构稳定性。
在一些实施例中,正极材料可以为元素M和Q掺杂的含Li元素和T元素的复合氧化物,元素M包括Na、K或Y中的至少一种,元素T包括Ni、Co或Mn中的至少一种,元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种。例如,正极材料可以为元素M和Q掺杂的LiNi0.5Mn0.5O2(下文用LiMQNi0.5Mn0.5O2表示),其中M元素为Na,Q元素为Zr、Ti、W、Ta或Sn,基于元素Ni和Mn的总摩尔量,元素M和Q的掺杂浓度可以给自独立的为0.10%、0.20%、0.50%、1.00%、2.00%、3.00%、4.00%或5.00%等。
在一些实施例中,锂过渡金属复合氧化物还可以包括元素M1,M1为F、Cl、Br、I、N或P中的至少一种;基于所述元素T的总摩尔量,所述元素M1的摩尔百分含量为0.1%至20%。
在一些实施例中,正极材料可以为M元素掺杂的LiTO1.9M10.1,元素M包括Na、K或Y中的至少一种,元素T包括Ni、Co或Mn中的至少一种,元素M1为F、Cl、Br、I、N或P中的至少一种。例如,正极材料可以为元素M掺杂的LiNi0.5Mn0.5O1.9F0.1(下文用LiMNi0.5Mn0.5O1.9F0.1表示)或元素M掺杂的LiNi0.5Mn0.5O1.9Cl0.1(下文用LiMNi0.5Mn0.5O2Cl0.1表示),元素M为Na、K或Y。
在一些实施例中,正极材料满足通式LixMy(NiaCobMncQd)OeM1f,0<x+y≤2,0≤a、b、c、d≤1,且a、b、c、d不同时为0,0<e≤3,0≤f<1,其中元素M为Na、K或Y中的至少一种,元素Q为Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种,且M1为F、Cl、Br、I、N或P中的至少一种。
在一些实施例中,正极材料包含元素Li,且其中基于正极材料的质量,元素Li的质量分数大于5%。
在一些实施例中,正极材料包含元素Li与其他金属元素,其他金属元素可以包含元素M、元素T或元素Q中的至少一种。元素Li的摩尔量与其他金属元素的摩尔量总和的比值大于0.5且小于2。
在一些实施例中,正极材料的制备方法包括如下步骤:1)在第一气氛条件下,将前驱体与锂源、元素M源、可选的元素Q源以及可选的元素M1源在第一温度下煅烧第一时间;2)降温至第二温度,在第二气氛条件下保持第二时间;3)最后降温至室温。所述第一气氛选自空气氛、氧气氛或空气与氧气混合气氛;所述前驱体包含元素T,所述元素T包括Ni、Co或Mn中的至少一种;所述元素M包括Na、K或Y中的至少一种;所述元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种;所述元素M1包括F、Cl、Br、I、N或P中的至少一种;所述第二气氛选自惰性气氛或惰性气体与H2混合气氛中的至少一种。本申请通过在煅烧后的降温过程中通入惰性气体或惰性气体与H2混合气体并保温一段时间以在正极材料内部引入氧缺陷,使得正极材料中的过渡金属的氧化还原性可以被激活,从而大幅度提升正极材料的能量密度。
在一些实施例中,所述第一温度为700℃至1200℃;所述第一时间为10h至48h。在一些实施例中,所述第一温度可以为700℃、800℃、900℃、1000℃、1100℃、1200℃或可以为以上任意两数值组成的范围。在一些实施例中,所述第一时间可以为10h、12h、16h、18h、24h、36h、48h或可以为以上任意两数值组成的范围。
在一些实施例中,所述第二温度为350℃至600℃;所述第二时间为4h至24h。在一些实施例中,所述第二温度可以为350℃、400℃、450℃、500℃、550℃、600℃或可以为以上任意两数值组成的范围。在一些实施例中,所述第二时间可以为4h、6h、8h、10h、12h、16h、18h、24h或可以为以上任意两数值组成的范围。
在一些实施例中,所述惰性气体选自N2、Ar或He中的至少一种。
在一些实施例中,所述步骤3)中的降温速率大于或等于50℃/min。
在一些实施例中,基于所述惰性气体与H2混合气氛的总体积,所述惰性气体与H2混合气氛中H2的体积百分含量小于或等于10%。在一些实施例中,基于所述惰性气体与H2混合气氛的总体积,所述惰性气体与H2混合气氛中的H2的体积百分含量可以为1%、2%、3%、4%、5%、6%、7%、8%、9%、10%或可以为以上任意两数值组成的范围,例如1%至3%、5%至10%等。
在一些实施例中,所述前驱体包括元素T的氢氧化物。
在一些实施例中,所述锂源包括碳酸锂或氢氧化锂中的至少一种。
在一些实施例中,所述元素M源包括元素M的碳酸盐或氢氧化物中的至少一种。
在一些实施例中,所述元素Q源包括元素Q的氧化物。
在一些实施例中,所述元素M1源包括元素M1的铵盐或锂盐中的至少一种。
在一些实施例中,基于所述元素T的总摩尔量,Ni的摩尔百分含量大于或等于50%。
在一些实施例中,基于所述元素T的总摩尔量,Mn的摩尔百分含量小于或等于50%。
在一些实施例中,基于所述元素T的总摩尔量,Co的摩尔百分含量小于或等于50%。
在一些实施例中,基于所述元素T的总摩尔量,所述元素M的摩尔百分含量为0.1%至5%。
在一些实施例中,基于所述元素T的总摩尔量,所述元素Q的摩尔百分含量为0.1%至5%。
在一些实施例中,基于所述元素T的总摩尔量,所述元素M1的摩尔百分含量为0.1%至20%。
二、电化学装置
本申请提供了一种电化学装置,其包括正极、负极、隔离膜和电解液,其中所述正极包含正极材料层,正极材料层包含上文所述的正极材料。
在一些实施例中,正极材料层还包括粘合剂。粘合剂提高正极材料颗粒彼此间的结合,并且还提高正极材料与正极集流体的结合。
在一些实施例中,粘合剂包括丁苯橡胶(SBR)、水性丙烯酸树脂、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)或聚乙烯醇(PVA)中的至少一种,但不限于此,可以根据实际需求来选择粘合剂。
在一些实施例中,基于正极材料层的总重量,粘结剂的重量百分比小于或等于5.0%。在一些实施例中,基于正极材料层的总重量,粘结剂的重量百分比为5.0%、4.0%、3.0%、2.0%、1.5%、1.0%、0.5%、0.3%、0.1%或可以为以上任意两数值组成的范围,例如0.1%至2.0%、0.5%至2.0%、0.1%至1.0%或1.0%至2.0%。
在一些实施例中,正极材料层还包括导电剂,导电剂包括石墨、乙炔黑、炭黑、科琴黑、碳纳米管、石墨烯及碳纳米纤维中的至少一种,但不限于此,可以根据实际需求来选择导电剂。
在一些实施例中,基于正极材料层的总重量,导电剂的重量百分比大于或等于0.5%。在一些实施例中,基于正极材料层的总重量,导电剂的重量百分比大于或等于1.0%或大于或等于1.5%等。
在一些实施例中,正极集流体可以采用金属箔材或多孔金属板,例如使用铝、铜、镍、钛或银等金属或它们的合金的箔材或多孔板,例如铝箔,但不限于此。
在一些实施例中,正极集流体的厚度为5μm至20μm,例如,5μm、6μm、7μm、8μm、10μm、12μm、14μm、16μm、18μm、20μm或可以为以上任意两数值组成的范围,例如6μm至18μm或8μm至16μm。
在一些实施例中,正极可以通过本领域公知的制备方法制备。例如,正极可以通过如下方法获得:在溶剂中将正极材料、导电剂和粘合剂混合,以制备正极浆料,将该正极浆料涂覆在正极集流体上,经烘干、冷压等工序得到正极。。在一些实施例中,溶剂可以包括N-甲基吡咯烷酮(NMP)等,但不限于此。
在一些实施例中,负极可以是金属锂片,也可以是包括负极集流体及设置于负极集流体至少一个表面上的负极材料层。
在一些实施例中,负极材料层包括负极材料,并可选地包括导电剂和粘结剂。
在一些实施例中,负极材料可以包括天然石墨、人造石墨、中间相微碳球(MCMB)、硬碳、软碳、硅、硅-碳复合物、SiO、Li-Sn合金、Li-Sn-O合金、Li-Al合金及金属锂中的一种或多种。
在一些实施例中,导电剂可以包括乙炔黑、炭黑、科琴黑、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。
在一些实施例中,粘结剂可以是丁苯橡胶、聚偏二氟乙烯、聚四氟乙烯、聚乙烯醇缩丁醛、水性丙烯酸树脂或羧甲基纤维素中的一种或多种。
本申请的电化学装置中的负极不限定于以上材料,本申请还可以使用可被用作锂离子电池负极材料、导电剂、粘结剂和增稠剂的其它材料。
负极集流体可以使用金属箔材或多孔金属板等材料,例如使用铜,镍,钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。
负极可以按照本领域常规方法制备。通常将负极材料及可选的导电剂和粘结剂分散于溶剂中,溶剂可以是N-甲基吡咯烷酮或水,形成均匀的负极浆料,将负极浆料涂覆在负极集流体上,经烘干、冷压等工序得到负极。
本申请的电化学装置中的隔离膜没有特别的限制,可以选用任意公知的具有电化学稳定性和化学稳定性的多孔结构隔离膜,例如玻璃纤维、无纺布、聚乙烯(PE),聚丙烯(PP)及聚偏二氟乙烯中的一种或多种的单层或多层薄膜。
本申请的电化学装置中的电解液可以包括有机溶剂、电解质锂盐和添加剂。本申请对有机溶剂和电解质锂盐的种类不做具体限制,可以根据实际需求进行选择。
在一些实施例中,有机溶剂可以为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸丁烯酯(BC)、碳酸亚乙烯酯(VC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的至少一种。在一些实施例中,有机溶剂包括上述化合物中的至少两种。
在一些实施例中,电解质锂盐可以为六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiClO4)、六氟砷酸锂(LiAsF6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiTFS)、二氟草酸硼酸锂(LiDFOB)、二草酸硼酸锂(LiBOB)、二氟磷酸锂(LiPO2F2)、二氟二草酸磷酸锂(LiDFOP)及四氟草酸磷酸锂(LiTFOP)中的一种或多种。
在一些实施例中,电解液中的添加剂可以包括腈类化合物,所述腈类化合物包括以下化合物中的一种或多种:丁二腈、戊二腈、己二腈或1,3,6-己烷三腈中一种或多种。
在一些实施例中,解液中还可选地包括其它添加剂,其它添加剂可以是任意可被用作锂离子电池的添加剂,在此不做具体限制,可以根据实际需求进行选择。
本申请的电化学装置可以按照本领域常规的方法制备。例如,将上述正极、隔离膜及负极按顺序堆叠好,使隔离膜处于正极与负极之间起到隔离的作用,经卷绕后得到电极组件;将电极组件置于包装外壳中,注入电解液并封口,得到电化学装置。
三、电子装置
由本申请所述的电化学装置适用于各种领域的电子装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何用途。在一个实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
四、实施例
以下,举出实施例和对比例对本申请进一步具体地进行说明,但只要不脱离其主旨,则本申请并不限定于这些实施例。
1、正极材料的制备
对比例1
1)根据元素摩尔比Ni∶Mn=50∶50配置含有NiSO4、MnSO4的混合溶液,将其和沉淀剂(NaOH溶液)、络合剂(氨水)混合反应,控制氨水浓度为1mol/L、PH=12.2得到平均粒径Dv50为11μm的前驱体Ni0.5Mn0.5(OH)2
2)将上述步骤1)中的前驱体、碳酸锂按照Li:元素T(Ni/Mn)的摩尔比为1.02研磨混合均匀,在800℃空气氛下煅烧20h,按照10℃/min的速率降温至室温,最后经过破碎、过筛得到正极材料。
对比例2
1)前驱体Ni0.5Mn0.5(OH)2的制备同对比例1;
2)将上述步骤1)中的前驱体、碳酸锂和碳酸钠按照Li:元素T(Ni/Mn)的摩尔比为1.02、Na的掺杂浓度(Na与元素T的摩尔百分比)为0.1%研磨混合均匀,在800℃空气氛下煅烧20h,按照10℃/min的速率降温至室温,最后经过破碎、过筛得到正极材料。
对比例3
1)根据元素摩尔比Ni∶Mn∶Co=50∶30∶20配置含有NiSO4、MnSO4、CoSO4的混合溶液,将其和沉淀剂(NaOH溶液)、络合剂(氨水)混合反应,控制氨水浓度为1mol/L、PH=12.2得到平均粒径Dv50为11μm的前驱体Ni0.5Mn0.3Co0.2(OH)2
2)将上述步骤1)中的前驱体、碳酸锂和碳酸钠按照Li:元素T(Ni/Mn/Co)的摩尔比为1.02、Na的掺杂浓度为1%研磨混合均匀,在800℃空气氛下煅烧20h,按照50℃/min的速率降温至室温,最后经过破碎、过筛得到正极材料。
实施例1
与对比例2的区别在于,步骤2)中,在800℃空气氛下煅烧20h后,按照10℃/min的速率降温至600℃,根据表1通入N2,在该条件下保持6h后,以表1中相应的降温速率淬冷至室温;最后经过破碎、过筛得到正极材料。
实施例2与实施例1的区别在于,步骤2)中,根据表1通入N2与H2混合气。
实施例3-5与实施例2的区别在于,步骤2)中,Na的掺杂浓度分别为0.2%、0.5%和1%。
实施例6-7与实施例5的区别在于,步骤1)中的前驱体分别为Ni0.5Mn0.4Co0.1(OH)2、Ni0.5Mn0.3Co0.2(OH)2
实施例8-9与实施例5的区别在于,步骤2)中,研磨混合步骤中进一步分别加入NH4F和NH4Cl。
实施例10与实施例5的区别在于,步骤2)中,Na的掺杂浓度为2%。
实施例11-12与实施例5的区别在于,步骤2)中,根据表1通入N2与H2混合气,以表1中相应的降温速率淬冷至室温。
实施例13-15与实施例5的区别在于,步骤2)中,将碳酸钠替换为碳酸钾,根据表1通入N2与H2混合气,以表1中相应的降温速率淬冷至室温。
实施例16-19与实施例5的区别在于,步骤2)中,将碳酸钠替换为碳酸钇,根据表1通入N2与H2混合气,以表1中相应的降温速率淬冷至室温。
实施例20与实施例18的区别在于,步骤2)中,将碳酸钇替换为碳酸钇与碳酸钠的混合物,Na和Y的掺杂浓度各自为0.5%。
实施例21-25与实施例12的区别在于,步骤2)中,研磨混合步骤中进一步加入元素Q源,元素Q源分别为ZrO2、TiO2、WO3、Ta2O5、SnO2,元素Q的掺杂浓度(元素Q与元素T的摩尔百分比)为0.5%。
表1示出了对比例1-3与实施例1-25的掺杂元素、掺杂量、氮气和氢气体积百分比和降温速率。
表1
Figure BDA0004133608720000161
Figure BDA0004133608720000171
2、扣式电池的制备方法:
(1)将一定重量比(90∶5∶5)的正极材料、聚偏氟乙烯(PVDF)和导电炭黑(Super P)加入N-甲基吡咯烷酮(NMP)中制备成正极浆料;
(2)调节正极浆料的粘度为3000mPa·s至6000mPa·s,将混合好的浆料均匀涂覆在铝箔上,涂覆厚度为40μm,单面涂覆;干燥后进行辊压制成所需电极,电极加工和转运环境湿度45%。其中,涂布电极面密度为14mg/cm2,经烘干得到正极片,并冲切为14mm的圆片;
(3)将隔离膜冲切为18mm的圆片;所使用的负极为直径18mm的锂金属片;在碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)(重量比1:1:1)混合而成的溶剂中,加入LiPF6混合均匀得到电解液,其中LiPF6的质量浓度为12.5%;将正极片、隔离膜、负极片(锂片)及电解液、电池壳等配件移入到手套箱内(水含量需小于11ppm);
(4)按照从下到上的叠放顺序组装电池并注入电解液,在封装机上封装,得到扣式电池。
3、锂离子电池的制备方法:
正极的制备
(1)将一定重量比(96∶2∶2)的正极材料、聚偏氟乙烯(PVDF)和导电炭黑(Super P)加入N-甲基吡咯烷酮(NMP)中制备成正极浆料;
(2)调节正极浆料的粘度为3000mPa·s至6000mPa·s,将混合好的浆料均匀涂覆在铝箔上,单面涂覆厚度为40μm,双面涂覆;干燥后进行辊压制成所需电极,电极加工和转运环境湿度45%。其中,涂布电极面密度为14mg/cm2
负极的制备
将人造石墨、丁苯橡胶和羧甲基纤维素钠(CMC)按照96:2:2的质量比与去离子水混合,搅拌均匀,得到负极浆料。将该负极浆料涂布在12μm厚的铜箔上。干燥,冷压,再经过裁片、焊接极耳,得到负极。
电解液的制备
在干燥氩气环境下,在碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)(重量比1∶1∶1)混合而成的溶剂中,加入LiPF6混合均匀得到电解液,其中LiPF6的质量浓度为12.5%。
隔离膜的制备
以聚乙烯(PE)多孔聚合薄膜作为隔离膜。
锂离子电池的制备
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正极和负极中间以起到隔离的作用。卷绕得到裸电芯。将裸电芯置于外包装中,注入电解液,封装。经过化成、脱气、切边等工艺流程得到锂离子电池。
4、测试方法
厚度膨胀率测试
将锂离子电池在85℃条件下充电至4.35V,存储12h,用千分尺测试锂离子电池的厚度变化,定义锂离子电池存储前的初始厚度为H0,存储后的厚度为H1,厚度膨胀率为:(H1-H0)/H0×100%。
45℃循环容量保持率测试
将锂离子电池放至45℃恒温箱中,以1.5C倍率恒流充电至4.35V,再在4.35V下恒压充电至电流为0.05C,再以4C倍率恒流放电至3.0V,此为一个充放电循环,将锂离子电池按照上述方法进行充放电循环300次,并记录锂离子电池的首次循环的放电容量以及第300次循环的放电容量,循环容量保持率=第300次循环的放电容量/首次循环的放电容量×100%。
扣式电池充放电循环测试
25℃下,将扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电,以获得电压容量曲线和电压容量微分dQ/dV曲线。
X射线衍射测试
采用X射线粉末衍射仪(XRD,仪器型号:Bruker D8 ADVANCE)测试正极材料,靶材为Cu Kα;电压电流为40KV/40mA,扫描角度范围为10°至70°。
5、测试结果与分析
使用由对比例1-3以及实施例1-25的正极材料制备扣式电池和锂离子电池,对扣式电池进行充放电循环测试,并对锂离子电池进行厚度膨胀率测试和45℃循环容量保持率测试。表2示出了各对比例和实施例的扣式电池的峰值电压、容量占比率、电压差值以及各对比例和实施例的锂离子电池的厚度膨胀率和容量保持率的测试结果。
表2
Figure BDA0004133608720000191
根据表2可知,由本申请的实施例1-25的正极材料所制备的扣式电池的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰,表明所述正极材料由于内部氧缺陷的存在,改善了材料的锂离子扩散和电子扩散能力,在4.2V至4.5V的高电压区间存在可逆的充放电容量,从而使得正极材料具有较高的能量密度以及良好的结构稳定性。同时,由于氧缺陷的存在,降低了表面氧与电解液的界面反应活性,因此实施例1-25的锂离子电池具有改善的高温存储产气以及优异的高温循环性能。
从表2中可知,当扣式电池的放电曲线满足0.14≤Q1/Qt≤0.35时,此时,正极材料在4.2V至4.5V高电压区间的容量较高,从而使得正极材料具有更高的能量密度。且本申请实施例1-25的正极材料满足:|Vo2-Vr2|≤0.2V。这是由于,正极材料在3.6V至4.0V区间主要为六方相到单斜相的转变过程,该过程涉及锂离子和电子的输运过程,由于氧缺陷的存在,提升了材料整体的锂离子和电子的电导率,材料的动力学明显改善,因此,此过程的极化降低,使得第二氧化峰和第二还原峰的峰值电压差异更小。
图1示出了对比例1、对比例2和实施例11的扣式电池的充放电曲线。从图1中可以看出实施例11的扣式电池的放电曲线在4.2V至4.5V区间存在平台。
图2示出了对比例1和实施例11的扣式电池的电压容量微分dQ/dV曲线。从图2可以看出实施例11的扣式电池的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰,而对比例1的扣式电池的电压容量微分dQ/dV曲线在4.2V至4.5V区间不存在氧化峰和还原峰。
图3示出了对比例1和实施例11的正极材料的X射线衍射图谱。所述正极材料的X射线衍射图谱在16°至20°、34°至38°以及42°至46°区间内均存在衍射峰。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (12)

1.一种正极材料,其特征在于,将包括所述正极材料的电极与锂金属组装成扣式电池,并使所述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电时,所获得的电压容量微分dQ/dV曲线在4.2V至4.5V区间存在第一氧化峰和第一还原峰。
2.根据权利要求1所述的正极材料,其中,所述正极材料满足下列条件中的至少一者:
(i)基于所述正极材料的质量,所述第一氧化峰的峰高大于或等于300mAh/g/V;
(ii)基于所述正极材料的质量,所述第一还原峰的峰高的绝对值大于或等于300mAh/g/V。
3.根据权利要求1所述的正极材料,其中,所述第一氧化峰的峰值电压为Vo1,所述第一还原峰的峰值电压为Vr1,且|Vo1-Vr1|≤0.3V。
4.根据权利要求1所述的正极材料,其中,所述电压容量微分dQ/dV曲线在3.6V至4.0V区间存在第二氧化峰和第二还原峰,所述第二氧化峰的峰值电压为Vo2,所述第二还原峰的峰值电压为Vr2,且|Vo2-Vr2|≤0.2V。
5.根据权利要求1所述的正极材料,其中,所述扣式电池在2.8V至4.5V电压区间内以0.04C的电流进行充放电时,所获得的电压容量曲线中的放电曲线在4.2V至4.5V区间存在平台,所述放电曲线在4.2V至4.5V区间的容量为Q1,所述放电曲线在3.0V至4.5V区间的容量为Qt,满足:0.14≤Q1/Qt≤0.35。
6.根据权利要求1所述的正极材料,其中,所述正极材料的晶胞参数a和晶胞参数c满足下列条件中的至少一者:
(a)
Figure FDA0004133608710000011
(b)
Figure FDA0004133608710000012
(c)4.93≤c/a≤5.10。
7.根据权利要求1所述的正极材料,其中,所述正极材料的X射线衍射图谱在16°至20°、34°至38°以及42°至46°区间内均存在衍射峰。
8.根据权利要求1所述的正极材料,其中,所述正极材料包括锂过渡金属复合氧化物,所述锂过渡金属复合氧化物包括元素M和元素T,所述元素M包括Na、K或Y中的至少一种,所述元素T包括Ni、Co或Mn中的至少一种,所述锂过渡金属复合氧化物满足下列条件中的至少一者:
(1)基于所述元素T的总摩尔量,Ni的摩尔百分含量大于或等于50%;
(2)基于所述元素T的总摩尔量,Mn的摩尔百分含量小于或等于50%;
(3)基于所述元素T的总摩尔量,Co的摩尔百分含量小于或等于50%;
(4)基于所述元素T的总摩尔量,所述元素M的摩尔百分含量为0.1%至5%;
(5)所述锂过渡金属复合氧化物还包括元素Q,所述元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种;基于所述元素T的总摩尔量,所述元素Q的摩尔百分含量为0.1%至5%;
(6)所述锂过渡金属复合氧化物还包括元素M1,M1包括F、Cl、Br、I、N或P中的至少一种;基于所述元素T的总摩尔量,所述元素M1的摩尔百分含量为0.1%至20%。
9.一种正极材料的制备方法,其特征在于,包括如下步骤:
1)在第一气氛条件下,将前驱体与锂源、元素M源、可选的元素Q源以及可选的元素M1源在第一温度下煅烧第一时间;
2)降温至第二温度,在第二气氛条件下保持第二时间;
3)最后降温至室温;
所述第一气氛选自空气氛、氧气氛或空气与氧气混合气氛;
所述前驱体包含元素T,所述元素T包括Ni、Co或Mn中的至少一种;
所述元素M包括Na、K或Y中的至少一种;
所述元素Q包括Ca、Sr、Ba、Al、Fe、B、Mg、Si、S、Ti、Cr、Fe、Cu、Zn、Ga、Zr、Mo、W、Nb、In、Sn、Pb、Sb、Ce、La、Ta或Hf中的至少一种;
所述元素M1包括F、Cl、Br、I、N或P中的至少一种;
所述第二气氛选自惰性气氛或惰性气体与H2混合气氛中的至少一种。
10.根据权利要求9所述的正极材料的制备方法,其中,所述制备方法满足下列条件中的至少一者:
(1)所述第一温度为700℃至1200℃;所述第一时间为10h至48h;
(2)所述第二温度为350℃至600℃;所述第二时间为4h至24h;
(3)所述惰性气体选自N2、Ar或He中的至少一种;
(4)所述步骤3)中的降温速率大于或等于50℃/min;
(5)基于所述惰性气体与H2混合气氛的总体积,所述惰性气体与H2混合气氛中H2的体积百分含量小于或等于10%;
(6)所述前驱体包括元素T的氢氧化物;
(7)所述锂源包括碳酸锂或氢氧化锂中的至少一种;
(8)所述元素M源包括元素M的碳酸盐或氢氧化物中的至少一种;
(9)所述元素Q源包括元素Q的氧化物;
(10)所述元素M1源包括元素M1的铵盐或锂盐中的至少一种;
(11)基于所述元素T的总摩尔量,Ni的摩尔百分含量大于或等于50%;
(12)基于所述元素T的总摩尔量,Mn的摩尔百分含量小于或等于50%;
(13)基于所述元素T的总摩尔量,Co的摩尔百分含量小于或等于50%;
(14)基于所述元素T的总摩尔量,所述元素M的摩尔百分含量为0.1%至5%;
(15)基于所述元素T的总摩尔量,所述元素Q的摩尔百分含量为0.1%至5%;
(16)基于所述元素T的总摩尔量,所述元素M1的摩尔百分含量为0.1%至20%。
11.一种电化学装置,其包括根据权利要求1至8任一项所述的正极材料或根据权利要求9至10任一项所述的制备方法制备得到的正极材料。
12.一种电子装置,所述电子装置包含权利要求11所述的电化学装置。
CN202280006511.7A 2022-04-28 2022-04-28 正极材料及包括正极材料的电化学装置和电子装置 Pending CN116325219A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089911 WO2023206241A1 (zh) 2022-04-28 2022-04-28 正极材料及包括正极材料的电化学装置和电子装置

Publications (1)

Publication Number Publication Date
CN116325219A true CN116325219A (zh) 2023-06-23

Family

ID=86824392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280006511.7A Pending CN116325219A (zh) 2022-04-28 2022-04-28 正极材料及包括正极材料的电化学装置和电子装置

Country Status (4)

Country Link
US (1) US20240266530A1 (zh)
EP (1) EP4394928A1 (zh)
CN (1) CN116325219A (zh)
WO (1) WO2023206241A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056566A (ko) * 1999-12-15 2001-07-04 성재갑 리튬전지용 리튬 망간 복합산화물 분말의 제조방법
CN101834291B (zh) * 2010-04-09 2012-01-11 中南大学 一种亚微米级LiNi0.5Mn0.5O2正极材料的制备方法
JP6369126B2 (ja) * 2014-05-21 2018-08-08 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
EP3518330A4 (en) * 2016-09-21 2020-11-11 Basf Toda Battery Materials LLC ACTIVE CATHODE MATERIAL AND ITS MANUFACTURING PROCESS, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2018107053A (ja) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
KR102479276B1 (ko) * 2020-10-14 2022-12-20 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
WO2023206241A1 (zh) 2023-11-02
EP4394928A1 (en) 2024-07-03
US20240266530A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
US20220216471A1 (en) Lithium supplementing material and positive electrode containing same
EP1980534B1 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
CN111653756B (zh) 正极活性物质前驱体、其制备方法及正极活性物质
KR20190040923A (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20140024587A (ko) 리튬 이차 전지
KR101780777B1 (ko) 리튬 이차 전지의 충방전 방법
EP3780174B1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
KR102368363B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20220223862A1 (en) Positive electrode material and electrochemical device including same
US20230042151A1 (en) Electrochemical device and electronic device containing same
US20200227741A1 (en) Cathode material and electrochemical device including cathode material
WO2022121293A1 (zh) 正极材料、电化学装置和电子装置
US20240282940A1 (en) Positive active material, positive electrode plate and electrochemical device containing same, and electronic device
EP4207385A2 (en) Electrochemical apparatus and electronic apparatus including same
KR102114229B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20120015248A1 (en) Positive active material, method of preparing the same, and lithium battery including the positive active material
WO2023241195A1 (zh) 正极材料及包含该材料的电化学装置和电子装置
KR20190032240A (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
CN114270568A (zh) 补锂添加剂及包含其的电化学装置和电子设备
WO2023206241A1 (zh) 正极材料及包括正极材料的电化学装置和电子装置
KR101319378B1 (ko) 비수계 전해질 리튬 이차 전지
CN117164011B (zh) 锰酸锂材料及其制备方法、二次电池及用电装置
US20240243280A1 (en) Positive electrode material, electrochemical device, and electronic device
EP4439759A1 (en) Electrochemical device and electronic device
CN118743053A (zh) 正极材料、电化学装置和电子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination