CN116320793A - 固态成像元件、成像装置及固态成像元件的控制方法 - Google Patents

固态成像元件、成像装置及固态成像元件的控制方法 Download PDF

Info

Publication number
CN116320793A
CN116320793A CN202310259254.4A CN202310259254A CN116320793A CN 116320793 A CN116320793 A CN 116320793A CN 202310259254 A CN202310259254 A CN 202310259254A CN 116320793 A CN116320793 A CN 116320793A
Authority
CN
China
Prior art keywords
dead zone
detection
unit
solid
address event
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310259254.4A
Other languages
English (en)
Inventor
丹羽笃亲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of CN116320793A publication Critical patent/CN116320793A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/47Image sensors with pixel address output; Event-driven image sensors; Selection of pixels to be read out based on image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/707Pixels for event detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • H04N5/772Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera the recording apparatus and the television camera being placed in the same enclosure

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明公开了固态成像元件、成像装置及固态成像元件的控制方法。在检测地址事件的固态成像元件中,本发明控制地址事件的检测灵敏度至适当的值。这种固态成像元件设置有像素阵列单元和控制单元。在固态成像元件中,多个像素电路被布置在像素阵列单元中,每个像素电路用于检测发生在预定的死区之外的入射光的亮度变化作为地址事件。控制单元根据在给出的单位周期内在像素阵列单元中已经检测到检测地址事件的次数来控制死区的宽度。

Description

固态成像元件、成像装置及固态成像元件的控制方法
本申请是分案申请,其母案申请的申请号为2018800875809,申请日为2018年12月14日,发明名称为“固态成像元件、成像装置及固态成像元件的控制方法”。
技术领域
本技术涉及一种固态成像元件、成像装置,以及一种控制固态成像元件的方法。具体地,本技术涉及一种检测亮度变化的固态成像元件、成像装置,以及控制固态成像元件的方法。
背景技术
传统上,在成像装置等中已经使用了与诸如垂直同步信号之类的同步信号同步地捕获图像数据(帧)的同步固态成像元件。利用这种一般同步固态成像元件,可以仅在每个同步信号周期(例如,1/60秒)处就获取图像数据。因此,在诸如交通和机器人之类的领域中难以处理针对更高速度处理的要求。在这一背景下,已经提出了针对每个像素地址实时地检测作为地址事件的亮度变化的异步固态成像元件(例如,参见专利文献1)。这种检测每个像素的地址事件的固态成像元件被称为动态视觉传感器(DVS)。
引用列表
专利文件
专利文件1:日本专利申请公开号2016-501495
发明内容
本发明要解决的问题
上述异步固态成像元件(即,DVS)能够以比同步固态成像元件高得多的速度生成和输出数据。因此,例如,在交通领域中,可以高速执行识别人或障碍物的图像的处理,并且可以提高安全性。然而,在上述固态成像元件中,难以将针对地址事件的检测灵敏度控制到适当的值。例如,如果针对地址事件的检测灵敏度太低,则在图像识别中存在障碍物检测可能失败的可能性。另一方面,如果针对地址事件的检测灵敏度过高,则当所有像素的亮度由于亮度等的改变而改变时,地址事件可能被过度检测,并且功率消耗可能增加。
鉴于这种情况已经做出本技术,并且本技术的目的是在检测地址事件的固态成像元件中将针对地址事件的检测灵敏度控制为适当的值。
问题的解决方法
为了解决上述问题而做出了本技术,并且其第一方面是固态成像元件以及控制固态成像元件的方法,该固态成像元件包括:像素阵列单元,其中布置有多个像素电路,每个像素电路检测发生在预定死区(dead band)之外的入射光的亮度变化作为地址事件;以及控制单元,在固定的单位周期内根据在像素阵列单元中检测到地址事件的次数来控制死区的宽度。这带来这样的效果:在具有对应于检测的次数的宽度的死区之外检测到地址事件。
另外,在第一方面中,随着检测的次数增加,控制单元可以加宽死区。这带来这样的效果是:随着检测的次数增加而在更宽的死区之外检测到地址事件。
另外,在第一方面中,多个像素电路中的每一个像素电路可以将死区的上限和下限中的每一个与亮度变化的量进行比较,并且基于比较结果来检测地址事件。这带来的效果是:基于死区的上限和下限中的每一个与亮度变化的量之间的比较结果来检测地址事件。
另外,在第一方面中,在检测的次数超出预定容许范围的情况下,控制单元可以控制死区的宽度。这带来这样的效果:在具有对应于检测的次数的宽度的死区之外检测到地址事件。
另外,在第一方面中,像素阵列单元可以被划分成多个区域,并且控制单元可以针对多个区域中的每一个区域来控制死区的宽度。这带来这样的效果:在具有针对每个区域控制的宽度的死区之外检测到地址事件。
另外,在第一方面中,多个像素电路中的每一个像素电路具有光电转换元件和电流-电压转换电路,该光电转换元件将入射光进行光电转换以生成光电流,该电流-电压转换电路将光电流转换成电压。光电转换元件可以被布置在光接收芯片上,并且电流-电压转换电路可以被布置在层压于光接收芯片上的检测芯片上。这带来的效果是:通过以分布方式布置在光接收芯片和检测芯片中的每一个上的电路来检测地址事件。
另外,本技术的第二方面是成像装置,该成像装置包括:像素阵列单元,其中布置有多个像素电路,每个像素电路检测发生在预定死区之外的入射光的亮度变化作为地址事件;控制单元,根据在固定的单位周期内在像素阵列单元中检测到地址事件的次数来控制死区的宽度;以及记录单元,记录从地址事件的检测结果获得的数据。这带来的效果是:在具有对应于检测的次数的宽度的死区之外检测到地址事件,并且记录从检测结果获得的数据。
本发明的效果
根据本技术,在检测地址事件的固态成像元件中,可以获得能够将针对地址事件的检测灵敏度控制到适当的值的优良效果。注意,并不一定限制于这里描述的效果,并且可以是本公开中描述的那些效果中的任何一个。
附图说明
[图1]是示出本技术的第一实施方式的成像装置的配置实例的框图。
[图2]是示出本技术的第一实施方式的固态成像元件的层压结构的实例的示图。
[图3]是示出本技术的第一实施方式的固态成像元件的配置实例的框图。
[图4]是示出本技术的第一实施方式的固态成像元件的配置实例的框图。
[图5]是示出本技术的第一实施方式的电流-电压转换电路的配置实例的电路图。
[图6]是示出本技术的第一实施方式的缓冲器、减法器和数字转换器的配置实例的电路图。
[图7]是示出本技术的第一实施方式的信号处理单元的配置实例的框图。
[图8]是示出在本技术的第一实施方式中在加宽死区之前的电压信号、差分信号和检测信号的变化的实例的线图。
[图9]是示出在本技术的第一实施方式中在加宽死区之后的电压信号、差分信号和检测信号的变化的实例的线图。
[图10]是示出在本技术的第一实施方式中在改变死区宽度之前和之后的检测的次数的实例的示图。
[图11]是示出本技术的第一实施方式的固态成像元件的操作的实例的流程图。
[图12]是示出本技术的第二实施方式的固态成像元件的配置实例的框图。
[图13]是示出在本技术的第二实施方式中保存在存储器中的信息的实例的示图。
[图14]是示出车辆控制系统的示意性配置实例的框图。
[图15]是示出成像单元的安装位置的实例的说明图。
具体实施方式
下文中,将描述用于执行本技术(下文被称为实施方式)的模式。将按照以下顺序给出说明。
1.第一实施方式(根据检测的次数来控制死区宽度的实例)
2.第二实施方式(根据针对每一个区域的检测的次数来控制死区宽度的实例)
3.应用于可移动主体的实例
<1.第一实施方式>
[成像装置的配置实例]
图1是示出本技术的第一实施方式的成像装置100的配置实例的框图。成像装置100包括成像透镜110、固态成像元件200、记录单元120和成像控制单元130。假设将安装在工业机器人上的相机、车载相机等作为成像装置100。
成像透镜110收集入射光并且将其引导至固态成像元件200。固态成像元件200堆入射光进行光电转换以检测地址事件,并且基于检测结果执行诸如对象识别之类的预定处理。固态成像元件200将表示执行结果的数据供应至记录单元120。
记录单元120记录来自固态成像元件200的数据。成像控制单元130控制固态成像元件200,并且使固态成像元件200开始检测地址事件。
[固态成像元件的配置实例]
图2是示出本技术的第一实施方式的固态成像元件200的层压结构的实例的示图。固态成像元件200包括检测芯片202和层压于检测芯片202上的光接收芯片201。这些芯片通过诸如通孔之类的连接部件电连接。注意,除了通孔之外,还可以使用Cu-Cu键或凸块进行连接。
图3是示出本技术的第一实施方式的固态成像元件200的配置实例的框图。固态成像元件200包括行驱动电路211、偏置电压供应单元212、像素阵列单元213、列驱动电路214、信号处理单元220和存储器215。
另外,在像素阵列单元213中,多个像素电路300以二维格子形状布置。以下,在水平方向上布置的一组像素电路300被称为“行”,并且在垂直于行的方向上布置的一组像素电路300被称为“列”。
像素电路300检测发生在预定死区之外的亮度变化作为地址事件,并且生成表示检测结果的检测信号。这里,死区表示未检测到地址事件的亮度变化的量的范围。将表示死区的上限的偏置电压Vbon和表示死区下限的偏置电压Vboff供应至多个像素电路300中的每一个像素电路。
另外,地址事件包括接通事件(on event)和断开事件(off event)。当亮度变化的量大于死区的上限(Vbon)时,检测到接通事件。另一方面,当亮度变化的量小于死区的下限(Vboff)时,检测到断开事件。检测信号包括表示接通事件检测结果的1比特信号和表示断开事件检测结果的1比特信号。注意,虽然像素电路300检测接通事件和断开事件两者,但是像素电路300可以仅检测它们中的一者。
行驱动电路211驱动各行中的每一个以生成检测信号。当在被驱动的行中的像素电路300检测到地址事件时,像素电路300将发送检测信号的请求供应至列驱动电路214。
列驱动电路214处理列的每个请求,并且基于处理的结果返回响应。已接收到响应的像素电路300将检测信号供应至信号处理单元220。
信号处理单元220对检测信号执行诸如图像识别之类的预定的图像处理。信号处理单元220将表示处理结果的数据供应至记录单元120。
另外,对于每个固定的单位周期,信号处理单元220对检测的次数(即,在周期内在像素阵列单元213中检测到地址事件的次数)进行计数,并且将检测的次数保存在存储器215中。在接通事件和断开事件两者都存在的情况下,每当检测到接通事件或断开事件时,对检测的次数进行计数。例如,在10个像素中检测到接通事件、在15个像素中检测到断开事件,并且在单位周期内在剩余的像素中未检测到地址事件的情况下,检测的次数是25次。
然后,信号处理单元220从存储器215读取检测的次数,并且通过根据检测的次数发送控制信号来控制偏置电压Vbon和Vboff之间的差(即,死区宽度)。例如,信号处理单元220随着检测的次数增加而加宽死区。这里,控制信号是用于指示偏置电压供应单元212增大或减小偏置电压Vbon和Vboff中的每一个的信号。注意,信号处理单元220是在“权利要求”中描述的控制单元的实例。
偏置电压供应单元212根据来自信号处理单元220的控制信号生成偏置电压Vbon和Vboff,并且将它们供应至所有像素电路300。存储器215保存检测的次数和死区的上下限。
[像素电路的配置实例]
图4是示出本技术的第一实施方式的像素电路300的配置实例的框图。像素电路300包括光电转换元件301、电流-电压转换电路310、缓冲器320、减法器330、数字转换器340和传送电路350。
光电转换元件301对入射光进行光电转换以生成光信号。光电转换元件301将生成的光电流供应至电流-电压转换电路310。
电流-电压转换电路310将来自光电转换元件301的光电流转换成对数电压信号。电流-电压转换电路310将电压信号供应至缓冲器320。
缓冲器320校正来自电流-电压转换电路310的电压信号。缓冲器320将校正的电压信号输出至减法器330。
减法器330根据来自行驱动电路211的行驱动信号降低来自缓冲器320的电压信号的电平。减法器330将具有降低电平的信号作为差分信号供应至数字转换器340。
数字转换器340将来自减法器330的差分信号量化成数字信号并且将其作为检测信号输出至传送电路350。
传送电路350将检测信号从数字转换器340传送至信号处理单元220。当检测到地址事件时,传送电路350将用于发送检测信号的请求供应至列驱动电路214。然后,当传送电路350接收对来自列驱动电路214的请求的响应时,传送电路350将检测信号供应至信号处理单元220。
[电流-电压转换电路的配置实例]
图5是示出本技术的第一实施方式的电流-电压转换电路310的配置实例的电路图。电流-电压转换电路310包括N型晶体管311和313以及P型晶体管312。例如,金属氧化物半导体(MOS)晶体管被用作这些晶体管。
N型晶体管311具有连接至光电转换元件301的源极和连接至电源端子的漏极。N型晶体管312和N型晶体管313串联连接在电源端子与接地端子之间。另外,P型晶体管312和N型晶体管313的连接点连接至N型晶体管311的栅极和缓冲器320的输入端子。另外,预定的偏置电压Vbias被施加至P型晶体管312的栅极。
N型晶体管311和313的漏极连接至电源侧,并且这样的电路被称为源极跟随器。这两个连接在环路中的源极跟随器将来自光电转换元件301的光电流转换成对数电压信号。另外,P型晶体管312将恒定电流供应至N型晶体管313。
另外,在像素电路300中的每一个像素电路中,光电转换元件301被布置在光接收芯片201上。另一方面,将除光电转换元件301以外的电路和元件布置在检测芯片202上。
[缓冲器、减法器和数字转换器的配置实例]
图6是示出本技术的第一实施方式的缓冲器320、减法器330和数字转换器340的配置实例的电路图。
缓冲器320包括串联连接在电源与接地端子之间的P型晶体管321和322。例如,MOS晶体管被用作这些晶体管。接地侧上的P型晶体管322的栅极连接至电流电压转换电路310,并且偏置电压Vbsf被施加至电源侧上的P型晶体管321的栅极。另外,P型晶体管321和322的连接点连接至减法器330。利用该连接,对来自电流-电压转换电路310的电压信号执行阻抗转换。
减法器330包括电容器331和333、P型晶体管332和334以及N型晶体管335。例如,MOS晶体管被用作这些晶体管。
电容器331的一端连接至缓冲器320,并且另一端连接至电容器333的一端和P型晶体管334的栅极。P型晶体管332的栅极接收来自行驱动电路211的行驱动信号的输入,并且P型晶体管332的源极和漏极连接至电容器333的两端。N型晶体管334和N型晶体管335串联连接在电源端子与接地端子之间。另外,电容器333的另一端连接至P型晶体管334和N型晶体管335的连接点。偏置电压Vba被施加至接地侧上的N型晶体管335的栅极,并且P型晶体管334和N型晶体管335的连接点也被连接至数字转换器340。利用这种连接,生成表示亮度变化的量的差分信号并且将其输出至数字转换器340。
数字转换器340包括P型晶体管341和343,以及N型晶体管342和344。例如,MOS晶体管被用作这些晶体管。
P型晶体管341和N型晶体管342串联连接在电源端子与接地端子之间,并且P型晶体管343和N型晶体管344也串联连接在电源端子与接地端子之间。另外,P型晶体管341和343的栅极连接至减法器330。偏置电压Vbon被施加至N型晶体管342的栅极,并且偏置电压Vboff被施加至N型晶体管344的栅极。
P型晶体管341和N型晶体管342的连接点连接至传送电路350,并且在连接点处的电压被输出作为检测信号VCH。P型晶体管343和N型晶体管344的连接点也连接至传送电路350,并且在连接点处的电压被输出作为检测信号VCL。利用这种连接,数字转换器340在差分信号超过偏置电压Vbon的情况下输出高电平检测信号VCH,并且在差分信号降到偏置电压Vboff以下的情况下输出低电平检测信号VCL。检测信号VCH表示接通事件检测结果,并且检测信号VCL表示断开事件检测结果。
注意,虽然仅光电转换元件301被布置在光接收芯片201上并且其他元件被布置在检测芯片202上,但是待布置在每个芯片上的电路不限于该配置。例如,光电转换元件301以及N型晶体管311和313可以布置在光接收芯片201上,并且其他可以布置在检测芯片202上。例如,光电转换元件301以及N型晶体管311和310可以布置在光接收芯片201上,并且其他可以布置在检测芯片202上。替代性地,光电转换元件301、电流-电压转换电路310和缓冲器320可以布置在光接收芯片201上,并且其他可以布置在检测芯片202上。替代性地,光电转换元件301、电流-电压转换电路310、缓冲器331和电容器311可以布置在光接收芯片201上,并且其他可以布置在检测芯片202上。替代性地,光电转换元件301、电流-电压转换电路310、缓冲器340、减法器330和数字转换器340可以布置在光接收芯片201上,并且其他可以布置在检测芯片202上。
[信号处理单元的配置实例]
图7是示出本技术的第一实施方式的信号处理单元220的配置实例的框图。信号处理单元220包括图像处理器221、检测计数器222和偏置控制器223。
图像处理器221对包括来自像素阵列单元213的检测信号的图像数据执行诸如对象识别之类的预定的处理。图像处理器221将执行结果供应至记录单元120。注意,可以由固态成像元件200之外的数字信号处理器(DSP)等对图像数据执行处理,而不是由图像处理器221执行。
对于每个固定的单位周期,检测计数器222对在周期内像素阵列单元213检测到地址事件的次数进行计数。对于每个单位周期,检测计数器222在周期开始时将存储器215中的检测的次数设定为初始值。然后,每当检测到地址事件时,检测计数器222递增检测的次数并且用递增的值更新检测的次数。即,检测计数器222向上计数。注意,虽然检测计数器222向上计数,但是它可以反而向下计数。
偏置控制器223根据检测的次数来控制偏置电压。当成像控制单元130给出开始检测地址事件的指令时,偏置控制器223将存储器215中的死区的上限和下限设定为初始值。然后,对于每个单位周期,偏置控制器223在周期结束时从存储器215中读取检测的次数并且确定检测的次数是否是预定的允许范围内的值。
在检测的次数在允许范围之外并且大于范围的上限的情况下,偏置控制器223加宽死区。例如,偏置控制器223将死区的上限升高预定值,将死区的下限降低预定值,并且利用改变的值来更新存储器215。另外,偏置控制器223由控制信号将偏置电压Vbon、Vboff控制为对应于更新的死区的上限和下限的值。
另一方面,在检测的次数小于允许范围的下限的情况下,偏置控制器223变窄死区。例如,偏置控制器223将死区的上限降低规定值,将死区的下限升高规定值,并且利用改变的值来更新存储器215。另外,偏置控制器223由控制信号将偏置电压Vbon、Vboff控制为对应于更新的死区的上限和下限的值。
另外,在检测的次数在允许范围内的情况下,偏置控制器223不控制死区的宽度并且维持电流值。
此外,在检测的次数在允许范围之外的情况下,偏置控制器223仅控制死区的宽度,也可以不提供允许范围而随着检测的次数增加而加宽死区。
另外,偏置控制器223将死区的上限和下限两者增加或减小,仅通过增加或减小它们中的一者,能够控制死区的宽度。
另外,偏置控制器223不限制死区宽度的控制量,但是可以将死区宽度控制在一定的控制范围内。例如,如果死区的宽度达到控制范围的上限,则即使检测的次数大于允许范围的上限,偏置控制器223也不进一步加宽死区。另外,如果死区的宽度达到控制范围的下限,则即使检测的次数小于允许范围的下限,偏置控制器223也不进一步变窄死区。
图8是示出在本技术的第一实施方式中在加宽死区之前的电压信号、差分信号和检测信号的变化的实例的线图。这里,图8的a是示出像素的电压信号的变化的实例的线图,图8的b是示出像素的差分信号的变化的实例的线图。这里,图8的c是示出像素的检测信号的变化的实例的线图。在图8的a中,纵轴表示来自电流-电压转换电路310的电压信号的电平,并且横轴表示时间。在图8的b中,纵轴表示来自减法器330的差分信号的电平,而横轴表示时间。在图8的c中,纵轴表示来自数字转换器340的检测信号的电平,横轴表示时间。在图8的c中,向上箭头表示当检测到接通事件时的检测信号,向下箭头表示当检测到断开事件时的检测信号。
当入射到某一像素上的光的亮度改变时,电压信号根据该改变而改变。另外,表示亮度改变的量的差分信号也改变。然后,例如,在时刻T0、T1,差分信号的电平降到死区的下限以下。另外,在时刻T2、T3和T4,差分信号的电平超过死区的上限。所以,在时刻T0、T1检测到断开事件,并且在时刻T2、T3、T4检测到接通事件。另外,在差分信号的电平在死区内的情况下,没有检测到地址事件。
这里,假设检测的次数大于允许范围的上限,并且偏置控制器223加宽死区。
图9是示出在本技术的第一实施方式中在加宽死区之后的电压信号、差分信号和检测信号的变化的实例的线图。这里,图8的a是示出像素的电压信号的变化的实例的线图,并且图8的b是示出像素的差分信号的变化的实例的线图。这里,图8的c是示出像素的检测信号的变化的实例的图。在图9的a中,纵轴表示电压信号的电平,横轴表示时间。在图9的b中,纵轴表示差分信号的电平,横轴表示时间。在图9的c中,纵轴表示检测信号的电平,而横轴表示时间。
假设在改变死区宽度之后,发生与改变之前类似的亮度改变。在改变之后,在时刻T0,差分信号的电平下降到死区的下限以下。另外,在时刻T1、T2,差分信号的电平超过死区的上限。因此,在时刻T0检测到断开事件,在时刻T1和T2检测到接通事件。如上所述,由于针对地址事件的检测灵敏度比加宽死区之前低,所以检测地址事件的次数变为更少。
图10是示出在本技术的第一实施方式中在改变死区宽度之前和之后的检测的次数的实例的示图。这里,图10的a是示出将死区加宽之前和之后在每个单位周期中的检测的次数的实例的直方图。这里,图10的b是示出在变窄死区之前和之后在每个单位周期中检测的次数的实例的直方图。
在检测的次数大于允许范围的上限的情况下,偏置控制器223加宽死区。因此,降低了针对地址事件的检测灵敏度,并且检测的次数变为小于在改变死区宽度之前的检测的次数。
另一方面,在检测的次数小于允许范围的下限的情况下,偏置控制器223变窄死区。因此,提高了针对地址事件的检测灵敏度,并且检测的次数变为大于在改变死区宽度之前的检测的次数。
如上所述,由于偏置控制器223根据检测的次数将死区的宽度增加或减小,因此能够将死区的宽度设定为适当的范围。
例如,假设整个屏幕的亮度由于亮度改变而改变的情况。在这种情况下,由于所有像素的亮度改变,所以如果死区太窄,则可能在所有像素中检测到地址事件。随着检测地址事件的次数增加,传送检测信号的电路和处理检测信号的电路的负载增加,这可能增加作为整体的固态成像元件200的功率消耗。然而,由于随着检测的次数增加偏置控制器223加宽死区,所以可以抑制地址事件的过度检测并且降低功率消耗。
另外,考虑在所有像素中的一些像素中发生亮度变化并且变化量小的情况。在这种情况下,如果死区太宽,则存在不能在发生改变的像素中检测到地址事件并且丢失地址事件的可能性。然而,由于随着检测的次数减少偏置控制器223变窄死区,因此可以防止地址事件丢失。
[固态成像元件的操作实例]
图11是示出本技术的第一实施方式的固态成像元件200的操作的实例的流程图。当执行用于检测地址事件的预定的应用时开始操作。
固态成像元件200中的信号处理单元220将死区的上限和下限以及检测的次数初始化(步骤S901)。然后,信号处理单元220对检测地址事件的次数进行计数(步骤S902),并且确定是否已经经过单位周期(步骤S903)。如果没有经过单位周期(步骤S903:否),则信号处理单元220重复步骤S902。
另一方面,如果已经经过了单位周期(步骤S903:是),则信号处理单元220确定检测的次数是否大于允许范围的上限(步骤S904)。如果检测的次数大于允许范围的上限(步骤S904:是),则信号处理单元220升高死区上限并且降低死区下限以加宽死区(步骤S905)。
如果检测的次数等于或小于允许范围的上限(步骤S904:否),则信号处理单元220确定检测的次数是否小于允许范围的下限(步骤S906)。在检测的次数小于允许范围的下限的情况下(步骤S906:“是”),信号处理单元220降低死区上限,升高死区下限以变窄死区(步骤S907)。
如果检测的次数是在允许范围内的值(步骤S906:否),则信号处理单元220将检测的次数(步骤S908)初始化,并且重复步骤S902及随后的步骤。另外,信号处理单元220在步骤S905或S907之后还执行步骤S908。
如上所述,根据本技术的第一实施方式,由于信号处理单元220根据检测地址事件的次数来控制死区的宽度,因此针对地址事件的检测灵敏度可以被控制为适当的值。
<2.第二实施方式>
在上述第一实施方式中,信号处理单元220将所有像素的偏置电压控制为相同的值。然而,利用这种配置,针对地址事件的检测灵敏度对于某些场景可能是不适当的。例如,在部分像素阵列单元213的亮度由于亮度的改变而改变的情况下,在该部分中过度地检测到地址事件。第二实施方式的固态成像元件200与第一实施方式的不同之处在于像素阵列单元213被划分成多个区域并且针对每个区域来控制偏置电压。
图12是示出本技术的第二实施方式的固态成像元件200的配置实例的框图。第二实施方式的固态成像元件200与第一实施方式的不同之处在于像素阵列单元213被划分成M(M是2或更大的整数)个单元区域305。在单元区域305中的每一个单元区域中,布置I行×J列(I和J是整数)的像素电路300。
另外,第二实施方式的信号处理单元220对每个单元区域305的检测的次数进行计数,并且根据检测的次数控制偏置电压。另外,第二实施方式的偏置电压供应单元212将偏置电压Vbon1供应至VbonM,并且将偏置电压Vboff1供应至VboffM。将偏置电压Vbonm和偏置电压Vboffm(m是从1至M的整数)供应至第m单元区域305。
图13是示出在本技术的第二实施方式中保存在存储器215中的信息的实例的示图。存储器215保存用于M个单元区域305中的每一个单元区域的检测的次数、死区上限以及死区下限。
例如,假设在用于识别单元区域305的区域识别号是“01”的区域的单位周期中检测的次数是“15”,并且检测的次数在允许范围内。另外,假设在区域识别号是“02”的区域的单位周期中检测的次数是“0”,并且检测的次数小于允许范围的下限。在这种情况下,信号处理单元220不改变其区域识别号是“01”的区域的死区上限和下限。另一方面,对于区域识别号是“02”的区域,信号处理单元220降低死区上限“U02”并且升高死区下限“L02”。
如上所述,根据本技术的第二实施方式,由于信号处理单元220根据检测每个单元区域的地址事件的次数来控制死区宽度,因此针对每个单元区域的检测灵敏度可以被控制为适当的值。
<3.应用于可移动主体的实例>
本公开的技术(本技术)可以应用于各种产品。例如,本公开的技术可以实施为安装在任何类型的可移动主体上的装置,该可移动主体包括汽车、电动汽车、混合电动汽车、摩托车、自行车、个人行动工具、飞机、无人机、船、机器人等。
图14是示出车辆控制系统的示意性配置实例的框图,该车辆控制系统是可应用根据本公开的技术的移动控制系统的实例。
车辆控制系统12000包括通过通信网络12001连接的多个电子控制单元。在图14所示的实例中,车辆控制系统12000包括驱动系统控制单元12010、主体系统控制单元12020、外部信息检测单元12030、内部信息检测单元12040和集成控制单元12050。另外,作为集成控制单元12050的功能配置,示出了微型计算机12051、音频图像输出单元12052和车载网络接口(I/F)12053。
驱动系统控制单元12010根据各种过程来控制与车辆的驱动系统相关的装置的操作。例如,驱动系统控制单元12010用作装置的控制器,该装置包括:驱动力生成装置,用于生成车辆的驱动力,诸如,内燃机或驱动马达;驱动力传递机构,用于将驱动力传递至车轮;转向机构,调节车辆的转向角;以及制动装置,生成车辆的制动力。
主体系统控制单元12020根据各种过程来控制配备在车辆主体上的各种装置的操作。例如,主体系统控制单元12020用作无钥匙进入系统的控制器、智能钥匙系统、电动窗装置或诸如前灯、后灯、制动灯、闪光灯或雾灯之类的各种灯的控制器。在这种情况下,主体系统控制单元12020可以接收从替代钥匙的便携式装置传递的无线电波或各种开关的信号的输入。主体系统控制单元12020接收这些无线电波或信号的输入,并且控制车辆的门锁装置、电动窗装置、灯等。
外部信息检测单元12030检测关于配备有车辆控制系统12000的车辆的外部的信息。例如,成像单元12031连接至外部信息检测单元12030。外部信息检测单元12030使成像单元12031捕获车辆的外部的图像,并且接收所捕获的图像。外部信息检测单元12030可以基于所接收的图像执行人、车辆、障碍物、标志、路面上的字符等的对象检测处理或距离检测处理。
成像单元12031是接收光并且输出对应于接收到的光的量的电信号的光学传感器。成像单元12031能够将电信号作为图像输出,或者能够将电信号作为距离测量信息输出。另外,由成像单元12031接收的光可以是可见光或诸如红外光之类的不可见光。
内部信息检测单元12040检测关于车辆的内部的信息。例如,检测驾驶员的状态的驾驶员状态检测单元12041连接至内部信息检测单元12040。例如,驾驶员状态检测单元12041包括用于捕获驾驶员的图像的相机,并且内部信息检测单元12040可以基于从驾驶员状态检测单元12041输入的检测信息来计算驾驶员的疲劳度或注意力程度,或者确定驾驶员是否睡着。
微型计算机12051可以基于由外部信息检测单元12030或内部信息检测单元12040获取的关于车辆的外部或内部的信息来计算驱动力生成装置、转向机构或制动装置的控制目标值,并且向驱动系统控制单元1210输出控制命令。例如,微型计算机12051可以执行旨在实现高级驾驶员辅助系统(ADAS)的功能的协调控制,该高级驾驶员辅助系统的功能包括车辆的碰撞躲避或冲击减轻、基于车间距离的跟随行驶、车辆速度维持行驶、车辆碰撞警告、车辆车道偏离警告等。
另外,微型计算机12051可以基于由外部信息检测单元12030或内部信息检测单元12040获取的车辆周围的信息来控制驱动力生成装置、转向机构、制动装置等,以不依赖于驾驶员的操作等来执行旨在自动行驶的自主驾驶的协调控制。
另外,微型计算机12051可以基于由外部信息检测单元12030获取的关于车辆的外部的信息将控制命令输出至车身系统控制单元12020。例如,微型计算机12051可以根据由外部信息检测单元12030检测到的前方车辆或迎面驶来车辆的位置来控制前灯,并且执行旨在防止眩光的协调控制,诸如,从远光切换到近光。
音频图像输出单元12052将音频或图像中的至少一个的输出信号发送至能够可视或可听地将信息通知乘客或车辆的外部的输出装置。在图14的实例中,作为输出装置的实例,示出了音频扬声器12061、显示单元12062和仪表面板12063。例如,显示单元12062可以包括板载显示器或平视显示器中的至少一个。
图15是示出成像单元12031的安装位置的实例的示图。
在图15中,作为成像单元12031包括成像单元12101、12102、12103、12104和12105。
例如,成像单元12101、12102、12103、12104和12105设置在车辆12100的车辆内部中的诸如前鼻(front nose)、侧镜、后保险杠、后门和挡风玻璃的上部之类的位置中。设置在车辆内部中的前鼻上的成像单元12101和设置在挡风玻璃的上部上的成像单元12105主要获取车辆12100的前方的图像。设置在侧镜上的成像单元12102和12103主要获取车辆12100侧的图像。设置在后保险杠或后门上的成像单元12104主要获取车辆12100的后方的图像。设置在车辆内部的挡风玻璃的上部的成像单元12105主要用于检测前方车辆或行人、障碍物、交通灯、交通标志、车道等。
注意,图15示出成像单元12101至12104的成像范围的实例。成像范围12111表示设置在前鼻上的成像单元12101的成像范围,成像范围12112和12113表示设置在相应的侧镜上的成像单元12102和12103的成像范围,成像范围12114表示设置在后保险杠或后门上的成像单元12104的成像范围。例如,通过对由成像单元12101至12104捕获到的各个图像数据进行叠加,能够获得从上方观察车辆12100的鸟瞰图像。
成像单元12101至12104中的至少一个成像单元可以具有获取距离信息的功能。例如,成像单元12101至12104中的至少一个成像单元可以是包括多个成像元件的立体相机,或者可以是具有针对相位差检测的像素的成像元件。
例如,基于从成像单元12101至12104获得的距离信息,微型计算机12051能够测量在成像范围12111至12114中的各个三维对象的距离和该距离的时间变化(相对于车辆12100的相对速度),以提取车辆12100的行驶路径上最接近的三维对象(具体地,在与车辆12100大致相同的方向上以预定的速度(例如,0km/h以上)行驶的三维对象)作为前方车辆。此外,微型计算机12051能够提前设定相对于前方车辆要确保的车间距离,并且执行自动制动控制(包括跟随停止控制)、自动加速控制(包括跟随开始控制)等。如上所述,可以不依赖于驾驶员的操作等来执行旨在自主行驶的自动驾驶的协调控制。
例如,基于从成像单元12101至12104获得的距离信息,微型计算机12051能够通过将数据分类为诸如二轮车辆、普通车辆、大型车辆、行人和电话杆之类的三维对象,来提取关于三维对象的三维对象数据,并且将该数据用于自动躲避障碍物。例如,微型计算机12051将车辆12100周围的障碍物识别为车辆12100的驾驶员可见的障碍物和车辆12100的驾驶员几乎不可见的障碍物。然后,微型计算机12051能够确定表示与每个障碍物碰撞的风险程度的碰撞风险,并且当碰撞风险是设定值以上并且存在碰撞的可能性时,微型计算机12051能够通过音频扬声器12061或显示单元12062向驾驶员输出警告或者通过驱动系统控制单元1210执行强制减速或躲避转向来执行用于碰撞躲避的驾驶辅助。
成像单元12101至12104中的至少一个成像单元可以是检测红外光的红外相机。例如,微型计算机12051可以通过确定在由成像单元12101至12104捕获的图像中是否存在行人来识别行人。例如,通过在由作为红外相机的成像单元12101至12104捕获的图像中提取特征点的过程和对表示对象轮廓的一系列特征点执行图案匹配处理以确定对象是否是行人的过程来执行这种行人识别。当微型计算机12051确定在由成像单元12101至12104捕获的图像中存在行人并且识别到行人时,音频图像输出单元12052使显示单元12062叠加用于强调所识别的行人的方形轮廓。另外,音频图像输出单元12052可以使显示单元12062在所期望的位置显示表示行人的图标等。
在上文中,已经描述了可以应用本公开的技术的车辆控制系统的一个实例。例如,在上述配置中,根据本公开的技术可应用于成像单元12031。具体地,图1的成像装置100能够应用于成像单元12031。通过将根据本公开的技术应用于成像单元12031,可以将针对地址事件的检测灵敏度控制为适当的值并且提高车辆控制系统的可靠性。
注意,上述实施方式是用于体现本技术的实例,并且在实施方式中的内容与“权利要求”中指定本发明的内容具有对应关系。类似地,“权利要求”中指定本发明的内容和本技术的实施方式中具有相同名称的内容具有对应关系。注意,然而,本发明不限于这些实施方式并且在不偏离本发明要旨情况下可以具有各种修改的实施方式。
另外,在上述实施方式中描述的处理过程可以被视为包括一系列这些过程的方法,或者可以被视为用于使计算机执行一系列这些过程或存储程序的记录介质的程序。作为记录介质,例如,压缩光盘(CD)、小型磁盘(MD)、数字通用光盘(DVD)、存储器卡、蓝光光盘(注册商标)等能够使用。
注意,在本说明书中描述的效果仅仅是示例而不是限制性的,并且可以获得其他效果。
注意,本技术也可以以如下方式被配置。
(1)一种固态成像元件,包括:
像素阵列单元,配置有多个像素电路,每个像素电路检测发生在预定死区之外的入射光的亮度变化作为地址事件;以及
控制单元,根据在固定的单位周期内在像素阵列单元中检测到地址事件的次数来控制死区的宽度;
(2)根据上述(1)的固态成像元件,其中
随着检测的次数增加,控制单元加宽死区。
(3)根据上述(1)或(2)的固态成像元件,其中
多个像素电路中的每一个像素电路将死区的上限和下限与亮度变化的量进行比较,并且基于比较结果来检测地址事件。
(4)根据上述(1)至(3)中的任一项的固态成像元件,其中
在检测的次数超出预定容许范围的情况下,控制单元控制死区的宽度。
(5)根据上述(1)至(4)中的任一项的固态成像元件,其中
像素阵列单元被划分为多个区域,并且
控制单元针对多个区域中的每一个区域来控制死区的宽度。
(6)根据上述(1)至(5)中的任一项的固态成像元件,其中
多个像素电路中的每一个像素电路包括
光电转换元件,对入射光进行光电转换以生成光电流,并且
电流-电压转换电路,将光电流转换成电压,
光电转换元件被布置在光接收芯片上,以及
电流-电压转换电路被布置在层叠于光接收芯片上的检测芯片上。
(7)一种成像装置包括:
像素阵列单元,配置有多个像素电路,每个像素电路检测发生在预定死区之外的入射光的亮度变化作为地址事件;
控制单元,根据在固定的单位周期内在像素阵列单元中检测到地址事件的次数来控制死区的宽度;以及
记录单元,记录从地址事件的检测结果获得的数据。
(8)一种控制固态成像元件的方法,包括:
对在像素阵列单元中在固定的单位周期内检测到地址事件的次数进行计数的计数过程,多个像素电路被布置在像素阵列单元中,每个像素电路检测发生在预定死区之外的入射光的亮度变化作为地址事件;以及
控制过程,根据检测的次数来控制死区的宽度。
参考标志列表
100 成像装置
110 成像透镜
120 记录单元
130 成像控制单元
200 固态成像元件
201 光接收芯片
202 检测芯片
211 行驱动电路
212 偏置电压供应单元
213 像素阵列单元
214 列驱动电路
215 存储器
220 信号处理单元
221 图像处理器
222 检测计数器
223 偏置控制器
300 像素电路
301 光电转换元件
305 单元区域
310电流-电压转换电路
311、313、335、342、344N型晶体管
312、321、322、332、334、341、343P型晶体管
320 缓冲器
330 减法器
331、333 电容器
340 数字转换器
350 传送电路
12031 成像单元。

Claims (13)

1.一种光检测装置,包括:
像素阵列,包括多个区域,每个所述区域包括至少一个像素电路,所述至少一个像素电路检测发生在死区之外的入射光的亮度变化作为地址事件;以及
信号处理单元,被配置为根据在固定的单位周期内所述至少一个像素电路检测到所述地址事件的次数来控制所述死区的宽度。
2.根据权利要求1所述的光检测装置,其中,
所述信号处理单元被配置为随着检测的次数增加来加宽所述死区。
3.根据权利要求1所述的光检测装置,其中,
所述信号处理单元被配置为将所述死区的上限和下限中的每一者与所述亮度变化的量进行比较,并且基于比较结果来检测所述地址事件。
4.根据权利要求1所述的光检测装置,其中,
所述信号处理单元被配置为在检测的次数超出预定容许范围的情况下控制所述死区的宽度。
5.根据权利要求1所述的光检测装置,其中,
所述信号处理单元被配置为针对所述多个区域中的每一个区域来控制所述死区的宽度。
6.根据权利要求1所述的光检测装置,其中,
所述至少一个像素电路包括:
光电转换元件,所述光电转换元件将所述入射光进行光电转换以生成光电流,以及
电流-电压转换电路,所述电流-电压转换电路将所述光电流转换成电压,其中
所述光电转换元件被布置在光接收芯片上,并且
所述电流-电压转换电路被布置在层压于所述光接收芯片上的检测芯片上。
7.一种成像装置,包括根据权利要求1所述的光检测装置。
8.一种光检测装置,包括:
像素电路,所述像素电路检测发生在死区之外的入射光的亮度变化作为地址事件;以及
信号处理单元,被配置为根据在固定的单位周期内所述像素电路中检测到所述地址事件的次数来控制所述死区的宽度。
9.根据权利要求8所述的光检测装置,其中,
所述信号处理单元被配置为随着检测的次数增加来加宽所述死区。
10.根据权利要求8所述的光检测装置,其中,
所述信号处理单元被配置为将所述死区的上限和下限中的每一者与所述亮度变化的量进行比较,并且基于比较结果来检测所述地址事件。
11.根据权利要求8所述的光检测装置,其中,
所述信号处理单元被配置为在检测的次数超出预定容许范围的情况下控制所述死区的宽度。
12.根据权利要求8所述的光检测装置,其中,
所述像素电路包括:
光电转换元件,所述光电转换元件将所述入射光进行光电转换以生成光电流,以及
电流-电压转换电路,所述电流-电压转换电路将所述光电流转换成电压,其中
所述光电转换元件被布置在光接收芯片上,并且
所述电流-电压转换电路被布置在层压于所述光接收芯片上的检测芯片上。
13.一种成像装置,包括根据权利要求8所述的光检测装置。
CN202310259254.4A 2018-01-31 2018-12-14 固态成像元件、成像装置及固态成像元件的控制方法 Pending CN116320793A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-014228 2018-01-31
JP2018014228A JP2019134271A (ja) 2018-01-31 2018-01-31 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
CN201880087580.9A CN111656770B (zh) 2018-01-31 2018-12-14 固态成像元件、成像装置及固态成像元件的控制方法
PCT/JP2018/046045 WO2019150786A1 (ja) 2018-01-31 2018-12-14 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880087580.9A Division CN111656770B (zh) 2018-01-31 2018-12-14 固态成像元件、成像装置及固态成像元件的控制方法

Publications (1)

Publication Number Publication Date
CN116320793A true CN116320793A (zh) 2023-06-23

Family

ID=67479256

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880087580.9A Active CN111656770B (zh) 2018-01-31 2018-12-14 固态成像元件、成像装置及固态成像元件的控制方法
CN202310259254.4A Pending CN116320793A (zh) 2018-01-31 2018-12-14 固态成像元件、成像装置及固态成像元件的控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201880087580.9A Active CN111656770B (zh) 2018-01-31 2018-12-14 固态成像元件、成像装置及固态成像元件的控制方法

Country Status (5)

Country Link
US (2) US11582408B2 (zh)
JP (1) JP2019134271A (zh)
KR (1) KR102606087B1 (zh)
CN (2) CN111656770B (zh)
WO (1) WO2019150786A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815841B (zh) 2018-03-15 2023-09-21 日商尼康股份有限公司 控制裝置、控制方法以及程式
WO2021038751A1 (ja) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント センサシステム、画像処理装置、画像処理方法およびプログラム
WO2021038750A1 (ja) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント センサシステム、画像処理装置、画像処理方法およびプログラム
WO2021038749A1 (ja) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント センサシステム、画像処理装置、画像処理方法およびプログラム
JP7489189B2 (ja) * 2019-08-30 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
KR20220134538A (ko) * 2020-01-31 2022-10-05 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치 및 촬상 방법
JPWO2021153295A1 (zh) * 2020-01-31 2021-08-05
JP2023040318A (ja) * 2020-02-26 2023-03-23 ソニーセミコンダクタソリューションズ株式会社 撮像回路および撮像装置
TWI788818B (zh) * 2020-05-28 2023-01-01 日商索尼半導體解決方案公司 攝像裝置及攝像方法
JP2021197710A (ja) * 2020-06-18 2021-12-27 ソニーセミコンダクタソリューションズ株式会社 センサ装置、制御方法、プログラム
JPWO2021261069A1 (zh) * 2020-06-26 2021-12-30
CN116075847A (zh) * 2020-09-15 2023-05-05 索尼半导体解决方案公司 固态成像装置和电子设备
JP2022076241A (ja) 2020-11-09 2022-05-19 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
EP4246086A4 (en) 2020-11-10 2024-04-17 Sony Semiconductor Solutions Corporation FORM MEASURING SYSTEM
JP2022076837A (ja) 2020-11-10 2022-05-20 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
JP2022089017A (ja) 2020-12-03 2022-06-15 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
KR20220156327A (ko) 2021-05-18 2022-11-25 삼성전자주식회사 비전 센서 및 이의 동작 방법
WO2022255152A1 (ja) * 2021-06-03 2022-12-08 ソニーグループ株式会社 測定装置、測定方法、プログラム
JP2022188985A (ja) 2021-06-10 2022-12-22 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
JP2022188982A (ja) 2021-06-10 2022-12-22 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
JP2023118323A (ja) 2022-02-15 2023-08-25 キヤノン株式会社 固体撮像素子、固体撮像素子の制御方法、プログラム、記憶媒体、及び撮像装置
WO2024100796A1 (ja) * 2022-11-09 2024-05-16 株式会社ソニー・インタラクティブエンタテインメント 信号処理回路、信号処理方法およびプログラム
JP2024092602A (ja) * 2022-12-26 2024-07-08 ソニーセミコンダクタソリューションズ株式会社 光検出素子及び電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617623B2 (ja) * 2001-08-29 2011-01-26 富士電機システムズ株式会社 被写体の明暗による順位付け方法およびその光センサ装置
JP5272630B2 (ja) * 2008-10-03 2013-08-28 ソニー株式会社 固体撮像素子およびその駆動方法、並びにカメラシステム
KR101261135B1 (ko) * 2011-04-25 2013-05-06 한국과학기술원 통계에 기반한 적응적 감시카메라 시스템 구동 방법 및 시스템
JP5862126B2 (ja) * 2011-09-06 2016-02-16 ソニー株式会社 撮像素子および方法、並びに、撮像装置
KR101537723B1 (ko) * 2012-10-24 2015-07-17 주식회사 케이티 영상 분석 필터의 우선 순위를 이용하는 영상 분석 시스템 및 영상 분석 방법
ES2476115B1 (es) 2012-12-11 2015-04-20 Consejo Superior De Investigaciones Científicas (Csic) Metodo y dispositivo para la deteccion de la variacion temporal de la intensidad luminosa en una matriz de fotosensores
KR101415735B1 (ko) * 2014-01-17 2014-08-06 주식회사 씨트링 영상 저장 장치 및 방법
US9554100B2 (en) * 2014-09-30 2017-01-24 Qualcomm Incorporated Low-power always-on face detection, tracking, recognition and/or analysis using events-based vision sensor
US9986179B2 (en) 2014-09-30 2018-05-29 Qualcomm Incorporated Sensor architecture using frame-based and event-based hybrid scheme
WO2017013806A1 (ja) * 2015-07-23 2017-01-26 オリンパス株式会社 固体撮像装置
KR102612194B1 (ko) * 2016-12-14 2023-12-11 삼성전자주식회사 이벤트 기반 센서 및 이벤트 기반 센싱 방법

Also Published As

Publication number Publication date
WO2019150786A1 (ja) 2019-08-08
US20230156356A1 (en) 2023-05-18
US11582408B2 (en) 2023-02-14
JP2019134271A (ja) 2019-08-08
KR20200112854A (ko) 2020-10-05
US11876933B2 (en) 2024-01-16
KR102606087B1 (ko) 2023-11-23
CN111656770A (zh) 2020-09-11
CN111656770B (zh) 2023-04-11
US20200351455A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
CN111656770B (zh) 固态成像元件、成像装置及固态成像元件的控制方法
US11659291B2 (en) Solid-state imaging element
KR102561079B1 (ko) 고체 촬상 소자
US11632505B2 (en) Solid-state image sensor and imaging device
WO2020110537A1 (ja) 固体撮像素子、および、撮像装置
US11936996B2 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
CN209949276U (zh) 固体摄像元件和摄像装置
CN210781138U (zh) 固体摄像元件和摄像装置
WO2019187685A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
KR20200138723A (ko) 고체 촬상 소자, 테스트 시스템, 및 고체 촬상 소자의 제어 방법
CN116325781A (zh) 固态成像元件和成像装置
US20240064433A1 (en) Imaging element and imaging device
US20220394206A1 (en) Imaging circuit, imaging device, and imaging method
CN113170065B (zh) 固态成像元件和成像装置
US11711634B2 (en) Electronic circuit, solid-state image sensor, and method of controlling electronic circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination