CN113345592B - 一种急性髓细胞样白血病预后风险模型的构建及诊断设备 - Google Patents
一种急性髓细胞样白血病预后风险模型的构建及诊断设备 Download PDFInfo
- Publication number
- CN113345592B CN113345592B CN202110680914.7A CN202110680914A CN113345592B CN 113345592 B CN113345592 B CN 113345592B CN 202110680914 A CN202110680914 A CN 202110680914A CN 113345592 B CN113345592 B CN 113345592B
- Authority
- CN
- China
- Prior art keywords
- acute myeloid
- myeloid leukemia
- sample
- tested
- gene expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 208000031261 Acute myeloid leukaemia Diseases 0.000 title claims abstract description 134
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 title claims abstract description 133
- 238000004393 prognosis Methods 0.000 title claims abstract description 33
- 238000010276 construction Methods 0.000 title claims abstract description 13
- 238000003745 diagnosis Methods 0.000 title claims description 24
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 78
- 230000014509 gene expression Effects 0.000 claims abstract description 75
- 206010021143 Hypoxia Diseases 0.000 claims abstract description 53
- 230000007954 hypoxia Effects 0.000 claims abstract description 50
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000010801 machine learning Methods 0.000 claims abstract description 9
- 230000004083 survival effect Effects 0.000 claims description 34
- 102100029492 Glycogen phosphorylase, muscle form Human genes 0.000 claims description 27
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 27
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 25
- 101150039808 Egfr gene Proteins 0.000 claims description 22
- 101150029918 PYGM gene Proteins 0.000 claims description 22
- 108700021358 erbB-1 Genes Proteins 0.000 claims description 22
- 101150039713 gpc3 gene Proteins 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 15
- 238000000611 regression analysis Methods 0.000 claims description 10
- 101000700475 Homo sapiens Glycogen phosphorylase, muscle form Proteins 0.000 claims description 7
- 101001014668 Homo sapiens Glypican-3 Proteins 0.000 claims description 7
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 238000003012 network analysis Methods 0.000 claims description 6
- 208000032839 leukemia Diseases 0.000 claims description 5
- 230000037361 pathway Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 108091023040 Transcription factor Proteins 0.000 claims description 3
- 102000040945 Transcription factor Human genes 0.000 claims description 3
- 230000004186 co-expression Effects 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000001154 acute effect Effects 0.000 claims 1
- 210000000066 myeloid cell Anatomy 0.000 claims 1
- 239000000523 sample Substances 0.000 description 41
- 238000004458 analytical method Methods 0.000 description 12
- 238000010200 validation analysis Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 4
- 230000004850 protein–protein interaction Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010201 enrichment analysis Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 102100032530 Glypican-3 Human genes 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 230000006916 protein interaction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102100031856 ERBB receptor feedback inhibitor 1 Human genes 0.000 description 1
- 101000920812 Homo sapiens ERBB receptor feedback inhibitor 1 Proteins 0.000 description 1
- 101001122995 Homo sapiens Protein phosphatase 1 regulatory subunit 3C Proteins 0.000 description 1
- 101000692109 Homo sapiens Syndecan-2 Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 101150097381 Mtor gene Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 208000031951 Primary immunodeficiency Diseases 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100028506 Protein phosphatase 1 regulatory subunit 3C Human genes 0.000 description 1
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 102100026087 Syndecan-2 Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000018747 cellular response to hypoxia Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000010199 gene set enrichment analysis Methods 0.000 description 1
- 210000003731 gingival crevicular fluid Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 238000009595 pap smear Methods 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000020874 response to hypoxia Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种急性髓细胞样白血病预后风险模型的构建及诊断设备。模型的构建方法包括:获取缺氧相关基因;获取急性髓细胞样白血病基因表达数据作为训练数据集;利用回归模型或机器学习,在训练数据集中,对所述缺氧相关基因进行特征选择,得到预后风险相关基因;利用所述预后风险相关基因构建急性髓细胞样白血病预后风险模型。本发明构建的模型预测急性髓细胞样白血病患者的预后准确率高,为临床治疗急性髓细胞样白血病指明了方向。
Description
技术领域
本发明涉及生物信息技术领域,更具体地,涉及一种急性髓细胞样白血病预后风险模型的构建、诊断设备和计算机可读存储介质。
背景技术
急性髓系白血病(AML)是一种侵袭性的髓系恶性肿瘤,是成人中最常见的急性白血病类型,约占病例的70%,其特点是细胞快速增殖和高死亡率。由于对急性髓系白血病缺乏完整的认识,其临床结果仍不令人满意。经典治疗策略从化疗到靶向治疗效果都差强人意,对于大多数超过60岁的病人术后五年生存率只有10-20%,复发的患者很少能存活超过5年。为了提高AML患者的生存率,需要开发新的AML治疗方法和预测其预后的方法。
肿瘤缺氧是恶性肿瘤实体生长的标志,深刻影响恶性肿瘤的进展,并有助于发展治疗耐药性。然而,到目前为止,还没有关于AML的缺氧相关研究。
发明内容
本研究首次开发了AML缺氧预后风险模型,该模型可用于预测AML组的预后,模型所涉及的相关分子指标会帮助临床医生做出重要的治疗决策。
本发明提供一种急性髓细胞样白血病预后风险模型的构建方法,包括:
获取缺氧相关基因;
获取急性髓细胞样白血病基因表达数据作为训练数据集;
利用回归模型或机器学习,在训练数据集中,对所述缺氧相关基因进行特征选择,得到预后风险相关基因;
利用所述预后风险相关基因构建急性髓细胞样白血病预后风险模型。
进一步,所述获取缺氧相关基因是获取GSEA数据库中缺氧相关基因。
进一步,获取GSEA数据库(hallmark-hypoxia)200个缺氧相关基因。
当组织得不到充足的氧,或不能充分利用氧时,组织的代谢、机能、甚至形态结构都可能发生异常变化,这一病理过程称为缺氧(hypoxia)。细胞对缺氧的反应以一定数量的基因表达改变为特征,这些表达改变的基因被称之为缺氧相关基因。
进一步,获取缺氧相关基因还包括如下处理:通过蛋白质相互网络、基因共表达网络、转录因子调控网络、pathway网络中的一种或几种基于网络分析方法筛选出排名靠前的缺氧相关基因。
蛋白质-蛋白质相互作用(protein-protein interaction,PPI)是指两个或两个以上的蛋白质分子通过非共价键形成蛋白质复合体(protein complex)的过程。
可选的,通过PPI网络分析方法筛选出排名靠前的缺氧相关基因;更可选的,通过MCC、DMNC、MNC、Degree、EPC、EcCentricity、Closeness、Radiality中的一种或几种分析方法筛选出排名靠前的缺氧相关基因。
所述排名靠前可以是排名前50、40、30、20、10、5、3等任选整数,优选排名前5、前10或排名前20。
进一步,获取TCGA或GEO等公开数据库中的急性髓细胞样白血病基因表达数据作为训练数据集;可选的,将所述TCGA或GEO等公开数据库中的急性髓细胞样白血病基因表达数据分为训练集和验证集。
进一步,所述利用回归模型是通过单因素COX回归模型进行特征选择,得到预后风险相关基因,利用所述预后风险相关基因,采用LASSO COX回归分析或多因素COX回归分析,构建急性髓细胞样白血病预后风险模型。
Cox回归模型,又称“比例风险回归模型(proportional hazards model,简称Cox模型)”,是由英国统计学家提出的一种半参数回归模型。该模型以生存结局和生存时间为应变量,可同时分析众多因素对生存期的影响,能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型。
基因表达是指将来自基因的遗传信息合成功能性基因产物的过程,基因表达数据包括mRNA表达水平数据和/或蛋白表达水平数据。
进一步,将所述构建急性髓细胞样白血病预后风险模型作为特征向量,选取临床病理特征,利用所述特征向量和临床病理特征构建急性髓细胞样白血病预后综合风险模型。
可选的,临床病理特征由临床医生挑选出与急性髓细胞样白血病可能相关的候选临床病理因素;更可选的,临床病理特征包括年龄、性别等;更可选的,临床病理特征为年龄。
进一步,所述选取临床病理特征包括:采用回归模型或机器学习筛选出与急性髓细胞样白血病生存相关的临床病理特征。可选的,将具体某一项临床病理特征进行单因素Cox独立预后分析,筛选出与急性髓细胞样白血病生存相关的临床病理特征。
可选的,所述与急性髓细胞样白血病生存相关的临床病理特征是指进行单因素Cox独立预后分析时,pvalue值小于0.05。更可选的,pvalue值小于0.01。
进一步,输入年龄等临床病理因素与所述构建的急性髓细胞样白血病预后风险模型,采用多因素回归模型,构建急性髓细胞样白血病预后综合风险模型。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的基因表达数据或基因表达数据及临床病理特征;
将所述待测样本的基因表达数据输入所述的急性髓细胞样白血病预后风险模型中,或将所述待测样本的基因表达数据及临床病理特征输入所述的急性髓细胞样白血病预后综合风险模型中;
获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器,所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:获取待测样本的EGFR、PYGM和GPC3基因表达数据;
根据EGFR、PYGM和GPC3基因表达情况,获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器,所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:获取待测样本的EGFR、PYGM和GPC3基因表达数据和临床病理特征;
根据EGFR、PYGM和GPC3基因表达情况和临床病理特征,获得待测样本急性髓细胞样白血病预后风险预测结果。
可选的,所述临床病理特征为年龄。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的基因表达数据或基因表达数据及临床病理特征;
处理单元,用于将所述待测样本的基因表达数据输入所述的急性髓细胞样白血病预后风险模型中,或将所述待测样本的基因表达数据及临床病理特征输入所述的急性髓细胞样白血病预后综合风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的EGFR、PYGM和GPC3基因表达数据;
处理单元,用于根据EGFR、PYGM和GPC3基因表达情况,获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的EGFR、PYGM和GPC3基因表达数据及临床病理特征;
处理单元,用于根据EGFR、PYGM和GPC3基因表达数据及临床病理特征,获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的急性髓细胞样白血病预后风险预测。
本申请的优点:本申请利用数据库中的AML数据,基于缺氧相关基因构建了一个高效急性髓细胞样白血病预后风险模型,继而将该急性髓细胞样白血病预后风险模型与临床病理特征结合,获得更加准确的急性髓细胞样白血病预后综合风险模型,用临床病理特征和多个基因特征来预测急性髓细胞样白血病患者的预后,准确率高,本申请为临床治疗急性髓细胞样白血病指明了方向。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1是本发明实施例提供的一种基于急性髓细胞样白血病预后风险模型的构建示意流程图;
图2是训练集缺氧相关基因单因素Cox回归分析结果;
图3是训练集缺氧相关基因单因素Cox分析的森林图;
图4是训练集缺氧相关基因多因素Cox分析结果;
图5是训练集缺氧相关基因多因素Cox分析的森林图;
图6是TCGA-LAML训练集中高低风险分组的风险曲线,A图显示患者从左到右风险得分依次增大;B图横坐标为根据风险得分高低进行排序的患者样本,纵坐标为生存时间,C图为高低风险组的基因表达热图;
图7是TCGA-LAML训练集中高低风险分组的生存曲线;
图8是TCGA-LAML训练集中1/3/5年的ROC曲线;
图9是TCGA-LAML验证集中高低风险组生存曲线;
图10是TCGA-LAML验证集中1/3/5年的ROC曲线;
图11是本发明实施例提供的一种基于急性髓细胞样白血病预后综合风险模型的构建示意流程图;
图12是TCGA-SKCM不同临床信息下的生存和表达分析,A为年龄组,B为性别组;
图13是风险基因的表达与临床特征的相关性;
图14是单因素Cox独立预后分析;
图15是多因素Cox独立预后分析;
图16是列线图预测患者1、3和5年生存率;
图17是列线图1、3和5年矫正曲线;
图18是本发明实施例提供的一种急性髓细胞样白血病预后风险诊断设备;
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本发明的说明书和权利要求书及上述附图中的描述的一些流程中,包含了按照特定顺序出现的多个操作,但是应该清楚了解,这些操作可以不按照其在本文中出现的顺序来执行或并行执行,操作的序号如101、102等,仅仅是用于区分开各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例提供的一种基于急性髓细胞样白血病预后风险模型的构建示意流程图,具体地,所述方法包括如下步骤:
101:获取缺氧相关基因;
102:获取急性髓细胞样白血病基因表达数据作为训练数据集;
103:利用回归模型或机器学习,在训练数据集中,对所述缺氧相关基因进行特征选择,得到预后风险相关基因;
104:利用所述预后风险相关基因构建急性髓细胞样白血病预后风险模型。
在一个实施例中,101和102步骤可进行调换,先获取急性髓细胞样白血病基因表达数据作为训练数据集,后获取缺氧相关基因,或者同时获取。
在一个实施例中,获取GSEA数据库中缺氧相关基因,从“基因集合富集分析”(hallmark-hypoxia)中下载了与缺氧相关的基因集,其中包含200个对缺氧水平反应上调的基因。
在一个实施例中,获取缺氧相关基因还包括如下处理:通过蛋白质相互网络、基因共表达网络、转录因子调控网络、pathway网络中的一种或几种基于网络分析方法筛选出排名靠前的缺氧相关基因。
在一个实施例中,通过PPI网络分析方法筛选出排名靠前的缺氧相关基因;在一个实施例中,通过MCC、DMNC、MNC、Degree、EPC、EcCentricity、Closeness、Radiality中的一种或几种分析方法筛选出排名靠前的缺氧相关基因。
在一个实施例中,从TCGA数据库中获取140例AML患者的RNA-seq转录组数据和相应的临床病理信息。数据按7:3的比例分为训练集和验证集。
在一个实施例中,对获取140例AML患者的RNA-seq转录组数据进行归一化处理。
在一个实施例中,利用回归模型中的单因素Cox和/或多因素Cox回归分析,在训练数据集中,对所述GSEA数据库中缺氧相关基因进行特征选择,特征选择后的缺氧相关基因为危险因素。
在一个实施例中,利用单因素Cox回归分析发现有统计学意义的缺氧相关基因,得到候选预后风险相关基因,然后利用多因素Cox回归分析候选预后风险相关基因,得到预后风险相关基因及其回归系数,构建急性髓细胞样白血病预后风险模型:
其中,N=缺氧基因的数量,Expi为缺氧基因的各自表达量,Coei为相应的多因素Cox回归系数。
可选的,N=3-5,Expi为缺氧基因的各自表达量,Coei为相应的多因素Cox回归系数。
在一个实施例中,利用单因素Cox回归分析,在TCGA训练数据集中进行了回归分析,获得6个缺氧相关基因(ERRFI1、EGFR、SDC2、PPP1R3C、PYGM和GPC3)与患者的5年总生存期(OS)显著相关(见图2和图3)。然后对6个缺氧相关基因进行多因素Cox回归分析,选择P<0.05的3个缺氧相关基因(EGFR、PYGM和GPC3)构建急性髓细胞样白血病预后风险模型(图4和图5),公式如下:
风险评分(riskscore)=(-6.87*EGFR基因表达数据)+(0.38*PYGM基因表达数据)+(0.24*GPC3基因表达数据)
在一个实施例中,基因表达数据是向量,具有大小和正负。
在一个实施例中,根据构建的急性髓细胞样白血病预后风险模型,对急性髓细胞样白血病患者进行打分,得到每个患者的风险值,以风险评分中位值为界,将急性髓细胞样白血病患者分为高风险组和低风险组。根据风险模型绘制风险曲线图(图6),风险曲线图由A、B、C三部分图组成,A图和B图中横坐标一致,为根据风险得分高低进行排序的患者样本,从左到右风险得分依次增大;纵坐标分别为风险得分和生存时间。虚线为风险得分中位值及其对应的病人数量。C图为高低风险组的基因表达热图。根据高低风险分组绘制OS(Overall survival)生存曲线,结果见图7。从图中可以看到高低风险组间病人的生存情况有显著差异(p<0.05),高风险组的病人生存率更低。为进一步评估急性髓细胞样白血病预后风险模型的有效性,采用ROC计算模型的AUC面积以评估急性髓细胞样白血病预后风险模型的有效性。ROC曲线是一种显示分类模型在所有分类阈值下的效果的图表。该曲线绘制了以下两个参数:真阳性(True positive rate)和假阳性(False positive rate)。曲线下方部分的面积被称为AUC(Area Under Curve),用来表示预测准确性,AUC值越高,也就是曲线下方面积越大,表示预测准确率越高。根据多因素风险回归得到的风险模型,以1、3、5年为生存时间节点,绘制ROC曲线,结果见图8。可以看到ROC曲线的AUC均大于0.6,急性髓细胞样白血病预后风险模型的效能较好。
在一个实施例中,我们使用验证集对急性髓细胞样白血病预后风险模型进行验证,我们同样对验证数据绘制风险曲线、高低风险组生存曲线(图9)和ROC曲线(图10),可以看到验证集数据中同样高风险组在生存率低,且ROC曲线中1、3、5年节点的AUC均大于0.6,与训练集结果一致。
图11是本发明实施例提供的一种基于急性髓细胞样白血病预后综合风险模型的构建示意流程图,具体地,所述方法包括如下步骤:
201:获取缺氧相关基因;
202:获取急性髓细胞样白血病基因表达数据作为训练数据集;
203:利用回归模型或机器学习,在训练数据集中,对所述缺氧相关基因进行特征选择,得到预后风险相关基因;
204:利用所述预后风险相关基因构建急性髓细胞样白血病预后风险模型,将所述构建急性髓细胞样白血病预后风险模型作为特征向量;
205:选取临床病理特征,利用所述特征向量和临床病理特征构建急性髓细胞样白血病预后综合风险模型。
在一个实施例中,所述选取临床病理特征包括:采用回归模型或机器学习筛选出与急性髓细胞样白血病生存相关的临床病理特征。
在一个实施例中,机器学习的方法包括递归特征消除、CART、随机森林、线性回归、朴素贝叶斯、自定义的训练模型中的一种或几种。
在一个实施例中,将age(年龄)、gender(性别)临床病理因素与急性髓细胞样白血病预后风险模型进行生存(图12)和表达相关性分析(图13),比较不同临床信息下的生存和表达是否有显著差异,我们发现风险评分在年龄、性别的不同分组之间无显著差异,但是年龄不同分组之间生存存在显著差异,而性别不同分组之间的生存无显著差异。
在一个实施例中,将age(年龄)、gender(性别)这2个临床病理因素进行单因素Cox独立预后分析(图14),结果显示age和riskScore的pvalue均小0.05。因此选取age和riskScore纳作为特征向量进行多因素Cox独立预后分析(图15)。结果显示,age和riskScore的pvalue均小于0.05。说明构建的急性髓细胞样白血病预后综合风险模型有很好的预后价值。
在一个实施例中,选取年龄(年龄大于55或年龄小于等于55)作为临床病理特征,利用所述构建急性髓细胞样白血病预后风险模型(riskscore=(-6.87*EGFR基因表达量)+(0.38*PYGM基因表达量)+(0.24*GPC3基因表达量))作为特征向量,构建急性髓细胞样白血病预后综合风险模型。
在一个实施例中,进行急性髓细胞样白血病患者生存列线图的构建及验证,将多因素Cox独立预后分析中pvalue小于0.05因素用于构建列线图,列线图对年龄和riskScore因素分别进行打分,每一种因素对应一个评分,各因素总评分相加对应总评分,然后根据总评分预测1、3和5年生存率(图16),分数越高,生存率越低。基于上述预后综合风险模型绘制列线图绘制校准曲线(图17),斜率越接近1,说明预测越准确。结果得知,本申请构建的预后综合风险模型对急性髓细胞样白血病患者1年、3年和5年生存率的预测准确度较高,说明构建的预后综合风险模型为有效模型。
在一个实施例中,我们以riskScore中位数将急性髓细胞样白血病样本分为高、低风险两组进行GSEA富集分析。GSEA对HALLMARK定义的基因集h.all.v7.2.symbols.gmt富集分析,我们发现低风险组富集到了HALLMARK HYPOXIA、HALLMARK ANGIOGENESIS和HALLMARKPI3K AKT MTOR SIGNALING等缺氧促进分化相关的通路;GSEA对KEGG定义的基因集c2.cp.kegg.v7.2.symbols.gmt富集分析,发现高风险组富集到了KEGG RIG ILIKERECEPTOR SIGNALING PATHWAY、KEGG PRIMARY IMMUNODEFICIENCY、KEGG ACUTE MYELOIDLEUKEMIA和KEGG BASAL CELL CARCINOMA等疾病免疫缺陷相关的通路。
图18是本发明实施例提供的一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的基因表达数据;
将所述待测样本的基因表达数据输入所述的急性髓细胞样白血病预后风险模型中;
获得待测样本急性髓细胞样白血病预后风险预测结果。
在一个实施例中,本发明提供的一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的基因表达数据及临床病理特征;
将所述待测样本的基因表达数据及临床病理特征输入所述的急性髓细胞样白血病预后综合风险模型中;
获得待测样本急性髓细胞样白血病预后风险预测结果。
在一个实施例中,本发明提供一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器,所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:获取待测样本的EGFR、PYGM和GPC3基因表达数据;
根据EGFR、PYGM和GPC3基因表达情况,获得待测样本急性髓细胞样白血病预后风险预测结果。
在一个实施例中,本发明提供一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器,所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:获取待测样本的EGFR、PYGM和GPC3基因表达数据和临床病理特征;
根据EGFR、PYGM和GPC3基因表达情况和临床病理特征,获得待测样本急性髓细胞样白血病预后风险预测结果。
可选的,所述临床病理特征为年龄。
本发明实施例提供的一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的基因表达数据;
处理单元,用于将所述待测样本的基因表达数据输入所述的急性髓细胞样白血病预后风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
在一个实施例中,本发明提供的一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的基因表达数据及临床病理特征;
处理单元,用于将所述待测样本的基因表达数据及临床病理特征输入所述的急性髓细胞样白血病预后综合风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的EGFR、PYGM和GPC3基因表达数据;
处理单元,用于根据EGFR、PYGM和GPC3基因表达情况,获得待测样本急性髓细胞样白血病预后风险预测结果。
在一个实施例中,本发明提供一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的EGFR、PYGM和GPC3基因表达数据及临床病理特征;
处理单元,用于根据EGFR、PYGM和GPC3基因表达情况及临床病理特征,获得待测样本急性髓细胞样白血病预后风险预测结果。
本发明的一个目的在于提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的急性髓细胞样白血病预后风险预测。
术语“样本”可以是从受试者分离的任何生物样本。例如,样本可以包括但不限于体液、全血、血小板、血清、血浆、粪便、红细胞、白细胞或白血球、内皮细胞、组织活组织检查、滑液、淋巴液、腹水、间质或细胞外液、细胞间空间的液体,包括龈沟液、骨髓、脑脊液、唾液、粘液、痰、精液、汗液、尿液、鼻刷液、巴氏涂片液或任何其他体液。体液可以包括唾液、血液或血清。例如,多核苷酸可以是从体液例如血液或血清分离的无细胞DNA。样本也可以是肿瘤样本,肿瘤样本可以通过各种方法从受试者获得,所述方法包括但不限于静脉穿刺、排泄、射精、按摩、活组织检查、针抽吸、灌洗、刮擦、手术切口或介入或其他方法。样本可以是无细胞样本(例如,不包含任何细胞)。
本验证实施例的验证结果表明,为适应症分配固有权重相对于默认设置来说可以适度改善本方法的性能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,RandomAccess Memory)、磁盘或光盘等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上对本发明所提供的一种计算机设备进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (14)
1.一种急性髓细胞样白血病预后风险模型的构建方法,包括:
获取缺氧相关基因;
获取急性髓细胞样白血病基因表达数据作为训练数据集;
利用回归模型或机器学习,在训练数据集中,对所述缺氧相关基因进行特征选择,得到预后风险相关基因,所述利用回归模型是通过单因素COX回归模型对所述缺氧相关基因进行特征选择,得到预后风险相关基因,所述预后风险相关基因为EGFR、PYGM和GPC3基因;
利用所述预后风险相关基因,采用LASSOCOX回归分析或多因素COX回归分析,构建急性髓细胞样白血病预后风险模型;
将所述构建急性髓细胞样白血病预后风险模型作为特征向量,选取临床病理特征,利用所述特征向量和临床病理特征构建急性髓细胞样白血病预后综合风险模型。
2.根据权利要求1所述的构建方法,其特征在于,获取缺氧相关基因还包括如下处理:通过蛋白质相互网络、基因共表达网络、转录因子调控网络、pathway网络中的一种或几种基于网络分析方法筛选出排名靠前的缺氧相关基因。
3.根据权利要求1所述的构建方法,其特征在于,所述获取缺氧相关基因是获取GSEA数据库中缺氧相关基因。
4.根据权利要求1所述的构建方法,其特征在于,通过PPI网络分析方法筛选出排名靠前的缺氧相关基因。
5.根据权利要求1所述的构建方法,其特征在于,所述选取临床病理特征包括:采用回归模型或机器学习筛选出与急性髓细胞样白血病生存相关的临床病理特征。
6.一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的基因表达数据及临床病理特征;
将所述待测样本的基因表达数据及临床病理特征输入权利要求1-5任意一项所述的急性髓细胞样白血病预后综合风险模型中;
获得待测样本急性髓细胞样白血病预后风险预测结果。
7.一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的基因表达数据;
将所述待测样本的基因表达数据输入权利要求1-5任意一项所述的急性髓细胞样白血病预后风险模型中;
获得待测样本急性髓细胞样白血病预后风险预测结果。
8.一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器,所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的EGFR、PYGM和GPC3基因表达数据;
将所述EGFR、PYGM和GPC3基因表达数据输入权利要求1-5任意一项所述的急性髓细胞样白血病预后风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
9.一种急性髓细胞样白血病预后风险诊断设备,所述设备包括:存储器和处理器,所述存储器用于存储程序指令;
所述处理器用于调用程序指令,当程序指令被执行时,用于执行以下操作:
获取待测样本的EGFR、PYGM和GPC3基因表达数据和临床病理特征;
将所述EGFR、PYGM和GPC3基因表达情况和临床病理特征输入权利要求1-5任意一项所述的急性髓细胞样白血病预后综合风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
10.一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的基因表达数据及临床病理特征;
处理单元,用于将所述待测样本的基因表达数据及临床病理特征输入权利要求1-5任意一项所述的急性髓细胞样白血病预后综合风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
11.一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的基因表达数据;
处理单元,用于将所述待测样本的基因表达数据输入权利要求1-5任意一项所述的急性髓细胞样白血病预后风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
12.一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的EGFR、PYGM和GPC3基因表达数据及临床病理特征;
处理单元,用于将所述EGFR、PYGM和GPC3基因表达数据及临床病理特征输入权利要求1-5任意一项所述的急性髓细胞样白血病预后综合风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
13.一种急性髓细胞样白血病预后风险诊断系统,包括:
获取单元,用于获取待测样本的EGFR、PYGM和GPC3基因表达数据;
处理单元,用于将所述EGFR、PYGM和GPC3基因表达数据输入权利要求1-5任意一项所述的急性髓细胞样白血病预后风险模型中,获得待测样本急性髓细胞样白血病预后风险预测结果。
14.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-5任意一项所述的急性髓细胞样白血病预后风险模型的构建方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110680914.7A CN113345592B (zh) | 2021-06-18 | 2021-06-18 | 一种急性髓细胞样白血病预后风险模型的构建及诊断设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110680914.7A CN113345592B (zh) | 2021-06-18 | 2021-06-18 | 一种急性髓细胞样白血病预后风险模型的构建及诊断设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113345592A CN113345592A (zh) | 2021-09-03 |
CN113345592B true CN113345592B (zh) | 2022-08-23 |
Family
ID=77477555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110680914.7A Active CN113345592B (zh) | 2021-06-18 | 2021-06-18 | 一种急性髓细胞样白血病预后风险模型的构建及诊断设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113345592B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115602328B (zh) * | 2022-11-16 | 2023-05-26 | 深圳技术大学 | 急性白血病的预警方法及装置 |
CN115982644B (zh) * | 2023-01-19 | 2024-04-30 | 中国医学科学院肿瘤医院 | 一种食管鳞状细胞癌分类模型构建与数据处理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015167210A1 (ko) * | 2014-04-28 | 2015-11-05 | 가톨릭대학교 산학협력단 | 급성 골수성 백혈병 재발의 예후 예측 방법 |
CN106778066A (zh) * | 2017-01-10 | 2017-05-31 | 郑州大学第附属医院 | 一种非小细胞肺癌相关癌基因筛选与功能分析方法 |
CN107287345A (zh) * | 2017-08-24 | 2017-10-24 | 中国人民解放军总医院 | 用于急性髓系白血病精准诊疗的检测试剂盒及tsen34临床应用 |
CN108277278A (zh) * | 2018-01-17 | 2018-07-13 | 华中科技大学鄂州工业技术研究院 | 一种用于正常核型急性髓系白血病预后分层的方法及装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1910574A2 (en) * | 2005-08-02 | 2008-04-16 | Sequenom, Inc. | Methods and compositions for disease prognosis based on nucleic acid methylation |
CN107292127A (zh) * | 2017-06-08 | 2017-10-24 | 南京高新生物医药公共服务平台有限公司 | 预测肺癌病人预后的基因表达分类器及其构建方法 |
CN109762907B (zh) * | 2019-03-27 | 2022-02-22 | 中山大学附属第六医院 | 缺氧相关基因在预测i/ii期结直肠癌的试剂盒中的应用 |
CN112048559B (zh) * | 2020-09-10 | 2023-10-17 | 辽宁省肿瘤医院 | 基于m6A相关的IncRNA网络胃癌预后的模型构建及临床应用 |
CN112331343A (zh) * | 2020-11-04 | 2021-02-05 | 复旦大学附属中山医院 | 建立肝细胞癌术后风险评估模型的方法 |
CN112609000A (zh) * | 2020-12-30 | 2021-04-06 | 北京旌准医疗科技有限公司 | scaRNA9基因在早期判断急性髓系白血病预后中的应用 |
-
2021
- 2021-06-18 CN CN202110680914.7A patent/CN113345592B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015167210A1 (ko) * | 2014-04-28 | 2015-11-05 | 가톨릭대학교 산학협력단 | 급성 골수성 백혈병 재발의 예후 예측 방법 |
CN106778066A (zh) * | 2017-01-10 | 2017-05-31 | 郑州大学第附属医院 | 一种非小细胞肺癌相关癌基因筛选与功能分析方法 |
CN107287345A (zh) * | 2017-08-24 | 2017-10-24 | 中国人民解放军总医院 | 用于急性髓系白血病精准诊疗的检测试剂盒及tsen34临床应用 |
CN108277278A (zh) * | 2018-01-17 | 2018-07-13 | 华中科技大学鄂州工业技术研究院 | 一种用于正常核型急性髓系白血病预后分层的方法及装置 |
Non-Patent Citations (4)
Title |
---|
Hypoxia and expression of hypoxia-related proteins in acute myeloid leukemia;Fiegl, M等;《LEUKEMIA RESEARCH》;20110531;第35卷(第5期);全文 * |
一种可预测弥漫大B细胞淋巴瘤患者生存的新型6基因预测模型;王亮等;《中国癌症防治杂志》;20200625(第03期);全文 * |
基于TCGA数据库的肾癌自噬相关基因预后模型的建立与应用;段万里等;《现代泌尿外科杂志》;20201015(第10期);全文 * |
影响老年急性髓系白血病患者预后的危险因素分析;王欢等;《癌症进展》;20170320(第03期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113345592A (zh) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Targeted gene expression profiling predicts meningioma outcomes and radiotherapy responses | |
Milanez-Almeida et al. | Cancer prognosis with shallow tumor RNA sequencing | |
WO2023040102A1 (zh) | 判断肝细胞肝癌患者预后的基因模型、构建方法和应用 | |
Lang et al. | Expression profiling of circulating tumor cells in metastatic breast cancer | |
CN113345592B (zh) | 一种急性髓细胞样白血病预后风险模型的构建及诊断设备 | |
CN114203256B (zh) | 基于微生物丰度的mibc分型及预后预测模型构建方法 | |
CN113066585A (zh) | 一种基于免疫基因表达特征谱对ⅱ期结直肠癌患者预后进行高效快捷评估的方法 | |
CN112626218A (zh) | 一种用于预测胰腺癌转移风险的基因表达分类器、体外诊断试剂盒 | |
Zhao et al. | Dynamic prognostic model for kidney renal clear cell carcinoma (KIRC) patients by combining clinical and genetic information | |
CN106295244B (zh) | 肿瘤诊断标志物的筛选方法、以该方法获得的乳腺癌肺转移相关基因及其应用 | |
Katz et al. | Disparities in Hispanic/Latino and non-Hispanic Black men with low-risk prostate cancer and eligible for active surveillance: a population-based study | |
CN115153445A (zh) | 腹腔镜肝切除治疗肝内胆管癌的远期预后的动态列线图模型构建方法、系统及应用 | |
Wada et al. | Circulating miRNA signature predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer | |
CN109979532B (zh) | 甲状腺乳头状癌远处转移分子突变预测模型、方法及系统 | |
CN114360721A (zh) | 代谢相关子宫内膜癌的预后模型及构建方法 | |
CN113345589A (zh) | 肝癌预后模型的构建方法及应用方法、电子设备 | |
CN113571189A (zh) | 一种胆囊癌患者放化疗后生存获益的预测模型建立方法 | |
CN113470813A (zh) | 肝癌患者生存率预后模型 | |
CN113436673A (zh) | 一种用于肝癌预后预测的分子标志物及其应用 | |
CN117038092A (zh) | 基于Cox回归分析的胰腺癌的预后模型构建方法 | |
CN113470754A (zh) | 一种用于肿瘤预后评估的基因标志物、评估产品及应用 | |
CN113241181A (zh) | 一种用于肝癌患者的预后风险评估模型及评估装置 | |
CN113215261A (zh) | 胰腺癌的预后预测诊断用基因标记物及其用途 | |
CN113450917A (zh) | 生物标志物在预测肝癌预后中的应用 | |
Su et al. | Investigation of Hippo pathway-related prognostic lncRNAs and molecular subtypes in liver hepatocellular carcinoma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |