CN116313062A - 一种肺腺癌预后模型 - Google Patents

一种肺腺癌预后模型 Download PDF

Info

Publication number
CN116313062A
CN116313062A CN202310560964.0A CN202310560964A CN116313062A CN 116313062 A CN116313062 A CN 116313062A CN 202310560964 A CN202310560964 A CN 202310560964A CN 116313062 A CN116313062 A CN 116313062A
Authority
CN
China
Prior art keywords
gene
polyamine metabolism
lung adenocarcinoma
model
prognosis model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310560964.0A
Other languages
English (en)
Other versions
CN116313062B (zh
Inventor
曹邦荣
马容
赵琪
李枭虓
张瀚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Cancer Hospital
Original Assignee
Sichuan Cancer Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Cancer Hospital filed Critical Sichuan Cancer Hospital
Priority to CN202310560964.0A priority Critical patent/CN116313062B/zh
Publication of CN116313062A publication Critical patent/CN116313062A/zh
Application granted granted Critical
Publication of CN116313062B publication Critical patent/CN116313062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种肺腺癌预后模型,属于肿瘤分子生物学技术领域,所述肺腺癌预后模型基于多胺代谢相关基因SMS、SMOX、GPC1、SLC47A1、AZIN2和MAOB的组合进行构建;构建方法为:从癌症基因组图谱数据库和基因表达综合数据库中收集构建多胺代谢相关基因肺腺癌预后模型的训练集和验证集;从KEGG、GO数据库和文献中整理多胺代谢相关基因;通过LASSO‑COX回归构建多胺代谢相关基因的预后模型;本发明的预后模型C‑index提高约10.5%,取得了协同增效的效果,预后模型预测准确性、普适性均得到提高,能够为临床医师对肺腺癌患者的治疗决策提供更准确的指导意见。

Description

一种肺腺癌预后模型
技术领域
本发明涉及肿瘤分子生物学技术领域,尤其涉及一种肺腺癌预后模型。
背景技术
肺癌是全球死亡率最高的癌症,5年生存率约为16.6%。肺腺癌是肺癌最常见的组织学表现。近年来,肺腺癌发展为多种治疗方法,如手术切除、化疗、放疗、分子靶向治疗及免疫治疗等,但肺腺癌患者的总体生存时间并没有明显改善,主要原因是缺乏有用的分子生物标志物。因此,鉴定肺腺癌生物标志物,提高对肺腺癌分子机制的了解,开发新的治疗策略对改善患者预后十分必要。
多胺(腐胺、亚精胺和精胺)是广泛存在于真核生物的一类低分子脂肪族阳离子化合物,是真核生物生长和存活的必需物质。细胞内多胺水平受到多胺生物合成、分解代谢和转运的严格控制和调节。在癌症中,多胺代谢经常失调,而多胺水平异常升高是肿瘤转化和进展的重要条件。近年来,越来越多研究报道多胺代谢基因表达量(如SMS、SMOX和AZIN2)可作为癌症患者的预后参数,然而,关于多胺代谢相关基因组合的潜在预后作用尚未被探讨。
发明内容
本发明的目的,就在于提供一种肺腺癌预后模型,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种肺腺癌预后模型,所述肺腺癌预后模型基于六种多胺代谢相关基因进行构建,所述六种多胺代谢相关基因为SMS、SMOX、GPC1、SLC47A1、AZIN2和MAOB,
其构建方法为,包括下述步骤:
(1)从癌症基因组图谱数据库和基因表达综合数据库中收集构建多胺代谢相关基因肺腺癌预后模型的训练集和验证集;
(2)从KEGG、GO数据库和文献中整理多胺代谢相关基因;
(3)通过LASSO-COX回归构建多胺代谢相关基因的预后模型,具体构建方法为:使用R包“glmnet”在训练集中建立LASSO-COX回归模型;用bootstrap法进行惩罚最大似然估计,重复1000次;由偏似然偏差最小值确定最优正则化参数λ,再以该λ值确定最佳基因数目及回归系数,预后模型的计算方法为:
风险评分=
Figure SMS_1
其中,n表示为基因总量,expi表示为基因i的表达量,cori表示为基因i在回归分析中的回归系数。
与现有技术相比,本发明的优点在于:本发明中,通过多个独立数据验证,结果表明,SMS、SMOX、AZIN2单基因模型一致性指数(C-index)中位值分别为0.55、0.59、0.57,而多胺代谢相关基因组合预后模型的C-index为0.63(表1),相较于现有的单基因模型,本发明的多胺代谢相关基因组合预后模型C-index提高约10.5%,取得了协同增效的效果,而多胺代谢核心基因SMS、SMOX和AZIN2三基因模型、ODC1、SRM、SMS、SMOX和AZIN2五基因模型以及ODC1、AMD1、SRM、SMS、SAT1、PAOX、SMOX、OAZ1、OAZ3、AZIN1和AZIN2的十一基因模型C-index分别为0.59、0.60和0.57(表1),从而证实并非任意多胺代谢相关基因联合都能取得本发明效果。因此,本发明的多胺代谢相关基因组合预后模型预测准确性、普适性均得到提高,能够为临床医师对肺腺癌患者的治疗决策提供更准确的指导意见。
附图说明
图1是本发明实施例1的肺腺癌预后模型构建流程图;
图2是本发明构建多胺代谢相关基因预后模型的系数示意图;
图3是本发明构建多胺代谢相关基因预后模型的参数示意图;
图4是本发明训练集中多胺代谢相关的六基因特征ROC曲线示意图;
图5是本发明训练集中多胺代谢相关的六基因特征单因素COX回归结果示意图;
图6是本发明训练集中多胺代谢相关的六基因特征多因素COX回归结果示意图;
图7是本发明训练集中多胺代谢相关的六基因特征生存曲线示意图;
图8是本发明验证集GSE3141与多胺代谢相关的六基因特征的验证示意图;
图9是本发明验证集GSE31210与多胺代谢相关的六基因特征的验证示意图;
图10是本发明验证集GSE41271与多胺代谢相关的六基因特征的验证示意图;
图11是本发明验证集GSE42127与多胺代谢相关的六基因特征的验证示意图;
图12是本发明验证集GSE50081与多胺代谢相关的六基因特征的验证示意图;
图2、图3横坐标为数学公式计算出的数值,没有单位;图4、图5、图6横坐标为比例,没有单位;图7、图8、图9、图10、图11、图12的横坐标为“时间(年)”。
具体实施方式
为了更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式,进一步阐明本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种肺腺癌预后模型,其构建流程图如图1所示,包括下述步骤:
1)数据集
从癌症基因组图谱(TCGA)数据库中检索肺腺癌患者RNA表达谱数据和相应的临床数据;验证队列RNA表达谱数据和临床信息是从基因表达综合(GEO)数据库获得(编号:GSE3141、GSE31210、GSE41271、GSE42127和GSE50081);
2)多胺代谢相关基因
下载并整理富集到KEGG(即:京都基因与基因组百科全书)、GO(即:GeneOntology,基因本体)数据库中的多胺代谢相关基因,并参考文献“Holbert C E , CullenM T , Casero R A , et al. Polyamines in cancer: integrating organismalmetabolism and antitumour immunity[J]. NAT REV CANCER, 2022(8): 467-480”和“Harbison RA, Pandey R, Considine M, et al. Interrogation of T Cell-EnrichedTumors Reveals Prognostic and Immunotherapeutic Implications of PolyamineMetabolism[J]. Cancer Res Commun. 2022,2(7):639-652”,整理出多胺代谢相关基因;
3)多胺代谢相关基因预后模型的构建
根据整理的多胺代谢相关基因,使用R包“glmnet”在训练集中建立LASSO-COX回归模型;用bootstrap法进行了惩罚最大似然估计,重复1000次;由偏似然偏差最小值确定最优正则化参数λ,再以该λ值确定最佳基因数目及回归系数,预后模型的计算方法为:
风险评分=
Figure SMS_2
其中,n表示为基因总量,expi表示为基因i的表达量,cori表示为基因i在回归分析中的回归系数;根据中位风险评分将LUAD患者分为低风险组和高风险组,并使用Kaplan-Meier分析比较两组之前总生存率(OS);R包“survival”、“survminer”、“timeROC”用于1、3和5年的受试者工作特征(ROC)曲线图和去线下面积(AUC)计算;将临床病理特征(性别、年龄、分期)和风险评分纳入多因素COX回归分析,以验证预后模型的风险评分是否可以作为预测总体生存结果的独立危险因素;使用来自GEO数据库的LUAD队列(GSE3141、GSE31210、GSE41271、GSE42127和GSE50081)进行验证,并通过与上述相同的方法计算风险评分,将队列分为2个亚组(低风险组和高风险组);
LASSO-COX回归模型中,随着λ值取值增大基因的回归系数逐渐收缩,当回归系数为零时该基因将被排除(图2)。根据1000次bootstrap抽样结果,当偏似然偏差取最小值时,对应的最优正则化参数λ值为0.0519(图3)。此时得到6个用于预后模型构建的基因,即SMS、SMOX、GPC1、SLC47A1、AZIN2和MAOB,每个基因对应的回归系数用于计算风险评分,如图2、图3所示;图2和图3中的箭头指示的是最优正则化参数λ取自然对数后的位置;图2、图3中部分基因数字是相同的,表示不同的λ值对应的相同的基因数目。
实施例2
模型验证:
1.风险评分计算如下:
风险评分=(0.184292×SMS表达水平)+(0.102858×SMOX表达水平)+(0.062673×GPC1表达水平) +(-0.076306×SLC47A1表达水平)+(-0.028864×AZIN2表达水平) +(-0.020893×MAOB表达水平)。根据计算的中位风险评分,分为高风险组和低风险组,高风险组的OS显著低于低风险组(P<0.001,图7)。
根据ROC曲线,1年、3年、5年生存预后模型的AUC分别为0.671、0.702、0.670(图4),表明模型具有较好的预测效果;单因素和多因素COX结果表明风险评分也可作为独立预后因素(图5、图6)。
2. GSE3141、GSE31210、GSE41271、GSE42127和GSE50081验证集中高风险组OS显著低于低风险组(分别如图8、图9、图10、图11和图12所示),成功验证本发明的普适性。
本实施例的多胺代谢相关基因组合预后模型C-index相较于单基因模型提高约10.5%,相较于多基因模型提高约7.9%,如表1所示:
表1本发明多胺代谢相关基因特征准确性、普适性验证
Figure SMS_3
虽然本发明以较佳实施例揭露如上,但并非用以限定本发明的实施范围。任何本领域的普通技术人员,在不脱离本发明的发明范围内,当可作些许改进,即凡是依照本发明作的同等改进,因为本发明的范围所涵盖。

Claims (1)

1.一种肺腺癌预后模型,其特征在于:所述肺腺癌预后模型基于六种多胺代谢相关基因进行构建,所述六种多胺代谢相关基因为SMS、SMOX、GPC1、SLC47A1、AZIN2和MAOB,
其构建方法为,包括下述步骤:
(1)从癌症基因组图谱数据库和基因表达综合数据库中收集构建多胺代谢相关基因肺腺癌预后模型的训练集和验证集;
(2)从KEGG、GO数据库和文献中整理多胺代谢相关基因;
(3)通过LASSO-COX回归构建多胺代谢相关基因的预后模型,具体构建方法为:使用R包“glmnet”在训练集中建立LASSO-COX回归模型;用bootstrap法进行惩罚最大似然估计,重复1000次;由偏似然偏差最小值确定最优正则化参数λ,再以该λ值确定最佳基因数目及回归系数,预后模型的计算方法为:
风险评分=
Figure QLYQS_1
其中,n表示为基因总量,expi表示为基因i的表达量,cori表示为基因i在回归分析中的回归系数。
CN202310560964.0A 2023-05-18 2023-05-18 一种肺腺癌预后模型 Active CN116313062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310560964.0A CN116313062B (zh) 2023-05-18 2023-05-18 一种肺腺癌预后模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310560964.0A CN116313062B (zh) 2023-05-18 2023-05-18 一种肺腺癌预后模型

Publications (2)

Publication Number Publication Date
CN116313062A true CN116313062A (zh) 2023-06-23
CN116313062B CN116313062B (zh) 2023-07-21

Family

ID=86803563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310560964.0A Active CN116313062B (zh) 2023-05-18 2023-05-18 一种肺腺癌预后模型

Country Status (1)

Country Link
CN (1) CN116313062B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110294684A1 (en) * 2008-06-20 2011-12-01 Kanton Basel-Stadt Represented By The University Hospital Basel Gene expression signatures for lung cancers
CN112735529A (zh) * 2021-01-18 2021-04-30 中国医学科学院肿瘤医院 乳腺癌预后模型的构建方法及应用方法、电子设备
US20220042001A1 (en) * 2020-01-07 2022-02-10 Board Of Regents, The University Of Texas System Improved human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
CN114496066A (zh) * 2022-04-13 2022-05-13 南京墨宁医疗科技有限公司 一种三阴性乳腺癌预后的基因模型的构建方法及其应用
CN114540499A (zh) * 2022-03-17 2022-05-27 郑州源创吉因实业有限公司 基于pcd相关基因组合构建的模型在制备预测结肠腺癌预后产品中的应用
WO2022125425A1 (en) * 2020-12-07 2022-06-16 University Of Miami Method of treating polyamine imbalance-related disorders
CN114974598A (zh) * 2022-06-29 2022-08-30 山东大学 一种肺癌预后预测模型构建方法及肺癌预后预测系统
WO2022187690A1 (en) * 2021-03-05 2022-09-09 Umbra Therapeutics Inc. Covalent binding compounds for the treatment of disease
CN115482935A (zh) * 2022-11-14 2022-12-16 中国医学科学院肿瘤医院 预测小细胞转化的肺腺癌患者预后模型及其建立方法
CN115588507A (zh) * 2022-09-02 2023-01-10 山西省肿瘤医院 一种肺腺癌emt相关基因的预后模型及构建方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110294684A1 (en) * 2008-06-20 2011-12-01 Kanton Basel-Stadt Represented By The University Hospital Basel Gene expression signatures for lung cancers
US20220042001A1 (en) * 2020-01-07 2022-02-10 Board Of Regents, The University Of Texas System Improved human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
WO2022125425A1 (en) * 2020-12-07 2022-06-16 University Of Miami Method of treating polyamine imbalance-related disorders
CN112735529A (zh) * 2021-01-18 2021-04-30 中国医学科学院肿瘤医院 乳腺癌预后模型的构建方法及应用方法、电子设备
WO2022187690A1 (en) * 2021-03-05 2022-09-09 Umbra Therapeutics Inc. Covalent binding compounds for the treatment of disease
CN114540499A (zh) * 2022-03-17 2022-05-27 郑州源创吉因实业有限公司 基于pcd相关基因组合构建的模型在制备预测结肠腺癌预后产品中的应用
CN114496066A (zh) * 2022-04-13 2022-05-13 南京墨宁医疗科技有限公司 一种三阴性乳腺癌预后的基因模型的构建方法及其应用
CN114974598A (zh) * 2022-06-29 2022-08-30 山东大学 一种肺癌预后预测模型构建方法及肺癌预后预测系统
CN115588507A (zh) * 2022-09-02 2023-01-10 山西省肿瘤医院 一种肺腺癌emt相关基因的预后模型及构建方法和应用
CN115482935A (zh) * 2022-11-14 2022-12-16 中国医学科学院肿瘤医院 预测小细胞转化的肺腺癌患者预后模型及其建立方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张洁等: "多胺代谢及其在肿瘤中的异常改变与干预", 生命科学, vol. 32, no. 10, pages 1047 - 1057 *
蒋滢, 黄美英, 徐颖, 戴英: "多胺代谢与癌肿的研究", 氨基酸和生物资源, no. 03, pages 35 - 38 *
马容等: "多胺在癌症治疗中的作用及机制", 生物技术通报, vol. 32, no. 02, pages 46 - 50 *

Also Published As

Publication number Publication date
CN116313062B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN112048559B (zh) 基于m6A相关的IncRNA网络胃癌预后的模型构建及临床应用
CN111863159B (zh) 一种肿瘤免疫治疗疗效预测的列线图模型的建立方法
CN114203256B (zh) 基于微生物丰度的mibc分型及预后预测模型构建方法
CN113096739A (zh) 一种卵巢癌的免疫预后诊断标志物组合的分析方法
CN116403643A (zh) 肝癌预后标志物筛选系统及方法、肝癌预后风险评估系统
CN116313062B (zh) 一种肺腺癌预后模型
CN113345592B (zh) 一种急性髓细胞样白血病预后风险模型的构建及诊断设备
CN108611416B (zh) 一种基于多基因表达特征谱的宫颈癌个性化预后评估方法
CN108647493B (zh) 一种肾透明细胞癌个性化预后评估方法
CN111944902A (zh) 一种基于lincRNA表达谱组合特征的肾乳头状细胞癌早期预测方法
CN111763738A (zh) 一种特征mRNA表达谱组合及肝癌早期预测方法
Goungounga et al. Correcting for heterogeneity and non‐comparability bias in multicenter clinical trials with a rescaled random‐effect excess hazard model
CN111944900A (zh) 一种特征lincRNA表达谱组合及子宫内膜癌早期预测方法
CN115424728A (zh) 一种肿瘤恶性细胞基因预后风险模型构建方法
CN110055328A (zh) 一种基于代谢基因谱的肺腺癌诊断标志物
CN114496097A (zh) 一种胃癌代谢基因预后预测方法和装置
CN111808965A (zh) 一种特征lincRNA表达谱组合及肾透明细胞癌早期预测方法
CN111850124A (zh) 一种特征lincRNA表达谱组合及肺鳞癌早期预测方法
Li et al. Outcome-guided disease subtyping by generative model and weighted joint likelihood in transcriptomic applications
Tsai et al. Significance analysis of ROC indices for comparing diagnostic markers: applications to gene microarray data
Li et al. Identification and validation of GABA‐driven subtypes and prognosis signature of lung adenocarcinoma
CN115171887B (zh) 基于免疫相关细胞对的黑素瘤预后预测系统
CN111793691A (zh) 一种特征mRNA表达谱组合及肺鳞癌早期预测方法
Sur Data Driven Methods for Scaffolding Genomes with Hi-C
CN111718997A (zh) 一种特征mRNA表达谱组合及胃癌早期预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant