CN116253897B - 一种超薄Ba-MOFs纳米材料及其制备方法与应用 - Google Patents

一种超薄Ba-MOFs纳米材料及其制备方法与应用 Download PDF

Info

Publication number
CN116253897B
CN116253897B CN202310298207.0A CN202310298207A CN116253897B CN 116253897 B CN116253897 B CN 116253897B CN 202310298207 A CN202310298207 A CN 202310298207A CN 116253897 B CN116253897 B CN 116253897B
Authority
CN
China
Prior art keywords
ultrathin
mofs
reaction
solution
porphyrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310298207.0A
Other languages
English (en)
Other versions
CN116253897A (zh
Inventor
肖毅
黄红梅
毛文胜
黄际艳
肖自胜
尹笃林
毛丽秋
宋建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN202310298207.0A priority Critical patent/CN116253897B/zh
Publication of CN116253897A publication Critical patent/CN116253897A/zh
Application granted granted Critical
Publication of CN116253897B publication Critical patent/CN116253897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/25Barium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

一种超薄Ba‑MOFs纳米材料及其制备方法与应用,该超薄Ba‑MOFs纳米材料由以下方法制备方法而成:将卟啉类多羧酸配体和可溶性钡盐溶于DMF‑乙醇‑水的混合溶液中,然后加入酸调节剂充分混合,得混合溶液;将所述混合溶液进行溶剂热反应,反应完成后进行固液分离,得紫红色晶体;将所述紫红色晶体干燥,即成。本发明超薄(厚度约为2 nm)Ba‑MOFs纳米材料具有优异的催化转化性能,在氨基酸离子液体助催化剂协同作用下,可以高效催化转化CO2与较大环氧底物反应,得环状碳酸酯;反应条件温和,不必使用溶剂,环氧底物的转化率和环碳酸酯的选择性分别可高达96%及99%;制备方法简单,可控性强。

Description

一种超薄Ba-MOFs纳米材料及其制备方法与应用
技术领域
本发明涉及一种MOFs纳米材料及其制备方法与应用,具体涉及一种超薄Ba-MOFs纳米材料及其制备方法与应用。
背景技术
CO2是丰富、廉价易得、可再生的C1资源。CO2含量的不断增加已引起严重的温室效应和明显的全球变暖(Global and Planetary Change,2017(152)19-26)。因此,发展高效的CO2捕集和转化技术显得至关重要。其中,通过原子经济性反应将CO2转化为高附加值化学品是最有前途的方法之一(Advanced Energy Materials,2020(10)1902106)。由于CO2的热力学稳定性,转化利用CO2的高效催化剂的研究已成为科学界及工业界的核心课题之一。其中利用二氧化碳与环氧化合物进行环加成反应合成环碳酸酯的反应路线被视为一种具有重要前景的技术途径,其反应过程符合绿色化学原则的原子经济性反应。
目前,诸多催化剂如碱金属盐,金属氧化物,离子液体(聚离子液体),MOF,COF等,都已用于CO2合成环碳酸酯的研究(Journal of Environmental Chemical Engineering,2021(9)105113;Current Opinion in Green and Sustainable Chemistry,2017(3)1-10)。与非均相催化剂相比,均相催化剂往往存在分离方面的难题,而且常因受限于循环使用以至产生新的环境问题。而非均相催化剂由于具有易于分离、回收和再循环的显著优势而在当前工业过程开发中受到青睐。在CO2化学固定方面,已经开发了众多多相催化体系,包括负载型金属纳米颗粒、固定化有机金属物种和金属有机骨架(MOF)材料等(InorganicChemistry,2022(61)2724-2732)。其中,MOF材料基于其可调节的孔隙率、高的比表面积、丰富的金属催化位点和容易修饰等众多优点而备受关注。然而,由于现有MOF材料多为三维微孔结构,扩散阻力较大,不利于大的底物分子接近活性位,导致其在CO2与芳香环氧化合物转化为环状碳酸酯中的催化性能仍不能令人满意,反应条件通常较为苛刻。
发明内容
本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种扩散阻力小,有利于大的底物分子接近活性位,在CO2与芳香环氧化合物转化为环状碳酸酯反应中的催化性能优良,制备方法操作简便的超薄Ba-MOFs纳米材料及其制备方法。
本发明解决其技术问题采用的技术方案是,一种超薄Ba-MOFs纳米材料,采用以下方法制备而成:将卟啉类多羧酸配体和可溶性钡盐溶于DMF-乙醇-水的混合溶液中,然后加入酸调节剂充分混合,得混合溶液;然后将所述混合溶液进行溶剂热反应,反应完成后进行固液分离,得紫红色晶体;将所述紫红色晶体干燥,即得超薄Ba-MOFs纳米材料。
本发明以环境友好、价廉的碱土金属钡为金属源提供金属结点,特征性多羧酸芳香化合物为配体,加入酸调节剂,经溶剂热反应,合成超薄Ba-MOFs纳米材料,步骤简单,操作简便,可控性强。
进一步,所述卟啉类多羧酸配体选自下列结构式Ⅰ~Ⅵ所示化合物的一种或多种;
进一步,所述卟啉多羧酸配体为结构式Ⅳ(TCPP)所示化合物。
通过采用上述技术方案,可获得厚度更薄的Ba-MOFs纳米材料。
进一步,所述可溶性钡盐为Ba(NO3)2、BaBr2、BaCl2和(CH3COO)2Ba及它们的水合物中的一种或多种,优选为(CH3COO)2Ba。
进一步,所述可溶性钡盐与卟啉类多羧酸配体的物质的量比为6~3:2~1,优选为3:1。
进一步,所述DMF-乙醇-水的混合溶液中,DMF:乙醇:H2O的比例(V/V)为12~1:6~1:6~1,优选为6:2:1。
进一步,所述酸调节剂为HNO3、HCl、CF3COOH和苯甲酸中的一种或多种,优选为CF3COOH。
进一步,所述酸调节剂与卟啉类配体的物质的量比为1~12:1,优选为2:1。
进一步,所述酸调节剂为三氟乙酸(1.0mol/L)。
进一步,所述溶剂热反应的温度为60~120℃,优选为80℃;所述溶剂热反应的时间为24~72h。
通过采用上述技术方案,获得的Ba-MOFs纳米材料不仅厚度薄,催化效果也更好。
进一步,所述制备的方法的具体步骤为:取可溶性钡盐和卟啉类多羧酸配体配制成混合溶液,然后加入酸调节剂,超声混合均匀,加入反应釜中,进行溶剂热反应,反应完成之后,经冷却,离心,洗涤,干燥,即得所述超薄Ba-MOFs纳米材料。
进一步,所述制备的方法的具体步骤为:将卟啉多羧酸配体溶于DMF-EtOH混合溶剂,加入可溶性钡盐的水溶液,然后在搅拌条件下滴加CF3COOH,再进行超声处理,使溶液混合均匀后转移至反应釜中进行溶剂热反应,溶剂热反应的温度为80℃,时间为30h,反应完成后经冷却、离心、洗涤、干燥,即得所述超薄Ba-MOFs纳米材料。
本发明超薄Ba-MOFs纳米材料的厚度约为2nm左右。
本发明超薄Ba-MOFs纳米材料作为催化剂,应用于催化转化CO2与环氧底物反应生成环状碳酸酯,转化率高,选择性好。
进一步,所述超薄Ba-MOFs纳米材料的应用方式是,将本发明超薄Ba-MOFs纳米材料与氨基酸离子液体助催化剂混合,协同催化转化CO2与环氧底物进行反应,生成环状碳酸酯。
进一步,所述氨基酸离子液体为咪唑基氨基酸类离子液体[Cnmim][AA],结构式如下:
其中,烷基R1的碳链长度为1~4;烷基R2的碳链长度为1~8,优选R1的碳链长度为1;R2的碳链长度为4;AA为脯氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸和亚氨基二乙酸中的一种。
进一步,所述咪唑基离子液体的制备原料[Bmim]X为1-丁基-3-甲基氯化咪唑,1-丁基-3-甲基溴化咪唑或1-丁基-3-甲基碘化咪唑,优选为1-丁基-3-甲基溴化咪唑。
进一步,所述的[Bmim]X中,X=Cl,Br或I;优选为X=Br。
通过采用上述技术方案,应用本发明超薄Ba-MOFs纳米材料作催化剂,能在温和(0.1MPa CO2,反应温度≤80℃)、无溶剂条件下催化转化CO2与环氧底物反应,生成环状碳酸酯。
进一步,所述超薄Ba-MOFs纳米材料与氨基酸离子液体混合的质量比为1:10~20。
进一步,所述超薄Ba-MOFs纳米材料(按钡计量)与环氧底物的物质的量比为0.0010~0.0015:1。进一步,所述协同催化转化的温度为≤80℃(下限是室温25℃),时间为8~15h。
进一步,所述环氧底物为环氧苯乙烯。
进一步,所述超薄Ba-MOFs纳米材料与氨基酸离子液体的质量混合的比例为1:16。
进一步,所述超薄Ba-MOFs纳米材料(按钡计量)与环氧底物的物质的量比为0.0013:1。进一步,所述协同催化转化的温度为80℃,时间为12h。
进一步,所述协同催化转化的气压为0.1MPa。
通过采用上述技术方案,催化转化CO2与环氧底物进行合成反应,生成环状碳酸酯,转化率高达96%,产率高达95%。
进一步,所述的氨基酸离子液体的制备方法为:将离子液体,碱和氨基酸加入溶剂中,加热搅拌,反应完成之后,过滤,洗涤,蒸除溶剂,真空干燥,即成。
进一步,所述碱为氢氧化钾和/或氢氧化钠,优选为氢氧化钾。
进一步,所述氨基酸为脯氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸和亚氨基二乙酸中的一种或几种,优选为谷氨酸。
进一步,所述溶剂为水、二氯甲烷、乙腈、甲醇或乙醇,优选为乙醇;
进一步,所述的离子液体,碱和氨基酸的物质的量之比为1:1~2:1~2;优选为1:1:1。
进一步,所述真空干燥的时间为24~72h,优选为72h。
通过采用上述技术方案,氨基酸离子液体助催化剂的助催化效果更好。
本发明超薄Ba-MOFs纳米材料传质阻力小,易于接触的活性位点多,从而有利于提升催化转化较大底物分子的能力。因此,具有十分重要的科学意义与实用价值。
与现有技术相比,本发明具有以下有益效果:(1)本发明以环境友好、价廉的碱土金属钡为金属源提供金属结点,特征性多羧酸芳香化合物(优选多羧基卟啉)为配体,加入酸调节剂,经溶剂热反应合成超薄Ba-MOFs纳米材料,方法简单,操作简便,可控性强,能制备出超薄Ba-MOFs纳米材料,厚度约为2nm左右;(2)本发明超薄Ba-MOFs纳米材料能与来源丰富、易得的绿色氨基酸离子液体助催化剂协同作用,高效催化转化CO2及较大环氧底物,生成环状碳酸酯,在温和、无溶剂条件下获得优异的转化率、选择性及重复使用性能。环氧底物的转化率和环碳酸酯的选择性分别可高达96%及99%,具有优异的催化转化性能及实际应用前景。
附图说明
图1为本发明实施例1制备的Ba-MOFs纳米材料的透射电镜图。
图2为本发明实施例1制备的Ba-MOFs纳米材料的原子力显微镜图。
图3为本发明实施例1制备的Ba-MOFs纳米材料的紫外光谱图。
图4为本发明实施例1制备的Ba-MOFs纳米材料的荧光光谱图。
图5为本发明实施例1制备的Ba-MOFs纳米材料的红外光谱图。
图6为本发明实施例1-3Ba-TCPP纳米材料在不同温度下转化CO2的影响考察图。
图7为本发明实施例1-3Ba-TCPP纳米材料转化CO2的催化剂用量考察图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
下述实施例中采用的试剂和材料,若无特殊说明,均通过普通商业途径购买获得或者通用常规方法制备获得。
实施例1
本实施例超薄Ba-MOFs纳米材料的制备方法如下:称取TCPP(四羧基苯基卟啉)(7.90mg,0.01mmol),溶于8mL DMF:EtOH=6:2(V/V),加入1mL(CH3COO)2Ba(7.66mg,0.03mmol)水溶液,搅拌下滴加20μL CF3COOH(1.0mol/L),超声混合均匀后置于反应釜中,在80℃下反应30h,反应完毕后,冷却,离心,洗涤,干燥,得到紫红色固体粉末,记为Ba-TCPP,金属钡含量经电感耦合等离子体质谱仪测定,其质量分数为17.8%。
对本实施例超薄Ba-TCPP纳米MOF材料进行透射电镜、原子力显微镜测定,其结果如图1和2所示,Ba-TCPP纳米MOF材料的厚度约为2nm。
对本实施例超薄Ba-TCPP纳米MOF材料进行紫外光谱、荧光光谱测定,其结果如图3和4所示,从图3可见,卟啉单元典型的Soret带(~420nm)及Q带(~515及551nm),从图4可见,Ba-TCPP纳米MOF的特征峰明显蓝移,说明碱土金属Ba参与了配位。
对本实施例所得超薄Ba-TCPP纳米MOF材料进行红外光谱测定,其结果如图5所示,卟啉多羧酸配体在1700cm-1附近的特征峰消失,说明卟啉的羧基已参与配位。
以下为本实施例超薄Ba-MOFs纳米材料作为催化剂的应用试验:将所述超薄Ba-MOFs纳米材料与氨基酸离子液体助催化剂混合,协同催化转化CO2与环氧底物进行合成反应,生成环状碳酸酯。
实施例1-1谷氨酸离子液体[Bmim][Glu]的制备
依次称取1-丁基-3-甲基咪唑溴盐(10mmol,2.19g)、氢氧化钾(10mmol,0.56g)置于50mL反应瓶中,加入20mL EtOH,磁力搅拌,在油浴中70℃反应18h,反应结束后滤出固体,将滤液转移至反应瓶中,加入等物质的量的谷氨酸,继续加热于70℃反应18h,反应完毕后,过滤出固体,用EtOH洗涤三次,滤除固体,滤液经减压去除溶剂后真空干燥36h,即得谷氨酸离子液体[Bmim][Glu]。
实施例1-2赖氨酸离子液体[Bmim][Lys]的制备
依次称取1-丁基-3-甲基咪唑溴盐(10mmol,2.19g)、氢氧化钾(10mmol,0.56g)置于50mL反应瓶中,加入20mL EtOH,磁力搅拌,在油浴中70℃反应18h,反应结束后滤出固体,将滤液转移至反应瓶并加入等物质的量的赖氨酸,继续加热于70℃反应18h,反应完毕后,过滤出固体,用EtOH洗涤三次,滤除固体,滤液经减压去除溶剂后真空干燥36h,即得赖氨酸离子液体[Bmim][Lys]。
实施例1-3CO2与环氧底物进行合成反应,转化为环状碳酸酯的实验
1)温度对反应的影响(参照图6)
分别取制备的1mgBa-TCPP(0.13%mmol,按Ba计量),16mg[Bmim][Glu],1mmol环氧苯乙烯于10mL具支烧瓶中,再用气液平衡装置通入0.1MPa的CO2,油浴加热12h(油浴温度分别为25℃、40℃、60℃和80℃),反应完毕后,经乙酸乙酯萃取、去离子水洗涤、无水硫酸钠干燥,得固体;将固体再用气相色谱、气-质联用仪及NMR进行定性、定量分析。从图6所示实验结果可以看出,温度对Ba-TCPP的催化转化性能有显著影响:随着反应体系的温度从室温(25℃)提升到80℃,环氧苯乙烷的转化率从1.5%增加到96%,相应环状碳酸酯的产率由1.5%增至95%。另外,该反应的选择性在25℃~80℃的范围内均可以保持在99%的较高水平。
2)催化剂用量的影响(参照图7)
分别取制备的Ba-TCPP 0mg、0.5mg、1mg或2mg,[Bmim][Glu]16mg,1mmol环氧苯乙烯于10mL具支烧瓶中,再用气液平衡装置通入0.1MPa的CO2,80℃油浴加热12h,反应完毕后,经乙酸乙酯萃取、去离子水洗涤、无水硫酸钠干燥,得固体;将固体再用气相色谱、气-质联仪进行定性定量分析。从图7所示实验结果可以看出,催化剂Ba-TCPP的用量对催化转化性能有重要影响:在体系不含Ba-TCPP的条件下,环氧苯乙烷的转化率仅为18%(环状碳酸酯的产率为16%),随着Ba-TCPP的用量增至1.0mg,该催化体系的环氧底物转化率显著增加,达到96%(环状碳酸酯的产率达95%)。
3)氨基酸离子液体(AAIL,1~6)助催化剂种类的影响
将1mg(0.13%mmol,按Ba计量)Ba-TCPP催化剂、16mg助催化剂(如氨基酸离子液体1-丁基-3-甲基咪唑溴盐或双咪唑二溴盐C4[mim]2Br2)和1mmol环氧苯乙烷加入10mL具支烧瓶中,再用气液平衡装置通入0.1MPa的CO2,80℃油浴加热反应12h,反应结束后计算环状碳酸酯的选择性和产率,结果如表1所示。从表1所示实验结果可以看出,助催化剂对Ba-TCPP的催化转化性能有重要调控作用,其中,谷氨酸离子液体[Bmim][Glu]助催化剂有利于Ba-TCPP实现温和条件下环氧苯乙烷的高效CO2环加成得到环状碳酸酯。
相关咪唑基氨基酸离子液体结构示意图如下:
4)不同环氧底物CO2环加成的催化效果
将1mg Ba-TCPP催化剂、16mg[Bmim][Glu]和1mmol环氧底物加入10mL具支烧瓶中,0.1MPa的CO2作用下于80℃反应12h。反应结果如表2所示,Ba-TCPP催化体系可以实现温和条件下低位阻及较高位阻环氧底物高效CO2环加成,产率分别达98%及90-96%。
表1不同氨基酸离子液体作用下CO2环加成的催化效果
表2不同环氧底物CO2环加成的催化效果

Claims (13)

1.一种超薄Ba-MOFs纳米材料, 其特征在于,采用以下方法制成:将卟啉多羧酸配体溶于DMF-EtOH混合溶剂,加入可溶性钡盐的水溶液,再加入酸调节剂,充分混合,得混合溶液;然后将所述混合溶液进行溶剂热反应,反应完成后进行固液分离,得紫红色晶体;将所述紫红色晶体干燥,即得超薄Ba-MOFs纳米材料;
所述卟啉类多羧酸配体为四羧基苯基卟啉,结构式如式IV所示:
2.根据权利要求1所述的超薄Ba-MOFs纳米材料,其特征在于,所述可溶性钡盐为Ba(NO3)2、BaBr2、BaCl2和(CH3COO)2Ba及它们的水合物中的一种或多种;所述酸调节剂为HNO3、HCl、CF3COOH和苯甲酸中的一种或多种。
3.根据权利要求1或2所述的超薄Ba-MOFs纳米材料,其特征在于,所述可溶性钡盐与卟啉类多羧酸配体的物质的量比为6~3 : 2~1;所述的酸调节剂与卟啉类配体的物质的量比为1~12 : 1。
4.根据权利要求1或2所述的超薄Ba-MOFs纳米材料,其特征在于,所述溶剂热反应的温度为60~120 ℃;所述的溶剂热反应的时间为24~72 h。
5.根据权利要求3所述的超薄Ba-MOFs纳米材料,其特征在于,所述溶剂热反应的温度为60~120 ℃;所述的溶剂热反应的时间为24~72 h。
6.根据权利要求1或2所述的超薄Ba-MOFs纳米材料,其特征在于,制备方法的具体操作步骤为:将卟啉多羧酸配体溶于DMF-EtOH混合溶剂,加入可溶性钡盐的水溶液,然后在搅拌条件下滴加CF3COOH,再进行超声处理,使溶液混合均匀后转移至反应釜中进行溶剂热反应,反应完成后,经冷却、离心、洗涤、干燥,即得所述超薄Ba-MOFs纳米材料。
7.根据权利要求3所述的超薄Ba-MOFs纳米材料,其特征在于,制备方法的具体操作步骤为:将卟啉多羧酸配体溶于DMF-EtOH混合溶剂,加入可溶性钡盐的水溶液,然后在搅拌条件下滴加CF3COOH,再进行超声处理,使溶液混合均匀后转移至反应釜中进行溶剂热反应,反应完成后,经冷却、离心、洗涤、干燥,即得所述超薄Ba-MOFs纳米材料。
8.根据权利要求4所述的超薄Ba-MOFs纳米材料,其特征在于,制备方法的具体操作步骤为:将卟啉多羧酸配体溶于DMF-EtOH混合溶剂,加入可溶性钡盐的水溶液,然后在搅拌条件下滴加CF3COOH,再进行超声处理,使溶液混合均匀后转移至反应釜中进行溶剂热反应,反应完成后,经冷却、离心、洗涤、干燥,即得所述超薄Ba-MOFs纳米材料。
9.根据权利要求5所述的超薄Ba-MOFs纳米材料,其特征在于,制备方法的具体操作步骤为:将卟啉多羧酸配体溶于DMF-EtOH混合溶剂,加入可溶性钡盐的水溶液,然后在搅拌条件下滴加CF3COOH,再进行超声处理,使溶液混合均匀后转移至反应釜中进行溶剂热反应,反应完成后,经冷却、离心、洗涤、干燥,即得所述超薄Ba-MOFs纳米材料。
10.如权利要求1-9之一所述的超薄Ba-MOFs纳米材料作为催化剂在催化转化CO2与环氧底物反应合成环状碳酸酯中的应用。
11.根据权利要求10所述的超薄Ba-MOFs纳米材料作为催化剂在催化转化CO2与环氧底物反应合成环状碳酸酯中的应用,其特征在于,将超薄Ba-MOFs纳米材料与氨基酸离子液体助催化剂混合,协同催化转化CO2与环氧底物进行反应,生成环状碳酸酯。
12.根据权利要求11所述的超薄Ba-MOFs纳米材料作为催化剂在催化转化CO2与环氧底物反应合成环状碳酸酯中的应用,其特征在于,所述氨基酸离子液体为咪唑基氨基酸类离子液体[Cnmim][AA],结构式如下:
,其中R1的碳链长度为1~4,R2的碳链长度为1~8,AA为脯氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸和亚氨基二乙酸中的一种。
13.根据权利要求11或12所述的超薄Ba-MOFs纳米材料作为催化剂在催化转化CO2与环氧底物反应合成环状碳酸酯中的应用,其特征在于,所述超薄Ba-MOFs纳米材料与氨基酸离子液体混合的质量比为1:10~20;所述超薄Ba-MOFs纳米材料与环氧底物的物质的量比为0.0010~0.0015: 1;所述协同催化转化的温度为≤80 ℃,时间为8~15 h。
CN202310298207.0A 2023-03-24 2023-03-24 一种超薄Ba-MOFs纳米材料及其制备方法与应用 Active CN116253897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310298207.0A CN116253897B (zh) 2023-03-24 2023-03-24 一种超薄Ba-MOFs纳米材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310298207.0A CN116253897B (zh) 2023-03-24 2023-03-24 一种超薄Ba-MOFs纳米材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN116253897A CN116253897A (zh) 2023-06-13
CN116253897B true CN116253897B (zh) 2024-07-30

Family

ID=86684411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310298207.0A Active CN116253897B (zh) 2023-03-24 2023-03-24 一种超薄Ba-MOFs纳米材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116253897B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501568A (zh) * 2017-09-06 2017-12-22 烟台智本知识产权运营管理有限公司 四羧酸类卟啉配体构筑的金属有机框架材料的合成

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415161B2 (ja) * 2003-02-07 2010-02-17 学校法人神奈川大学 有機金属錯体並びに該錯体を用いた気体吸蔵物質、水素化反応用触媒及び水素化反応方法
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
WO2017210874A1 (en) * 2016-06-08 2017-12-14 Xia, Ling Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation
CN107308990B (zh) * 2017-06-02 2020-05-12 北京科技大学 一种TiO2/卟啉/MOFs超薄异质体的制备方法
KR102105618B1 (ko) * 2018-09-06 2020-05-13 재단법인대구경북과학기술원 티타늄 금속-유기 골격체 단결정
CN109999915B (zh) * 2019-04-28 2021-12-21 大连民族大学 一种用于co2环化催化反应的卟啉基金属有机骨架材料及其制备方法
CN112521362B (zh) * 2020-12-18 2022-10-04 浙江理工大学 一种基于功能化金属卟啉/季鏻盐双催化体系合成环碳酸酯的方法
KR102594252B1 (ko) * 2021-05-14 2023-10-30 울산과학기술원 대용량 지르코늄 기반 포르피린 금속-유기 골격체의 제조방법
CN114713285A (zh) * 2022-03-18 2022-07-08 重庆工商大学 一种卟啉修饰的Fe基MOF光催化材料的制备及应用
CN115007212B (zh) * 2022-05-13 2023-08-11 浙江大学 一体化金属有机框架基co2光热催化剂及其制备方法和应用
CN115090332B (zh) * 2022-07-29 2023-12-01 山东大学 一种可在高盐废水中可见光催化去除有机污染物的MOFs光催化剂及制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501568A (zh) * 2017-09-06 2017-12-22 烟台智本知识产权运营管理有限公司 四羧酸类卟啉配体构筑的金属有机框架材料的合成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Highly efficient and tunable catalytic addition of CO2 with epoxides over 2D Co-TCPP nanosheet at ambient condition";Wensheng Mao,等;《Molecular Catalysis》;20230104;第536卷;第112901(1-12)页 *

Also Published As

Publication number Publication date
CN116253897A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
He et al. A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis
Paul et al. Environmentally benign benzyl alcohol oxidation and CC coupling catalysed by amide functionalized 3D Co (II) and Zn (II) metal organic frameworks
CN111303445B (zh) 钴基金属有机框架材料与应用
Reineke et al. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites
CN105233872A (zh) 一种Pd@MIL-101复合材料及其制备方法和应用
Dubey et al. Trinuclear complexes of palladium (ii) with chalcogenated N-heterocyclic carbenes: catalysis of selective nitrile–primary amide interconversion and Sonogashira coupling
CN102633821B (zh) 由嘧啶羧酸基配体构筑的铜配合物及其制备方法与应用
CN109020891A (zh) 一种类沸石咪唑酯骨架材料Cu-ZIF的合成及作为催化剂的应用
CN111450894A (zh) 一种Ce基有机金属配合物催化材料及其制备与应用
CN113817174B (zh) 原位酰肼三维MOFs材料的制备方法及其用途
CN104607251B (zh) 含有混合价态Cu的框架化合物催化剂材料及其制备方法
CN108786922B (zh) 一种偶联反应用镍、钯修饰纳米二氧化硅的制备方法
CN116253897B (zh) 一种超薄Ba-MOFs纳米材料及其制备方法与应用
Hou et al. Temperature-dependent urothermal synthesis of two distinct La (III)-naphthalenedicarboxylate frameworks
CN111732736A (zh) 一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用
CN105713018A (zh) 一种金属有机骨架材料及其制备方法
CN115318341B (zh) 一种咪唑功能化双金属mof多相催化剂及其应用
CN111744551A (zh) 锂配合物在腈的硼氢化反应中的应用
CN112898349B (zh) 以4,4’-二氨基-2,2’-联吡啶为配体的金属锰配合物及其合成方法与光催化应用
CN103709204A (zh) 一种钴配合物、制备方法及其用途
CN113620878A (zh) 一种Ni的金属-有机骨架材料及其制备方法和用途
CN112812057A (zh) 一种金属镍羟基吡啶羧酸配合物及其合成方法与光催化还原二氧化碳制甲酸应用
CN103304585A (zh) 一种铜配合物及其制备方法与应用
CN116813928B (zh) 一种含氮羧酸过渡金属大孔配合物及其制备方法与应用
CN115677787B (zh) 疏基吡啶钴配合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant