WO2021038751A1 - センサシステム、画像処理装置、画像処理方法およびプログラム - Google Patents

センサシステム、画像処理装置、画像処理方法およびプログラム Download PDF

Info

Publication number
WO2021038751A1
WO2021038751A1 PCT/JP2019/033708 JP2019033708W WO2021038751A1 WO 2021038751 A1 WO2021038751 A1 WO 2021038751A1 JP 2019033708 W JP2019033708 W JP 2019033708W WO 2021038751 A1 WO2021038751 A1 WO 2021038751A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
event
event signal
sensitivity
gradation
Prior art date
Application number
PCT/JP2019/033708
Other languages
English (en)
French (fr)
Inventor
小泉 誠
淳 堀江
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Priority to PCT/JP2019/033708 priority Critical patent/WO2021038751A1/ja
Priority to KR1020227004213A priority patent/KR20220074854A/ko
Priority to US17/635,301 priority patent/US11653109B2/en
Priority to JP2021541868A priority patent/JP7191238B2/ja
Publication of WO2021038751A1 publication Critical patent/WO2021038751A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Definitions

  • the present invention relates to a sensor system, an image processing device, an image processing method and a program.
  • Image sensors such as CCD and CMOS are synchronous solid-state image sensors that image image data (frames) in synchronization with synchronization signals such as vertical synchronization signals.
  • image data is acquired only every synchronization signal cycle (for example, 1/60 second), so it is difficult to handle high-speed processing using image data in a moving body, for example. There are cases. Therefore, for example, in Non-Patent Document 1, an asynchronous solid-state image sensor provided with an address event representation (AER: Address Event Representation) circuit for detecting an address event has been proposed.
  • AER Address Event Representation
  • an address event occurs when the amount of light of a pixel fluctuates at a certain pixel address and the amount of fluctuation exceeds a threshold value.
  • the address event includes an on-event that occurs when the light amount of the pixel fluctuates and exceeds a predetermined upper limit, and an off-event that occurs when the light amount falls below a predetermined lower limit.
  • the format of image data that expresses the presence or absence of on-events and off-events for each pixel with 2-bit data is called an AER format.
  • a technique using an asynchronous solid-state image sensor is also described in, for example, Patent Document 1.
  • asynchronous solid-state image sensor (hereinafter, also referred to as an event-driven sensor) as described above can detect the movement of the subject at high speed
  • a synchronous solid-state image sensor capable of detecting gradation is arranged together with an event-driven sensor, and when the movement of the subject is detected by the event-driven sensor, the synchronous solid-state image sensor is exposed.
  • the acquisition cycle of the image data including the gradation is restricted by the cycle of the synchronization signal of the synchronous solid-state image sensor, so that the high speed of the event-driven sensor is increased. It will be damaged.
  • an object of the present invention is to provide a sensor system, an image processing device, an image processing method, and a program that enable high-speed detection of the gradation of a subject using an event-driven sensor.
  • the light amount at the first sensor that detects the fluctuation of the light amount at the first pixel address with the first sensitivity, and the light amount at the second pixel address adjacent to or overlapping the first pixel address.
  • a sensor array containing a second sensor that detects fluctuations with a second sensitivity lower than the first sensitivity, and a second when the first sensor generates a first event signal for a luminance fluctuation event.
  • a sensor system including a gradation determination unit that determines the gradation of a subject that has generated a brightness fluctuation event depending on whether or not the sensor has generated a second event signal for the brightness fluctuation event. ..
  • the first event signal generated by the first sensor that detects the fluctuation of the amount of light at the first pixel address with the first sensitivity for the luminance fluctuation event is the first.
  • An image processing device including an event signal associating unit to be associated and a gradation determination unit for determining the gradation of a subject that has generated a luminance fluctuation event according to the presence or absence of a second event signal associated with the first event signal. Provided.
  • the step of generating the first event signal for the luminance fluctuation event by the first sensor that detects the fluctuation of the amount of light at the first pixel address with the first sensitivity is a second event with respect to a brightness fluctuation event.
  • the step of generating a signal or not generating a second event signal the step of associating the first event signal with the second event signal, and the presence or absence of the second event signal associated with the first event signal.
  • An image processing method including a step of determining the gradation of the subject in which the brightness fluctuation event is generated is provided.
  • the first event signal generated by the first sensor that detects the fluctuation of the amount of light at the first pixel address with the first sensitivity for the luminance fluctuation event is the first.
  • a program is provided for the computer to realize a function of associating the image and a function of determining the gradation of the subject in which the brightness fluctuation event is generated according to the presence or absence of the second event signal associated with the first event signal.
  • FIG. 1 is a diagram showing a schematic configuration of a system according to a first embodiment of the present invention.
  • the sensor system 10A includes a sensor module 100 and an image processing device 200A.
  • the sensor module 100 includes a sensor array including a first sensor 111 and a second sensor 112 arranged for each pixel, and a signal processing circuit 120 (event signal processing unit).
  • the image processor 200A is implemented by, for example, a computer having a communication interface, a processor, and a memory, and the time difference acquisition realized by the processor operating according to a program stored in the memory or received through the communication interface. Includes functional parts of unit 210A and gradation calculation unit 220A.
  • the image processing device 200A may further include functional parts of the image generation unit 230 and the delay time calculation unit 240. Hereinafter, each part will be further described.
  • Both the first sensor 111 and the second sensor 112 are event-driven sensors (EDS: Event Driven Sensor), and an address event occurs when the fluctuation amount of the light amount exceeds the threshold value at each pixel address. Outputs an event signal indicating.
  • the sensor array includes a first sensor 111 and a second sensor 112 arranged in a plane in a predetermined pattern. The first sensor 111 detects the fluctuation of the light amount at the first pixel address with the first sensitivity, and the second sensor 112 detects the fluctuation of the light amount at the second pixel address adjacent to the first pixel address. Detect with a second sensitivity that is lower than the first sensitivity.
  • the sensitivity of the second sensor 112 is p times (1> p> 0) of the sensitivity of the first sensor 111 (first sensitivity).
  • a first sensor 111 and a second sensor 112 are provided with, for example, a filter 115 (for example, a gray filter or a diaphragm) that is superimposed on the sensor array and reduces the amount of light incident on the second sensor 112. Can be achieved by.
  • EDS having the same configuration can be used for the first sensor 111 and the second sensor 112.
  • the filter 115 blocks (1-p) times the amount of light
  • the second sensitivity is p times the first sensitivity.
  • the sensitivity of each sensor may be adjusted by making the bias current different between the first sensor 111 and the second sensor 112.
  • the signal processing circuit 120 includes a memory and a processor, and the first event signal generated by the first sensor 111 and the second generated by the second sensor 112 when the processor operates according to a program stored in the memory. Process the event signal of. Specifically, the signal processing circuit 120 generates time stamps of the first event signal and the second event signal, respectively.
  • the time stamp is an example of information indicating the difference in time when the first sensor 111 and the second sensor 112 generate event signals for the luminance fluctuation event, respectively.
  • the first sensor 111 and the second sensor 112 detect a fluctuation amount of the amount of light when a brightness fluctuation event (hereinafter, also simply referred to as an event) such as a movement of a subject or a change of a light source occurs.
  • An event signal is generated when the threshold value is exceeded.
  • the sensitivity for detecting fluctuations in the amount of light differs between the first sensor 111 and the second sensor 112. Therefore, even when both the first sensor 111 and the second sensor 112 generate an event signal for the same event, the amount of fluctuation in the amount of light detected by each sensor is different.
  • the first sensor 111 and the second sensor utilize the characteristic of the sensor that the delay time from the event to the generation of the event signal is different when the fluctuation amount of the light amount is different.
  • the gradation of the subject is calculated from the difference in time when the event signals are generated for each of the same brightness fluctuation events of 112.
  • FIGS. 2A, 2B and 3 are diagrams for explaining the principle of gradation calculation in the embodiment of the present invention.
  • the luminance variation of an event is relatively large.
  • a delay time d 1 occurs from the occurrence of the event until the EDS generates the event signal.
  • an event is generated by the movement of the dark (low gradation) subject obj 2 , the amount of brightness fluctuation of the event is relatively small.
  • the delay time d 2 that occurs from the occurrence of the event to the generation of the event signal by EDS is longer than the delay time d 1 in the case of the subject obj 1 (d 1 ⁇ d 2 ). That is, the delay time for the EDS to generate the event signal becomes shorter as the gradation of the subject is higher, and becomes longer as the gradation of the subject is lower.
  • the first delay time of the event signal d 1 and the difference between the delay time d 2 of the second event signal generated by the second sensor 112 generated by the first sensor 111 (d 2 - d 1 ) corresponds to 50% of the gradation of the subject. Therefore, if the relationship between the gradation of the subject and the delay time of EDS is measured in advance, the gradation of the subject can be calculated from the difference in delay time, that is, the difference in the time when each sensor generates an event signal. it can.
  • the gradation of the subject is measured in advance by measuring the relationship between the gradation of the subject that causes the event and the delay time of EDS, so that the gradation of the subject is a function g (d) of the delay time d. Identify as.
  • the time difference acquisition unit 210A causes the first sensor and the second sensor to respond to the same luminance fluctuation event based on the time stamp generated by the signal processing circuit 120.
  • Information indicating the difference between the times when the event signals were generated is acquired.
  • the signal processing circuit 120 has a first event signal and a second event signal apart from the time stamps of the first event signal and the second event signal. Information indicating the time difference between the two event signals may be directly acquired.
  • the gradation calculation unit 220A calculates the gradation of the subject in which the luminance fluctuation event has occurred, based on the information indicating the time difference acquired by the time difference acquisition unit 210A. As described above with reference to FIGS. 2A, 2B and 3, if the relationship between the gradation of the subject that generates the event and the delay time of EDS is measured in advance, the time when the event signal is generated The gradation of the subject can be calculated from the difference between the two.
  • the time difference-gradation table 221 is stored in the memory of the image processing device 200A, and the gradation calculation unit 220A calculates the gradation of the subject by referring to the time difference-gradation table 221.
  • the gradation of the subject calculated by the gradation calculation unit 220A by the above processing may be used, for example, in the image generation unit 230 to generate an image of the subject by using the event signal.
  • the first event signal and the second event signal may be synchronized by a process as described later.
  • the gradation of the subject calculated by the gradation calculation unit 220A may be used to select a process for the subject recognized from the event signal.
  • the functional portion that executes the above processing may be mounted inside the image processing device 200A, or may be mounted in an external device that receives information indicating the gradation of the subject from the image processing device 200A.
  • the delay time calculated by the delay time calculation unit 240 as described above may be used, for example, to specify the true occurrence time of the event excluding the delay time.
  • the true occurrence time of the event detected by the first sensor 111 can be specified by subtracting the delay time d 1 from the time stamp of the first event signal generated by the first sensor 111. it can.
  • the image processing device 200A includes both the gradation calculation unit 220A and the delay time calculation unit 240, but in other embodiments, the image processing device is either the gradation calculation unit 220A or the delay time calculation unit 240. May include only.
  • FIGS. 4A to 4D are diagrams for explaining the simultaneous processing in the first embodiment of the present invention.
  • the delay time from the occurrence of the luminance fluctuation event to the generation of the event signal differs between the first sensor 111 and the second sensor 112.
  • the gradation of the subject is calculated by using the difference in the delay time, but on the other hand, the first event signal generated by the first sensor 111 and the second sensor 112 are generated.
  • a difference in time stamp corresponding to the difference in delay time occurs between the signal and the second event signal.
  • the time stamps of the second event signals generated by the second sensor 112A are the average values of the time stamps of the event signals generated by the adjacent first sensors 111A to 111H.
  • the second event signal is synchronized with the first event signal.
  • 4A to 4D show examples of cases where the first sensors 111 that generate event signals adjacent to the second sensor 112A are 2, 4, and 8, respectively.
  • the first pixel address and the first pixel address where the first sensor 111 is arranged and the first sensor 111 are generated.
  • the movement of the subject can be identified based on the events detected in all the pixels of the sensor array including both of the second pixel addresses where the two sensors 112 are located (ie, without reducing the resolution).
  • the simultaneous processing as described above does not necessarily have to be executed.
  • the first pixel in which the first sensor 111 is arranged is based on the first event signal generated by the first sensor 111.
  • the movement of the subject may be specified based only on the event detected by the address.
  • the resolution is reduced by the amount that the event detected at the second pixel address is not used, but the reduction in resolution can be compensated by a known interpolation method such as linear interpolation.
  • only the event signal acquired at the first pixel address may be used for identifying the movement of the subject without performing the simultaneous processing or the interpolation processing.
  • the gradation is calculated with the minimum necessary resolution while calculating the gradation.
  • the resolution for identifying the movement of the subject may be maintained.
  • FIG. 5 is a flowchart showing an example of processing in the first embodiment of the present invention.
  • the first sensor 111 of the sensor module 100 generates a first event signal for the luminance fluctuation event (step S101).
  • the second sensor 112 generates a second event signal for the same luminance variation event (step S102).
  • the time difference between the first event signal and the second event signal is such that the detected luminance fluctuation amount is the first sensor 111 and the second sensor 112 having lower sensitivity. It is caused by the difference between.
  • the time difference acquisition unit 210A provides information indicating the difference in time when the first sensor 111 and the second sensor 112 generate the first event signal and the second event signal, respectively. Acquire (step S103). Specifically, in the time difference acquisition unit 210A, the first sensor and the second sensor have the same brightness based on the time stamps of the first event signal and the second event signal generated by the signal processing circuit 120. Information indicating the difference between the times when the event signals are generated (steps S101 and S102 above) for each variable event is acquired.
  • the gradation calculation unit 220A calculates the gradation of the subject in which the luminance fluctuation event is generated based on the information indicating the time difference acquired by the time difference acquisition unit 210A (step S104). As described with reference to FIG. 1, at this time, the gradation calculation unit 220A may refer to the time difference-gradation table 221 stored in the memory of the image processing device 200A. In the illustrated example, the image generation unit 230 generates an image of the subject using the calculated gradation and the event signal (step S105), but the gradation calculated as described above is combined with the image generation. Alternatively, it may be used for other processing instead of image generation.
  • FIG. 6 is a diagram showing another example of the sensor arrangement in the first embodiment of the present invention.
  • the sensor array of the sensor module 100 includes a first sensor 111, a second sensor 112, a third sensor 113 and a fourth sensor 114 arranged in a plane in a predetermined pattern.
  • the third sensor 113 is adjacent to at least one of the first and second pixel addresses. The fluctuation of the amount of light at the third pixel address is detected with a third sensitivity lower than the second sensitivity.
  • the fourth sensor 114 detects fluctuations in the amount of light at a fourth pixel address adjacent to at least one of the first to third pixel addresses with a fourth sensitivity lower than the third sensitivity.
  • the signal processing circuit 120 (not shown) generates time stamps of event signals generated by the first to fourth sensors 111 to 114, respectively.
  • Such first to fourth sensors 111 to 114 are, for example, a filter 116 (for example, a gray filter or an aperture) that is superposed on the sensor array and reduces the amount of light incident on the second to fourth sensors 112 to 114.
  • the filter 116 blocks 25% of the amount of light incident on the second sensor 112, blocks 50% of the amount of light incident on the third sensor 113, and is incident on the fourth sensor 114. Blocks 75% of the amount of light.
  • the brightness change of the event detected by the second sensor 112 is 75% and 50% of the brightness change of the event detected by the first sensor 111, respectively. % And 25%, and the difference between the delay times d 1 to d 4 of the first to fourth event signals generated by the first to fourth sensors 111 to 114 (d 4- d 1 ), (d). 3- d 1 ) and (d 2- d 1 ) correspond to 75%, 50%, and 25% of the gradation of the subject, respectively.
  • the delay time d 1 satisfying the condition can be accurately searched.
  • the gradation calculation result may be stabilized by averaging the gradations calculated from the time difference from the signal.
  • sensors having different sensitivities for detecting fluctuations in the amount of light are arranged at adjacent pixel addresses, and the gradation of the subject is determined from the time difference of the event signal generated by each sensor. calculate.
  • the gradation of the subject can be detected without impairing the high speed of the event-driven sensor (EDS).
  • EDS event-driven sensor
  • FIG. 7 is a diagram showing a schematic configuration of a system according to a second embodiment of the present invention.
  • the sensor system 10B includes a sensor module 300 and an image processing device 200A.
  • the sensor module 300 includes a sensor array including a stacked sensor 310 arranged for each pixel, and a signal processing circuit 320 (event signal processing unit). Since the configuration of the image processing device 200A is the same as that of the first embodiment described above, duplicate description will be omitted. Hereinafter, each part will be further described.
  • the transmission type first light receiving layer 311 constituting the first sensor and the second light receiving layer 312 constituting the second sensor are laminated, and the first light receiving layer 311 is formed. It is arranged on the incident side of light, that is, on the side closer to the subject. The light from the subject passes through the first light receiving layer 311 and is also incident on the second light receiving layer 312.
  • the first light receiving layer 311 detects the fluctuation of the light amount at the pixel address where the sensor 310 is arranged with the first sensitivity
  • the second light receiving layer 312 detects the fluctuation of the light amount at the same pixel address with the first sensitivity. Detect with a low second sensitivity.
  • a first pixel address in which a first sensor composed of a first light receiving layer 311 is arranged and a second sensor in which a second sensor composed of a second light receiving layer 312 is arranged are arranged. It overlaps with the pixel address of.
  • the sensitivity of the second light receiving layer 312 is p times (1>p> 0) of the sensitivity of the first light receiving layer 311 (first sensitivity).
  • the quantum efficiency of the first light receiving layer 311 is p 1 (1> p 1 > 0)
  • the quantum efficiency of the second light receiving layer 312 is p 2 (((1> p 1> 0)). This can be achieved by 1-p 1 )> p 2> 0).
  • the quantum efficiency means an index indicating the probability of detection per photon.
  • the EDS 310 may have a laminated structure of more than two layers.
  • the signal processing circuit 320 includes a memory and a processor, and the first event signal generated by the first sensor configured by the first light receiving layer 311 by operating the processor according to the program stored in the memory, and the first event signal.
  • the second event signal generated by the second sensor composed of the light receiving layer 312 of 2 is processed.
  • the signal processing circuit 320 generates time stamps for each of the first event signal and the second event signal.
  • the time stamp is the difference between the times when the first sensor composed of the first light receiving layer 311 and the second sensor composed of the second light receiving layer 312 generate event signals for the luminance fluctuation event. This is an example of information indicating.
  • the image generation unit 230 may specify the movement of the subject by using only the first event signal.
  • FIG. 8 is a diagram showing another example of the sensor arrangement in the second embodiment of the present invention.
  • the first light receiving layer 311, the second light receiving layer 312, the third light receiving layer 313, and the fourth light receiving layer 314 are laminated in this order from the light incident side. ..
  • the first to third light receiving layers 311 to 313 are transmission type, and the light from the subject passes through the first light receiving layer 311 and the second light receiving layer 312 and the third light receiving layer 313 to receive the fourth light. It is incident up to layer 314.
  • the first light receiving layer 311 and the second light receiving layer 312 similar to the example described with reference to FIG.
  • the third light receiving layer 313 has the amount of light at the pixel address where the sensor 310 is arranged. Fluctuations are detected with a third sensitivity lower than the second sensitivity to form a third sensor.
  • the fourth light receiving layer 314 detects fluctuations in the amount of light at the same pixel address with a fourth sensitivity lower than the third sensitivity, and constitutes a fourth sensor.
  • the signal processing circuit 120 generates time stamps of event signals generated by sensors composed of the first to fourth light receiving layers 311 to 314, respectively.
  • the sensitivity of the second light receiving layer 312 (second sensitivity), the sensitivity of the third light receiving layer 313 (third sensitivity), and the sensitivity of the fourth light receiving layer 314 (fourth).
  • sensitivity is, p 2 times the respective sensitivities of the first light-receiving layer 311 (first sensitivity), p 3 times, and p 4 times (1> p 2> p 3 > p 4> 0).
  • p 2 0.5
  • p 3 0.25
  • the quantum efficiency of the first light receiving layer 311 is 40%
  • the quantum efficiency of the second light receiving layer 312 is 20%
  • the quantum efficiency of the third light receiving layer 313 is 10%
  • the change in the brightness of the event detected by the second light receiving layer 312, the third light receiving layer 313, and the fourth light receiving layer 314 is the change in the brightness of the event detected by the first light receiving layer 311, respectively. It becomes 50%, 25% and 12.5%, and the difference between the delay times d 1 to d 4 of the first to fourth event signals generated in the first to fourth light receiving layers 311 to 314, respectively (d 4).
  • -D 1 ), (d 3- d 1 ) and (d 2- d 1 ) correspond to 50%, 25% and 12.5% of the gradation of the subject, respectively.
  • the gradation of the subject is determined from the time difference of the event signal generated by each light receiving layer. Is calculated.
  • the gradation of the subject can be detected without impairing the high speed of the event-driven sensor (EDS).
  • EDS event-driven sensor
  • FIG. 9 is a diagram showing a schematic configuration of a system according to a third embodiment of the present invention.
  • the sensor system 10C includes a sensor module 300 including a sensor 310 having a four-layer laminated structure, and an image processing device 200C.
  • the sensor module 300 includes a sensor array including a stacked sensor 310 and a signal processing circuit 320 as in the second embodiment described above.
  • the image processor 200C is implemented by, for example, a computer having a communication interface, a processor, and a memory, and the event signal association realized by the processor operating according to a program stored in the memory or received via the communication interface. Includes functional parts of unit 210C and gradation determination unit 220C.
  • the image processing device 200C may further include a functional portion of the image generation unit 230.
  • each part of the image processing apparatus 200C will be further described.
  • the event signal association unit 210C associates the second to fourth event signals with the first event signal input from the signal processing circuit 320.
  • the first event signal is generated by the first sensor configured by the first light receiving layer 311 for the luminance fluctuation event.
  • the second to fourth sensors composed of the second to fourth light receiving layers 312 to 314 have the same luminance fluctuation as the first sensor. It was generated for the event.
  • the event signal association unit 210C executes the association of event signals based on, for example, the order of each event signal and the interval of time stamps.
  • the second event signal is generated after the first event signal, and the time stamp interval between the first event signal and the second event signal is within a predetermined range.
  • the second event signal is associated with the first event signal. If there is no such second event signal, the event signal association unit 210C does not associate the second event signal with the first event signal.
  • the third event signal is generated after the second event signal, and the time stamp interval between the second event signal and the third event signal is within a predetermined range. In some cases, the third event signal is associated with the first event signal. When there is no such third event signal, and when the second event signal is not associated with the first event signal, the event signal associating unit 210C associates the third event signal with the first event signal. Absent.
  • the gradation determination unit 220C determines the gradation of the subject according to the result of the association of the event signals in the event signal association unit 210C.
  • the first to fourth light receiving layers 311 to 314 of the stacked sensor 310 are configured so that the sensitivity to fluctuations in the amount of light gradually decreases, so that the brightness fluctuates.
  • the fluctuation amount of the light amount does not exceed the threshold value in the light receiving layer having relatively low sensitivity, and the sensor composed of the light receiving layer does not generate an event signal.
  • the second to fourth light receiving layers 312 to 314 also generate the event signal, but the brightness change is small.
  • the fourth light receiving layer 314, which has the lowest sensitivity, does not generate an event signal, and when the brightness change becomes smaller, the third light receiving layer 313 also does not generate an event signal, and the smallest detectable brightness change.
  • the second light receiving layer 312 also does not generate an event signal, and only the first light receiving layer 311 generates an event signal.
  • the gradation determination unit 220C determines the gradation of the subject according to the relationship between the gradation of the subject and the generation of each event signal as described above. Specifically, when all of the second to fourth event signals associated with the first event signal by the event signal association unit 210C are present, the gradation determination unit 220C has the highest level of gradation of the subject. Is determined to be. On the other hand, when the second and third event signals associated with the first event signal are present but the fourth event signal is not present, the gradation determination unit 220C has the gradation of the subject at the second level. Judge that there is.
  • the gradation determination unit 220C determines that the gradation of the subject is the third level. When there is no event signal associated with the first event signal, the gradation determination unit 220C determines that the gradation of the subject is the lowest level.
  • the gradation of the subject determined in this way is used, for example, for generating an image of the subject by the image generation unit 230 and selecting processing for the subject recognized from the event signal, as in the first embodiment. Be done.
  • FIG. 10 is a flowchart showing an example of processing according to the third embodiment of the present invention.
  • FIG. 10 describes the determination using the first event signal and the second event signal, but the same applies to the determination using the third event signal and the fourth event signal.
  • the first light receiving layer 311 constituting the first sensor in the sensor module 300 generates a first event signal for the luminance fluctuation event (step S201).
  • the second light receiving layer 312 constituting the second sensor generates a second event signal for the same luminance fluctuation event (step S202). If the fluctuation amount of the light amount does not exceed the threshold value in the second light receiving layer 312 having a relatively low sensitivity, the second event signal is not generated.
  • the event signal association unit 210C determines whether or not the second event signal is associated with the first event signal (step S203). Specifically, the event signal association unit 210C determines whether or not the association is possible based on the order of the first event signal and the second event signal indicated by the time stamps and the time stamp interval. When the second event signal is associated with the first event signal, the gradation determination unit 220C determines that the gradation of the subject is at a relatively high level (step S204). On the other hand, when the second event signal is not associated with the first event signal, the gradation determination unit 220C determines that the gradation of the subject is at a relatively low level (step S205).
  • the senor 310 has a four-layer laminated structure including the first to fourth light receiving layers 311 to 314, but in the other example, the sensor 310 is similar to the example shown in FIG. It may have a laminated structure of layers, or may have a laminated structure of three layers or more than four layers.
  • the sensor module may include a sensor array in which sensors of different sensitivities are arranged in a plane in a predetermined pattern, as described above with reference to FIGS. 1 and 6.
  • the gradation of the subject is determined depending on which light receiving layer generates the event signal. judge.
  • the gradation of the subject can be detected without impairing the high speed of the event-driven sensor (EDS).
  • the gradation of the subject is detected only at the same stage as the number of sensitivities of the light receiving layer, but it is convenient because it is not necessary to measure the relationship between the gradation of the subject and the delay time of EDS in advance.
  • the gradation of the subject can be stably specified by a simple determination.
  • a game controller for example, a game controller, a smartphone, and various moving objects (automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, etc.) are used to provide information on the surrounding environment. It can be used to acquire, estimate the self-position from the position of the surrounding subject, detect the flying subject, and take an avoidance action.
  • the gradation of the subject can be useful for identifying the subject or identifying the subject in the above-mentioned applications, for example.
  • 10A, 10B, 10C ... sensor system 100 ... sensor module, 111 ... first sensor, 112 ... second sensor, 113 ... third sensor, 114 ... fourth sensor, 115, 116 ... filter, 120 ... Signal processing circuit, 200A, 200C ... Image processing device, 210A ... Time difference acquisition unit, 210C ... Event signal association unit, 220A ... Gradation calculation unit, 220C ... Gradation determination unit, 230 ... Image generation unit, 240 ... Delay time Calculation unit, 300 ... sensor module, 310 ... sensor, 311 ... first light receiving layer, 312 ... second light receiving layer, 313 ... third light receiving layer, 314 ... fourth light receiving layer, 320 ... signal processing circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

本発明のある観点によれば、第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサ、および第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する第2のセンサを含むセンサアレイと、第1のセンサが輝度変動イベントに対して第1のイベント信号を生成したときに、第2のセンサが輝度変動イベントに対して第2のイベント信号を生成したか否かに応じて輝度変動イベントを発生させた被写体の階調を判定する階調判定部とを備えるセンサシステムが提供される。

Description

センサシステム、画像処理装置、画像処理方法およびプログラム
 本発明は、センサシステム、画像処理装置、画像処理方法およびプログラムに関する。
 CCDやCMOSなどのイメージセンサは、垂直同期信号などの同期信号に同期して画像データ(フレーム)を撮像する同期型の固体撮像素子である。一般的な同期型の固体撮像素子では、同期信号の周期(例えば、1/60秒)ごとにしか画像データが取得されないため、例えば移動体における画像データを利用した高速な処理には対応が困難な場合がある。そこで、例えば非特許文献1などにおいて、アドレスイベントを検出するアドレスイベント表現(AER:Address Event Representation)回路を設けた非同期型の固体撮像素子が提案されている。
 上記の非同期型の固体撮像素子において、アドレスイベントは、ある画素アドレスで画素の光量が変動し、変動量が閾値を超えた場合に発生する。具体的には、アドレスイベントは、画素の光量が変動して所定の上限を超えた場合に発生するオンイベントと、光量が所定の下限を下回った場合に発生するオフイベントとを含む。このような非同期型の固体撮像素子において、画素ごとのオンイベントおよびオフイベントの有無を2ビットのデータで表現する画像データの形式はAERフォーマットと呼ばれる。非同期型の固体撮像素子を用いた技術は、例えば特許文献1にも記載されている。
特開2018-186478号公報
Patrick Lichtsteiner, et al., A 128×128 120dB 15μs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008.
 上記のような非同期型の固体撮像素子(以下、イベント駆動型センサともいう)では、被写体の動きを高速に検出することは可能であるものの、画像データとしてオンイベントまたはオフイベントの2通りの情報しか得られないため、被写体の輝度の階調を検出することは困難である。例えば、階調を検出することが可能な同期型の固体撮像素子をイベント駆動型センサとともに配置し、イベント駆動型センサで被写体の動きが検出された場合に同期型の固体撮像素子を露光して階調を検出することも考えられるが、この場合は階調を含めた画像データの取得周期が同期型の固体撮像素子の同期信号の周期に制約されるため、イベント駆動型センサの高速性が損なわれてしまう。
 そこで、本発明は、イベント駆動型センサを用いて高速に被写体の階調を検出することを可能にする、センサシステム、画像処理装置、画像処理方法およびプログラムを提供することを目的とする。
 本発明のある観点によれば、第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサ、および第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する第2のセンサを含むセンサアレイと、第1のセンサが輝度変動イベントに対して第1のイベント信号を生成したときに、第2のセンサが輝度変動イベントに対して第2のイベント信号を生成したか否かに応じて輝度変動イベントを発生させた被写体の階調を判定する階調判定部とを備えるセンサシステムが提供される。
 本発明の別の観点によれば、第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサが輝度変動イベントに対して生成した第1のイベント信号に、第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する第2のセンサが輝度変動イベントに対して生成した第2のイベント信号を関連付けるイベント信号関連付け部と、第1のイベント信号に関連付けられる第2のイベント信号の有無に応じて輝度変動イベントを発生させた被写体の階調を判定する階調判定部とを備える画像処理装置が提供される。
 本発明のさらに別の観点によれば、第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサが、輝度変動イベントに対して第1のイベント信号を生成するステップと、第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する第2のセンサが輝度変動イベントに対して第2のイベント信号を生成するか、または第2のイベント信号を生成しないステップと、第1のイベント信号に第2のイベント信号を関連付けるステップと、第1のイベント信号に関連付けられる第2のイベント信号の有無に応じて輝度変動イベントを発生させた被写体の階調を判定するステップとを含む画像処理方法が提供される。
 本発明のさらに別の観点によれば、第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサが輝度変動イベントに対して生成した第1のイベント信号に、第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する第2のセンサが輝度変動イベントに対して生成した第2のイベント信号を関連付ける機能と、第1のイベント信号に関連付けられる第2のイベント信号の有無に応じて輝度変動イベントを発生させた被写体の階調を判定する機能とをコンピュータに実現させるためのプログラムが提供される。
本発明の第1の実施形態に係るシステムの概略的な構成を示す図である。 本発明の実施形態における階調算出の原理について説明するための図である。 本発明の実施形態における階調算出の原理について説明するための図である。 本発明の実施形態における階調算出の原理について説明するための図である。 本発明の第1の実施形態における同時化処理について説明するための図である。 本発明の第1の実施形態における同時化処理について説明するための図である。 本発明の第1の実施形態における同時化処理について説明するための図である。 本発明の第1の実施形態における同時化処理について説明するための図である。 本発明の第1の実施形態における処理の例を示すフローチャートである。 本発明の第1の実施形態におけるセンサ配置の他の例を示す図である。 本発明の第2の実施形態に係るシステムの概略的な構成を示す図である。 本発明の第2の実施形態におけるセンサ配置の他の例を示す図である。 本発明の第3の実施形態に係るシステムの概略的な構成を示す図である。 本発明の第3の実施形態における処理の例を示すフローチャートである。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係るシステムの概略的な構成を示す図である。図示されているように、センサシステム10Aは、センサモジュール100と、画像処理装置200Aとを含む。センサモジュール100は、画素ごとに配置された第1のセンサ111および第2のセンサ112を含むセンサアレイと、信号処理回路120(イベント信号処理部)とを含む。画像処理装置200Aは、例えば通信インターフェース、プロセッサ、およびメモリを有するコンピュータによって実装され、プロセッサがメモリに格納された、または通信インターフェースを介して受信されたプログラムに従って動作することによって実現される時刻差分取得部210Aおよび階調算出部220Aの機能部分を含む。画像処理装置200Aは、さらに、画像生成部230および遅延時間算出部240の機能部分を含んでもよい。以下、各部についてさらに説明する。
 第1のセンサ111および第2のセンサ112は、いずれもイベント駆動型センサ(EDS:Event Driven Sensor)であり、それぞれの画素アドレスで光量の変動量が閾値を超えたときに、アドレスイベントの発生を示すイベント信号を出力する。本実施形態において、センサアレイは所定のパターンで平面的に配列された第1のセンサ111および第2のセンサ112を含む。第1のセンサ111は、第1の画素アドレスにおける光量の変動を第1の感度で検出し、第2のセンサ112は、第1の画素アドレスに隣接する第2の画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する。
 具体的には、例えば、第2のセンサ112の感度(第2の感度)は、第1のセンサ111の感度(第1の感度)のp倍(1>p>0)である。このような第1のセンサ111および第2のセンサ112は、例えば、センサアレイに重畳され、第2のセンサ112に入射する光量を低減させるフィルタ115(例えばグレーフィルタ、または絞り)を配置することによって実現できる。この場合、第1のセンサ111および第2のセンサ112に同じ構成のEDSを用いることができる。フィルタ115が光量の(1-p)倍を遮断する場合、第2の感度は第1の感度のp倍になる。あるいは、第1のセンサ111と第2のセンサ112との間でバイアス電流を異ならせることによってそれぞれのセンサの感度を調節してもよい。
 信号処理回路120は、メモリおよびプロセッサを含み、プロセッサがメモリに格納されたプログラムに従って動作することによって第1のセンサ111が生成した第1のイベント信号、および第2のセンサ112が生成した第2のイベント信号を処理する。具体的には、信号処理回路120は、第1のイベント信号および第2のイベント信号のそれぞれのタイムスタンプを生成する。タイムスタンプは、第1のセンサ111および第2のセンサ112が輝度変動イベントに対してそれぞれイベント信号を生成した時刻の差分を示す情報の例である。
 ここで、第1のセンサ111および第2のセンサ112は、例えば被写体の移動や光源の変化などの輝度変動イベント(以下、単にイベントともいう)が発生したときに、検出する光量の変動量が閾値を超えたことによってイベント信号を生成する。ここで、上述のように、第1のセンサ111と第2のセンサ112との間では光量の変動を検出する感度が異なる。従って、同一のイベントに対して第1のセンサ111および第2のセンサ112の両方がイベント信号を生成した場合にも、それぞれのセンサで検出されている光量の変動量は異なる。本実施形態では、以下で説明するように、光量の変動量が異なるとイベントからイベント信号の生成までの遅延時間が異なるというセンサの特性を利用して、第1のセンサ111および第2のセンサ112が同一の輝度変動イベントに対してそれぞれイベント信号を生成した時刻の差分から、被写体の階調を算出する。
 図2A、図2Bおよび図3は、本発明の実施形態における階調算出の原理について説明するための図である。図2Aおよび図2Bに示されているように、明るい(高階調の)被写体objの動きによってイベントが発生する場合、イベントの輝度変動量は相対的に大きい。この場合、イベントが発生してからEDSがイベント信号を生成するまでに遅延時間dが生じるとする。一方、暗い(低階調の)被写体objの動きによってイベントが発生する場合、イベントの輝度変動量は相対的に小さい。この場合、イベントが発生してからEDSがイベント信号を生成するまでに生じる遅延時間dは、被写体objの場合の遅延時間dよりも長い(d<d)。つまり、EDSがイベント信号を生成する遅延時間は、被写体の階調が高いほど短くなり、被写体の階調が低いほど長くなる。
 そこで、例えば、図3に示されているように、第2のセンサ112の感度が第1のセンサ111の感度の50%(上述の例においてp=0.5)である場合、第2のセンサ112で検出されるイベントの輝度変化は、第1のセンサ111で検出されるイベントの輝度変化の50%になる。つまり、第2のセンサ112では、被写体の階調が50%低減されて検出される。この場合において、第1のセンサ111で生成された第1のイベント信号の遅延時間dと第2のセンサ112で生成された第2のイベント信号の遅延時間dとの差分(d-d)は、被写体の階調の50%分に相当する。従って、被写体の階調とEDSの遅延時間との関係を予め測定しておけば、遅延時間の差分、すなわちそれぞれのセンサがイベント信号を生成した時刻の差分から被写体の階調を算出することができる。
 より具体的には、例えば、本実施形態では、イベントを発生させる被写体の階調とEDSの遅延時間との関係を予め測定することによって、被写体の階調を遅延時間dの関数g(d)として特定する。これによって、第1のイベント信号および第2のイベント信号の遅延時間d,dが未知であっても、遅延時間dと遅延時間dとの差分d=d-dが既知であれば、
 g(d+d)=0.5×g(d) ・・・(式1)
となるような第1のセンサ111の遅延時間dと、第1のセンサ111で検出されている被写体の階調g(d)と算出することができる。
 再び図1を参照して、画像処理装置200Aにおいて、時刻差分取得部210Aは、信号処理回路120が生成したタイムスタンプに基づいて、第1のセンサおよび第2のセンサが同じ輝度変動イベントに対してそれぞれイベント信号を生成した時刻の差分を示す情報を取得する。他の例として、例えば画像処理装置200Aが信号処理回路120を含む場合は、信号処理回路120が第1のイベント信号および第2のイベント信号のタイムスタンプとは別に、第1のイベント信号および第2のイベント信号の間の時間差を示す情報を直接的に取得してもよい。
 階調算出部220Aは、時刻差分取得部210Aが取得した時刻の差分を示す情報に基づいて、輝度変動イベントを発生させた被写体の階調を算出する。上記で図2A、図2Bおよび図3を参照して説明したように、イベントを発生させる被写体の階調とEDSの遅延時間との関係を予め測定しておけば、イベント信号が生成された時刻の差から被写体の階調を算出することができる。本実施形態において、画像処理装置200Aのメモリには時間差-階調テーブル221が格納され、階調算出部220Aは時間差-階調テーブル221を参照することによって被写体の階調を算出する。
 上記のような処理によって階調算出部220Aが算出した被写体の階調は、例えば画像生成部230でイベント信号を用いて被写体の画像を生成するのに用いられてもよい。この場合、第1のイベント信号および第2のイベント信号は後述するような処理によって同時化されてもよい。あるいは、階調算出部220Aが算出した被写体の階調は、イベント信号から認識される被写体に対する処理を選択するために用いられてもよい。上記のような処理を実行する機能部分は、画像処理装置200Aの内部において実装されてもよいし、画像処理装置200Aから被写体の階調を示す情報を受信する外部装置において実装されてもよい。
 遅延時間算出部240は、時刻差分取得部210Aが取得した時刻の差分を示す情報から、第1のセンサ111における輝度変動イベントからイベント信号の生成までの遅延時間を算出する。上記で図3を参照して説明したように、被写体の階調を遅延時間dの関数g(d)として表現した場合、遅延時間d,dが未知でも、差分d=d-dからg(d+d)=0.5×g(d)となる遅延時間dを算出することができる。遅延時間算出部240は、同様にして第2のセンサ112における遅延時間dを算出してもよい。
 上記のように遅延時間算出部240が算出した遅延時間は、例えば遅延時間を除いたイベントの真の発生時刻を特定するために用いられてもよい。具体的には、遅延時間dを第1のセンサ111が生成した第1のイベント信号のタイムスタンプから差し引くことによって、第1のセンサ111が検出したイベントの真の発生時刻を特定することができる。本実施形態では画像処理装置200Aが階調算出部220Aおよび遅延時間算出部240の両方を含むが、他の実施形態では画像処理装置が階調算出部220Aまたは遅延時間算出部240のいずれか一方のみを含んでもよい。
 図4A~図4Dは、本発明の第1の実施形態における同時化処理について説明するための図である。上述のように、第1のセンサ111と第2のセンサ112との間では、輝度変動イベントが発生してからイベント信号が生成されるまでの遅延時間が異なる。本実施形態ではこの遅延時間の違いを利用して被写体の階調を算出しているが、その一方で、第1のセンサ111が生成する第1のイベント信号と第2のセンサ112が生成する第2のイベント信号との間では、遅延時間の違いに相当するタイムスタンプの差分が生じる。
 そこで、図示された例では、第2のセンサ112Aで生成された第2のイベント信号のタイムスタンプを、隣接する第1のセンサ111A~111Hのそれぞれで生成されたイベント信号のタイムスタンプの平均値に置き換えることで、第2のイベント信号を第1のイベント信号に同時化している。図4A~図4Dには、それぞれ、第2のセンサ112Aに隣接してイベント信号を生成した第1のセンサ111が2個、4個および8個の場合の例が示されている。例えば、階調算出部220Aまたは遅延時間算出部240に入力されるイベント信号とは別に同時化されたイベント信号を生成することによって、第1のセンサ111が配置される第1の画素アドレスおよび第2のセンサ112が配置される第2の画素アドレスの両方を含むセンサアレイの全画素で検出されたイベントに基づいて(つまり、解像度を下げることなく)被写体の動きを特定することができる。
 なお、上記のような同時化処理は必ずしも実行されなくてもよく、例えば、第1のセンサ111が生成する第1のイベント信号に基づいて、第1のセンサ111が配置される第1の画素アドレスで検出されたイベントのみに基づいて被写体の動きを特定してもよい。この場合、第2の画素アドレスで検出されたイベントが用いられない分だけ解像度は低下するが、例えば線形補間などの公知の補間の手法によって解像度の低下を補うことができる。また、高い解像度が必要とされない場合は、同時化処理や補間処理を行わず、第1の画素アドレスで取得されたイベント信号のみを被写体の動きの特定に用いてもよい。あるいは、第1のセンサ111および第2のセンサ112の配列パターンにおいて、第1のセンサ111を第2のセンサ112よりも多く配置することによって、必要最低限の解像度で階調を算出しつつ、被写体の動きを特定するための解像度を維持してもよい。
 図5は、本発明の第1の実施形態における処理の例を示すフローチャートである。図示された例では、まず、センサモジュール100の第1のセンサ111が輝度変動イベントに対して第1のイベント信号を生成する(ステップS101)。その時刻からわずかに遅れて、第2のセンサ112が同じ輝度変動イベントに対して第2のイベント信号を生成する(ステップS102)。上述のように、このような第1のイベント信号と第2のイベント信号との間の時間差は、検出された輝度変動量が第1のセンサ111と、より感度が低い第2のセンサ112との間で異なることによって生じる。
 次に、画像処理装置200Aにおいて、時刻差分取得部210Aが、第1のセンサ111および第2のセンサ112がそれぞれ第1のイベント信号および第2のイベント信号を生成した時刻の差分を示す情報を取得する(ステップS103)。具体的には、時刻差分取得部210Aは、信号処理回路120によって生成された第1のイベント信号および第2のイベント信号のタイムスタンプに基づいて、第1のセンサおよび第2のセンサが同じ輝度変動イベントに対してそれぞれイベント信号を生成した(上記のステップS101,S102)時刻の差分を示す情報を取得する。
 さらに、階調算出部220Aが、時刻差分取得部210Aが取得した時刻の差分を示す情報に基づいて、輝度変動イベントを発生させた被写体の階調を算出する(ステップS104)。上記図1を参照して説明したように、このとき階調算出部220Aは、画像処理装置200Aのメモリに格納された時間差-階調テーブル221を参照してもよい。図示された例では算出された階調とイベント信号とを用いて画像生成部230が被写体の画像を生成しているが(ステップS105)、上述のように算出された階調は画像生成とともに、または画像生成の代わりに他の処理に利用されてもよい。
 図6は、本発明の第1の実施形態におけるセンサ配置の他の例を示す図である。図示された例において、センサモジュール100のセンサアレイは所定のパターンで平面的に配列された第1のセンサ111、第2のセンサ112、第3のセンサ113および第4のセンサ114を含む。上記で図1を参照して説明した例と同様の第1のセンサ111および第2のセンサ112に加えて、第3のセンサ113は、第1および第2の画素アドレスの少なくともいずれかに隣接する第3の画素アドレスにおける光量の変動を第2の感度よりも低い第3の感度で検出する。第4のセンサ114は、第1から第3の画素アドレスの少なくともいずれかに隣接する第4の画素アドレスにおける光量の変動を第3の感度よりも低い第4の感度で検出する。信号処理回路120(図示せず)は、第1から第4のセンサ111~114がそれぞれ生成したイベント信号のタイムスタンプを生成する。
 上記の例において、例えば、第2のセンサ112の感度(第2の感度)、第3のセンサ113の感度(第3の感度)、および第4のセンサ114の感度(第4の感度)は、それぞれ第1のセンサ111の感度(第1の感度)のp倍、p倍、およびp倍である(1>p>p>p>0)。具体的には、p=0.75、p=0.5、p=0.25としてもよい。このような第1から第4のセンサ111~114は、例えば、センサアレイに重畳され、第2から第4のセンサ112~114に入射する光量を低減させるフィルタ116(例えばグレーフィルタ、または絞り)を配置することによって実現できる。上記の例の場合、フィルタ116は、第2のセンサ112に入射する光量の25%を遮断し、第3のセンサ113に入射する光量の50%を遮断し、第4のセンサ114に入射する光量の75%を遮断する。
 上記の場合、第2のセンサ112、第3のセンサ113および第4のセンサ114で検出されるイベントの輝度変化は、それぞれ第1のセンサ111で検出されるイベントの輝度変化の75%、50%および25%になり、第1から第4のセンサ111~114でそれぞれ生成された第1から第4のイベント信号の遅延時間d~dの差分(d-d)、(d-d)および(d-d)は、それぞれ被写体の階調の75%、50%および25%に相当する。
 このように、本実施形態において、センサアレイに配列されるセンサの感度を2よりも多い段階で設定した場合、例えば上記の式1のような条件式を複数設定することができるため、被写体の階調を示す関数g(d)がどのようなものであっても、条件を満たす遅延時間dを正確に探索することができる。あるいは、それぞれのセンサの感度の低下量に生じる誤差(例えば、第2のセンサ112の感度が第1のセンサ111の感度の正確に0.5倍ではない可能性)を考慮し、第1のイベント信号と第2のイベント信号との時間差から算出される階調、第1のイベント信号と第3のイベント信号との時間差から算出される階調、および第1のイベント信号と第4のイベント信号との時間差から算出される階調を平均することによって階調の算出結果を安定させてもよい。
 以上で説明した本発明の第1の実施形態では、光量の変動を検出する感度が異なるセンサを隣接する画素アドレスに配置し、それぞれのセンサで生成されたイベント信号の時間差から被写体の階調を算出する。これによって、イベント駆動型センサ(EDS)の高速性を損なうことなく被写体の階調を検出することができる。また、本実施形態では、感度が異なるセンサがセンサアレイ内で平面的に隣接して配置されるため、例えば感度が均一な通常のEDSにグレーフィルタなどのフィルタを組み合わせることによって容易に階調の検出を実現することができる。
 (第2の実施形態)
 図7は、本発明の第2の実施形態に係るシステムの概略的な構成を示す図である。図示された例において、センサシステム10Bは、センサモジュール300と、画像処理装置200Aとを含む。センサモジュール300は、画素ごとに配置された積層型のセンサ310を含むセンサアレイと、信号処理回路320(イベント信号処理部)とを含む。なお、画像処理装置200Aの構成は、上記の第1の実施形態と同様であるため重複した説明は省略する。以下、各部についてさらに説明する。
 積層型のセンサ310では、第1のセンサを構成する透過型の第1の受光層311と、第2のセンサを構成する第2の受光層312とが積層され、第1の受光層311が光の入射側、すなわち被写体に近い側に配置される。被写体からの光は、第1の受光層311を透過して第2の受光層312にも入射する。第1の受光層311は、センサ310が配置された画素アドレスにおける光量の変動を第1の感度で検出し、第2の受光層312は同じ画素アドレスにおける光量の変動を第1の感度よりも低い第2の感度で検出する。本実施形態において、第1の受光層311によって構成される第1のセンサが配置される第1の画素アドレスと、第2の受光層312によって構成される第2のセンサが配置される第2の画素アドレスとは重複している。
 具体的には、例えば、第2の受光層312の感度(第2の感度)は、第1の受光層311の感度(第1の感度)のp倍(1>p>0)である。このような積層型のセンサ310は、例えば、第1の受光層311の量子効率をpとし(1>p>0)、第2の受光層312の量子効率をpとする((1-p)>p>0)ことによって実現できる。この場合、第2の受光層312の感度は、第1の受光層311の感度のp/p倍になる(p=p/p)。なお、量子効率は、光子1個あたり何%の確率で検出できるかを示す指標を意味する。後述する例のように、EDS310は2層を超える積層構造を有してもよい。
 信号処理回路320は、メモリおよびプロセッサを含み、プロセッサがメモリに格納されたプログラムに従って動作することによって第1の受光層311によって構成される第1のセンサが生成した第1のイベント信号、および第2の受光層312によって構成される第2のセンサが生成した第2のイベント信号を処理する。具体的には、信号処理回路320は、第1のイベント信号および第2のイベント信号のそれぞれのタイムスタンプを生成する。タイムスタンプは、第1の受光層311によって構成される第1のセンサおよびと第2の受光層312によって構成される第2のセンサが輝度変動イベントに対してそれぞれイベント信号を生成した時刻の差分を示す情報の例である。
 上記のように、同じ画素アドレスに配置された第1のセンサおよび第2のセンサが輝度変動イベントに対してそれぞれイベント信号を生成した時刻の差分を示す情報が得られることによって、本実施形態でも、上記の第1の実施形態と同様に画像処理装置200Aにおいて輝度変動イベントを発生させた被写体の階調を算出することができる。なお、本実施形態では、センサアレイの全画素で第1のイベント信号および第2のイベント信号の両方が生成可能であるため、例えば画像生成部230がイベント信号を用いて被写体の画像を生成するときに、第1のイベント信号と第2のイベント信号とを同時化する処理は行われなくてもよい。画像生成部230は、第1のイベント信号のみを用いて被写体の動きを特定してもよい。
 図8は、本発明の第2の実施形態におけるセンサ配置の他の例を示す図である。図示された例において、積層型のセンサ310では、光の入射側から順に第1の受光層311、第2の受光層312、第3の受光層313および第4の受光層314が積層される。第1から第3の受光層311~313は透過型であり、被写体からの光は第1の受光層311、第2の受光層312および第3の受光層313を透過して第4の受光層314まで入射する。上記で図7を参照して説明した例と同様の第1の受光層311および第2の受光層312に加えて、第3の受光層313は、センサ310が配置された画素アドレスにおける光量の変動を第2の感度よりも低い第3の感度で検出し、第3のセンサを構成する。第4の受光層314は、同じ画素アドレスにおける光量の変動を第3の感度よりも低い第4の感度で検出し、第4のセンサを構成する。信号処理回路120は、第1から第4の受光層311~314によって構成されるセンサがそれぞれ生成したイベント信号のタイムスタンプを生成する。
 上記の例において、例えば、第2の受光層312の感度(第2の感度)、第3の受光層313の感度(第3の感度)、および第4の受光層314の感度(第4の感度)は、それぞれ第1の受光層311の感度(第1の感度)のp倍、p倍、およびp倍である(1>p>p>p>0)。具体的には、p=0.5、p=0.25、p=0.125としてもよい。このようなEDS310は、例えば、第1の受光層311の量子効率を40%、第2の受光層312の量子効率を20%、第3の受光層313の量子効率を10%、第4の受光層314の量子効率を5%とすることによって実現できる。
 上記の場合、第2の受光層312、第3の受光層313および第4の受光層314で検出されるイベントの輝度変化は、それぞれ第1の受光層311で検出されるイベントの輝度変化の50%、25%および12.5%になり、第1から第4の受光層311~314でそれぞれ生成された第1から第4のイベント信号の遅延時間d~dの差分(d-d)、(d-d)および(d-d)は、それぞれ被写体の階調の50%、25%および12.5%に相当する。これによって、上記で図6を参照して説明した例と同様に、例えば条件を満たす遅延時間を正確に探索したり、階調の算出結果を安定させたりすることができる。
 以上で説明した本発明の第2の実施形態では、光量の変動を検出する感度が異なる受光層を同じ画素アドレスに積層し、それぞれの受光層で生成されたイベント信号の時間差から被写体の階調を算出する。これによって、第1の実施形態と同様に、イベント駆動型センサ(EDS)の高速性を損なうことなく被写体の階調を検出することができる。また、本実施形態では、感度の異なるセンサが同じ画素アドレスに積層されるため、解像度を下げることなく被写体の階調を算出することができる。
 (第3の実施形態)
 図9は、本発明の第3の実施形態に係るシステムの概略的な構成を示す図である。図9に示された例は、上記で図8を参照して説明した例の変形例として説明される。つまり、本実施形態において、センサシステム10Cは、4層の積層構造を有するセンサ310を含むセンサモジュール300と、画像処理装置200Cとを含む。センサモジュール300は、上記の第2の実施形態と同様に積層型のセンサ310を含むセンサアレイと、信号処理回路320とを含む。画像処理装置200Cは、例えば通信インターフェース、プロセッサ、およびメモリを有するコンピュータによって実装され、プロセッサがメモリに格納された、または通信インターフェースを介して受信されたプログラムに従って動作することによって実現されるイベント信号関連付け部210Cおよび階調判定部220Cの機能部分を含む。画像処理装置200Cは、さらに、画像生成部230の機能部分を含んでもよい。以下、画像処理装置200Cの各部についてさらに説明する。
 イベント信号関連付け部210Cは、信号処理回路320から入力される第1のイベント信号に、第2から第4のイベント信号を関連付ける。ここで、第1のイベント信号は、第1の受光層311によって構成される第1のセンサが輝度変動イベントに対して生成したものである。第1のイベント信号に関連付けられる第2から第4のイベント信号は、第2から第4の受光層312~314によって構成される第2から第4のセンサが、第1のセンサと同じ輝度変動イベントに対して生成したものである。
 なお、上記で図2A、図2Bおよび図3を参照して説明したように、センサの感度が異なるとイベントの発生からイベント信号の生成までの遅延時間が異なる。従って、第2から第4のイベント信号は、第1のイベント信号と同じ輝度変動イベントに対応するものであっても、第1のイベント信号よりも遅れて生成される。イベント信号関連付け部210Cは、例えばそれぞれのイベント信号の順序およびタイムスタンプの間隔に基づいて、イベント信号の関連付けを実行する。
 具体的には、イベント信号関連付け部210Cは、第2のイベント信号が第1のイベント信号の後に生成され、かつ第1のイベント信号と第2のイベント信号とのタイムスタンプの間隔が所定の範囲内の場合に、第2のイベント信号を第1のイベント信号に関連付ける。そのような第2のイベント信号がない場合、イベント信号関連付け部210Cは第1のイベント信号に第2のイベント信号を関連付けない。同様に、イベント信号関連付け部210Cは、第3のイベント信号が第2のイベント信号の後に生成され、かつ第2のイベント信号と第3のイベント信号とのタイムスタンプの間隔が所定の範囲内の場合に、第3のイベント信号を第1のイベント信号に関連付ける。そのような第3のイベント信号がない場合、および第1のイベント信号に第2のイベント信号が関連付けられていない場合、イベント信号関連付け部210Cは第1のイベント信号に第3のイベント信号を関連付けない。
 階調判定部220Cは、イベント信号関連付け部210Cにおけるイベント信号の関連付けの結果に応じて被写体の階調を判定する。図8を参照して説明したように、積層型のセンサ310の第1から第4の受光層311~314は、光量の変動に対する感度が段階的に低下するように構成されるため、輝度変動イベントを発生させた被写体の階調が低い場合には、感度が相対的に低い受光層において光量の変動量が閾値を超えず、その受光層によって構成されるセンサはイベント信号を生成しない。具体的には、イベントの輝度変化が最も大きい場合、第1の受光層311がイベント信号を生成したときには第2から第4の受光層312~314もイベント信号が生成するが、輝度変化が小さくなるにつれて、まず感度が最も低い第4の受光層314がイベント信号を生成しなくなり、さらに輝度変化が小さくなると第3の受光層313もイベント信号を生成しなくなり、検出可能な最も小さい輝度変化の場合には第2の受光層312もイベント信号を生成せず、第1の受光層311のみがイベント信号を生成する。
 本実施形態において、階調判定部220Cは、上記のような被写体の階調と各イベント信号の生成との関係に従って被写体の階調を判定する。具体的には、イベント信号関連付け部210Cによって第1のイベント信号に関連付けられた第2から第4のイベント信号のすべてが存在する場合に、階調判定部220Cは被写体の階調が最も高い水準であると判定する。一方、第1のイベント信号に関連付けられた第2および第3のイベント信号は存在するが、第4のイベント信号は存在しない場合、階調判定部220Cは被写体の階調が2番目の水準であると判定する。第1のイベント信号に関連付けられた第2のイベント信号のみが存在する場合、階調判定部220Cは被写体の階調が3番目の水準であると判定する。第1のイベント信号に関連付けられたイベント信号がない場合、階調判定部220Cは被写体の階調が最も低い水準であると判定する。このようにして判定された被写体の階調は、第1の実施形態と同様に、例えば画像生成部230による被写体の画像を生成や、イベント信号から認識される被写体に対する処理の選択するために用いられる。
 図10は、本発明の第3の実施形態における処理の例を示すフローチャートである。簡単のため、図10では第1のイベント信号および第2のイベント信号を用いた判定について説明するが、第3のイベント信号および第4のイベント信号を用いた判定についても同様である。図示された例では、まず、センサモジュール300で第1のセンサを構成する第1の受光層311が、輝度変動イベントに対して第1のイベント信号を生成する(ステップS201)。その時刻からわずかに遅れて、第2のセンサを構成する第2の受光層312が、同じ輝度変動イベントに対して第2のイベント信号を生成する(ステップS202)。なお、感度が相対的に低い第2の受光層312で光量の変動量が閾値を超えなかった場合は、第2のイベント信号は生成されない。
 次に、画像処理装置200Cにおいて、イベント信号関連付け部210Cが、第1のイベント信号に第2のイベント信号が関連付けられるか否かを判定する(ステップS203)。具体的には、イベント信号関連付け部210Cは、タイムスタンプによって示される第1のイベント信号および第2のイベント信号の順序と、タイムスタンプの間隔とに基づいて関連付けの可否を判定する。第1のイベント信号に第2のイベント信号が関連付けられた場合、階調判定部220Cは被写体の階調が相対的に高い水準であると判定する(ステップS204)。一方、第1のイベント信号に第2のイベント信号が関連付けられなかった場合、階調判定部220Cは被写体の階調が相対的に低い水準であると判定する(ステップS205)。
 なお、図示された例ではセンサ310が第1から第4の受光層311~314を含む4層の積層構造を有するが、他の例ではセンサ310が図7に示された例と同様に2層の積層構造を有してもよく、3層、または4層を超える積層構造を有してもよい。また、他の例において、センサモジュールは、上記で図1および図6を参照して説明したような、異なる感度のセンサが所定のパターンで平面的に配列されたセンサアレイを含んでもよい。
 以上で説明した本発明の第3の実施形態では、光量の変動を検出する感度が異なる受光層を同じ画素アドレスに積層し、どの受光層までがイベント信号を生成したかによって被写体の階調を判定する。これによって、第1の実施形態と同様に、イベント駆動型センサ(EDS)の高速性を損なうことなく被写体の階調を検出することができる。本実施形態では、被写体の階調が受光層の感度の数と同じ段階でしか検出されないが、被写体の階調とEDSの遅延時間との関係を予め測定する必要がないため簡便であり、また単純な判定によって安定的に被写体の階調を特定することができる。
 本発明の実施形態は、例えばゲームコントローラ、スマートフォン、各種の移動体(自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボットなど)で周辺環境の情報を取得したり、周辺の被写体の位置から自己位置を推定したり、飛来する被写体を検出して回避行動をとったりするために利用することができる。被写体の階調は、例えば上記のような用途において被写体を同定したり、被写体を識別したりするために有用でありうる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 10A,10B,10C…センサシステム、100…センサモジュール、111…第1のセンサ、112…第2のセンサ、113…第3のセンサ、114…第4のセンサ、115,116…フィルタ、120…信号処理回路、200A,200C…画像処理装置、210A…時刻差分取得部、210C…イベント信号関連付け部、220A…階調算出部、220C…階調判定部、230…画像生成部、240…遅延時間算出部、300…センサモジュール、310…センサ、311…第1の受光層、312…第2の受光層、313…第3の受光層、314…第4の受光層、320…信号処理回路。
 

Claims (7)

  1.  第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサ、および前記第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を前記第1の感度よりも低い第2の感度で検出する第2のセンサを含むセンサアレイと、
     前記第1のセンサが輝度変動イベントに対して第1のイベント信号を生成したときに、前記第2のセンサが前記輝度変動イベントに対して第2のイベント信号を生成したか否かに応じて前記輝度変動イベントを発生させた被写体の階調を判定する階調判定部と
     を備えるセンサシステム。
  2.  前記センサアレイは、前記第1のセンサを構成する透過型の第1の受光層に前記第2のセンサを構成する第2の受光層が積層された積層型のセンサを含み、
     前記第2の画素アドレスは、前記第1の画素アドレスに重複する、請求項1に記載のセンサシステム。
  3.  前記第2の受光層は、透過型であり、
     前記積層型のセンサでは、前記第1の画素アドレスにおける光量の変動を前記第2の感度よりも低い第3の感度で検出する第3のセンサを構成する第3の受光層がさらに積層され、
     前記階調判定部は、前記第2のセンサが前記輝度変動イベントに対して前記第2のイベント信号を生成したときに、前記第3のセンサが前記輝度変動イベントに対して第3のイベント信号を生成したか否かによって前記被写体の階調を判定する、請求項2に記載のセンサシステム。
  4.  第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサが輝度変動イベントに対して生成した第1のイベント信号に、前記第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を前記第1の感度よりも低い第2の感度で検出する第2のセンサが前記輝度変動イベントに対して生成した第2のイベント信号を関連付けるイベント信号関連付け部と、
     前記第1のイベント信号に関連付けられる前記第2のイベント信号の有無に応じて前記輝度変動イベントを発生させた被写体の階調を判定する階調判定部と
     を備える画像処理装置。
  5.  前記イベント信号関連付け部は、前記第1のイベント信号に、前記第1の画素アドレスに隣接または重複する第3の画素アドレスにおける光量の変動を前記第2の感度よりも低い第3の感度で検出する第3のセンサが前記輝度変動イベントに対して生成した第3のイベント信号を関連付け、
     前記階調判定部は、前記第1のイベント信号に関連付けられる前記第3のイベント信号の有無に応じて前記被写体の階調を判定する、請求項4に記載の画像処理装置。
  6.  第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサが、輝度変動イベントに対して第1のイベント信号を生成するステップと、
     前記第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を前記第1の感度よりも低い第2の感度で検出する第2のセンサが前記輝度変動イベントに対して第2のイベント信号を生成するか、または前記第2のイベント信号を生成しないステップと、
     前記第1のイベント信号に前記第2のイベント信号を関連付けるステップと、
     前記第1のイベント信号に関連付けられる前記第2のイベント信号の有無に応じて前記輝度変動イベントを発生させた被写体の階調を判定するステップと
     を含む画像処理方法。
  7.  第1の画素アドレスにおける光量の変動を第1の感度で検出する第1のセンサが輝度変動イベントに対して生成した第1のイベント信号に、前記第1の画素アドレスに隣接または重複する第2の画素アドレスにおける光量の変動を前記第1の感度よりも低い第2の感度で検出する第2のセンサが前記輝度変動イベントに対して生成した第2のイベント信号を関連付ける機能と、
     前記第1のイベント信号に関連付けられる前記第2のイベント信号の有無に応じて前記輝度変動イベントを発生させた被写体の階調を判定する機能と
     をコンピュータに実現させるためのプログラム。
     
PCT/JP2019/033708 2019-08-28 2019-08-28 センサシステム、画像処理装置、画像処理方法およびプログラム WO2021038751A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/033708 WO2021038751A1 (ja) 2019-08-28 2019-08-28 センサシステム、画像処理装置、画像処理方法およびプログラム
KR1020227004213A KR20220074854A (ko) 2019-08-28 2019-08-28 센서 시스템, 화상 처리 장치, 화상 처리 방법 및 프로그램
US17/635,301 US11653109B2 (en) 2019-08-28 2019-08-28 Sensor system, image processing apparatus, image processing method, and program
JP2021541868A JP7191238B2 (ja) 2019-08-28 2019-08-28 センサシステム、画像処理装置、画像処理方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033708 WO2021038751A1 (ja) 2019-08-28 2019-08-28 センサシステム、画像処理装置、画像処理方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2021038751A1 true WO2021038751A1 (ja) 2021-03-04

Family

ID=74684377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033708 WO2021038751A1 (ja) 2019-08-28 2019-08-28 センサシステム、画像処理装置、画像処理方法およびプログラム

Country Status (4)

Country Link
US (1) US11653109B2 (ja)
JP (1) JP7191238B2 (ja)
KR (1) KR20220074854A (ja)
WO (1) WO2021038751A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186478A (ja) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2019135411A1 (ja) * 2018-01-05 2019-07-11 株式会社ニコン 検出装置およびセンサ
JP2019134271A (ja) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136055B1 (ko) * 2014-01-08 2020-07-21 삼성전자 주식회사 오픈-루프 증폭기를 포함하는 비전 센서 칩, 이의 동작 방법, 및 이를 포함하는 데이터 처리 시스템
JP6299299B2 (ja) * 2014-03-14 2018-03-28 オムロン株式会社 事象検出装置および事象検出方法
US10277805B2 (en) * 2014-05-30 2019-04-30 Hitachi Kokusai Electric Inc. Monitoring system and camera device
FR3034204A1 (ja) 2015-03-23 2016-09-30 Stmicroelectronics (Grenoble 2) Sas
KR102523136B1 (ko) * 2015-09-01 2023-04-19 삼성전자주식회사 이벤트 기반 센서 및 이벤트 기반 센서의 픽셀
KR102421141B1 (ko) 2015-10-30 2022-07-14 삼성전자주식회사 이벤트 신호 및 영상의 저장 방법 및 저장 장치, 저장 장치로 이벤트 신호를 전송하는 비전 센서의 동작 방법
CN108574793B (zh) 2017-03-08 2022-05-10 三星电子株式会社 被配置为重新生成时间戳的图像处理设备及包括其在内的电子设备
US20190281238A1 (en) 2018-03-09 2019-09-12 Caeleste Cvba Double source follower hdr pixel
US10598936B1 (en) 2018-04-23 2020-03-24 Facebook Technologies, Llc Multi-mode active pixel sensor
US11463636B2 (en) * 2018-06-27 2022-10-04 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
EP3920211A4 (en) * 2019-01-31 2022-04-13 Sony Semiconductor Solutions Corporation SOLID STATE IMAGING DEVICE AND IMAGING DEVICE
JP2020136958A (ja) * 2019-02-21 2020-08-31 ソニーセミコンダクタソリューションズ株式会社 イベント信号検出センサ及び制御方法
CN114270804A (zh) * 2019-08-28 2022-04-01 索尼互动娱乐股份有限公司 传感器系统、图像处理装置、图像处理方法和程序
JP2021040294A (ja) * 2019-08-30 2021-03-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186478A (ja) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2019135411A1 (ja) * 2018-01-05 2019-07-11 株式会社ニコン 検出装置およびセンサ
JP2019134271A (ja) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Also Published As

Publication number Publication date
US20220311957A1 (en) 2022-09-29
US11653109B2 (en) 2023-05-16
KR20220074854A (ko) 2022-06-03
JPWO2021038751A1 (ja) 2021-03-04
JP7191238B2 (ja) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2021038749A1 (ja) センサシステム、画像処理装置、画像処理方法およびプログラム
CN101677359B (zh) 图像传感装置及缺陷像素检测方法
JP2013530466A (ja) ステレオカメラシステムの光学式自己診断
CN104272723A (zh) 特别用于将时变图像数据的取样亮度感测和异步检测相结合的光电阵列
CN101815221A (zh) 图像处理设备和图像处理方法
US11678074B2 (en) Sensor control apparatus, sensor control method, and program
US20080273793A1 (en) Signal processing apparatus and method, noise reduction apparatus and method, and program therefor
US8643751B2 (en) Method for detecting dead pixels and computer program product thereof
JP6731645B2 (ja) 画像監視装置、画像監視方法および画像監視プログラム
CN108259789A (zh) 固态成像设备
US11330219B2 (en) Dynamic vision sensor system
CN109640011A (zh) 固态成像设备和成像系统
JP6953297B2 (ja) 撮像装置及び撮像システム
EP2944257B1 (en) Radiation imaging apparatus, method of determining radiation irradiation, and storage medium
JP2017204699A (ja) 撮像装置、および撮像方法
CN103037178A (zh) 图像处理装置、校正方法和成像装置
WO2021038751A1 (ja) センサシステム、画像処理装置、画像処理方法およびプログラム
US20240107194A1 (en) Delay Equalization in Event-Based Vision Sensors
US8576310B2 (en) Image processing apparatus, camera module, and image processing method
US10255687B2 (en) Distance measurement system applicable to different reflecting surfaces and operating method thereof
CN107888851A (zh) 成像设备、成像系统、移动体和控制方法
JP2009017158A (ja) カメラ検査装置
JP2012191595A (ja) 撮像装置
US8054347B2 (en) Image sensor systems having improved noise performance
JP2002330354A (ja) 欠損画素検出補正装置、欠損画素検出補正方法、欠損画素検出補正プログラム、および、映像信号処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943111

Country of ref document: EP

Kind code of ref document: A1