CN116240621A - 直拉法制备超高电阻率硅衬底的方法 - Google Patents

直拉法制备超高电阻率硅衬底的方法 Download PDF

Info

Publication number
CN116240621A
CN116240621A CN202211727056.8A CN202211727056A CN116240621A CN 116240621 A CN116240621 A CN 116240621A CN 202211727056 A CN202211727056 A CN 202211727056A CN 116240621 A CN116240621 A CN 116240621A
Authority
CN
China
Prior art keywords
less
resistivity
single crystal
preparing
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211727056.8A
Other languages
English (en)
Inventor
张健华
张欢
连庆伟
宁永铎
方峰
徐继平
钟耕杭
朱晓彤
李钧宏
颜俊尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youyan Semiconductor Silicon Materials Co ltd
Shandong Youyan Semiconductor Materials Co ltd
Original Assignee
Youyan Semiconductor Silicon Materials Co ltd
Shandong Youyan Semiconductor Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youyan Semiconductor Silicon Materials Co ltd, Shandong Youyan Semiconductor Materials Co ltd filed Critical Youyan Semiconductor Silicon Materials Co ltd
Priority to CN202211727056.8A priority Critical patent/CN116240621A/zh
Publication of CN116240621A publication Critical patent/CN116240621A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种直拉法制备超高电阻率硅衬底的方法,该方法的工艺流程为:直拉法制备硅单晶→单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→热处理→化学机械抛光;其中,在所述直拉法制备硅单晶的工序中,单晶生长过程中使用水平超导磁场,磁场强度为1000‑5000高斯,同时,采用特定的晶体转速和坩埚转速相配合,晶体转速为1‑12rpm,坩埚转速为0.1‑2rpm;在所述热处理工序为POLY+LTO薄膜生长;或者为高温退火。该方法适用于制备直径在8英寸及以上、电阻率在3000Ω·cm以上、氧含量在5ppma以下的P型硅衬底。所制备的单晶氧含量低于5ppma,退火后电阻率能够达到3000Ω·cm以上,并且氧含量均匀性小于10%,电阻率均匀性小于5%。

Description

直拉法制备超高电阻率硅衬底的方法
技术领域
本发明涉及一种直拉法制备超高电阻率硅衬底的方法,属于半导体集成电路制造技术领域。
背景技术
超高电阻率硅衬底在射频、滤波、功率半导体器件的制备领域有着广泛的应用。目前,制备超高电阻率硅衬底的方法通常为先使用区熔法制备具有较高电阻率的硅单晶,再将硅单晶经过切割、研磨、抛光等工序加工成为硅抛光片。但区熔法制备硅单晶存在成晶困难、难以进行8英寸及以上大尺寸单晶的制备、电阻率均匀性差、成本较高等问题。因此使用区熔法制备硅衬底具有较大的局限性。
传统直拉法更容易制备出8英寸及以上的大尺寸硅单晶,且制备的单晶具有更好的电阻率均匀性。但是使用直拉法制备硅单晶的过程中需要使用SiO2石英坩埚,会使得制备的硅单晶中具有较高的氧含量,而硅单晶中的氧会成为N型杂质,使硅单晶的电阻率难以达到较高的水平。因此,除了使用直拉法制备出高电阻率、低氧含量的硅单晶外,还需要在硅片加工工序中设计合理的热处理工艺,将硅衬底中氧的影响降低,最终得到超高电阻率、超低氧含量的硅衬底。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提出一种直拉法制备超高电阻率硅衬底的方法,该方法适用于制备直径在8英寸及以上、电阻率在3000Ω·cm以上、氧含量在5ppma以下的P型硅衬底。
为实现上述目的,本发明采用以下技术方案:
一种直拉法制备超高电阻率硅衬底的方法,该方法的工艺流程为:直拉法制备硅单晶→单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→热处理→化学机械抛光;其中,
在所述直拉法制备硅单晶的工序中,单晶生长过程中使用水平超导磁场,磁场强度为1000-5000高斯。同时,本发明所述直拉法制备硅单晶的过程中采用特定的晶体转速和坩埚转速相配合,晶体转速为1-12rpm,坩埚转速为0.1-2rpm。
所述热处理工序可以选择以下两种方法中的一种:一种为POLY+LTO薄膜生长;一种为高温退火。
在所述POLY薄膜生长工序中,采用LPCVD(低压化学气相沉积)工艺,温度区间为600-680℃,实际沉积区域温度梯度≤0.5%,LPCVD的气体流量区间为50-200mL/min,实际沉积区域气体浓度梯度≤5%,所生长的POLY薄膜的厚度为6000-10000埃,片内均匀性≤5%,片间均匀性≤10%。
在所述LTO薄膜生长工序中采用APCVD(常压化学气相沉积)工艺,温度为380-450℃,SiH4流量为0.1-0.5slm,氧气流量为0.5-2.5slm,生长速率为1000-1500埃/分钟。单片连续履带式生长,压力为常压,薄膜的厚度为4000-6000埃;片内均匀性≤5%,片间均匀性≤10%,进行电极法检测致密性,气泡数少于3个,无杂质导致的漏电失效。
在所述高温退火工序中,热处理温度为500-700℃,热处理时间为20-60min。
使用本发明的方法制备的硅衬底为P型,电阻率大于3000Ω·cm,氧含量小于5ppma,电阻率均匀性小于5%,氧含量均匀性小于10%。
本发明的有益效果在于:
1、本发明通过直拉法拉制了具有超高电阻率和超低氧含量的硅单晶。所制备的单晶氧含量低于5ppma,退火后电阻率能够达到3000Ω·cm以上,并且氧含量均匀性小于10%,电阻率均匀性小于5%;
2、本发明制备的超高电阻率硅衬底可以在部分IC产品中替代区熔硅衬底,具有良好的使用效果。
附图说明
图1为本发明制备超高电阻率硅衬底的工艺流程图。
具体实施方式
以下结合附图和实施例对本发明进行进一步详细说明,但并不意味着对本发明保护范围的限制。
如图1所示,本发明的超高电阻率硅衬底的制备方法的工艺流程为:直拉法制备硅单晶→单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→热处理→化学机械抛光。本发明的主要技术要点为使用直拉法制备出高电阻率和低氧含量的硅单晶,该单晶同时具有良好的电阻率均匀性和较少的COP。
制备超高电阻率硅衬底最重要的是将硅单晶内部的氧含量控制到极低的水平。本发明所使用的直拉法单晶生长技术中使用了水平超导磁场,磁场强度为1000-5000高斯。磁场对熔体对流有着显著的迟滞效应,可以有效降低硅熔体内的氧含量,同时可以使硅熔体温度梯度分布均匀,有利于改善硅单晶的电阻率合氧含量分布的均匀性并减少COP。本发明所使用的直拉法单晶生长技术同时对晶体转速和坩埚转速有特殊要求,晶体转速为1-12rpm,坩埚转速为0.1-2rpm。
由于超高电阻率硅衬底中氧含量极低,在后续加工过程中难以形成足够的BMD(体相微缺陷)对衬底进行吸杂,因此本发明设计了POLY(多晶硅)+LTO(低温氧化物)薄膜生长的热处理工艺,POLY薄膜生长工艺温度区间为600-630℃,实际沉积区域温度梯度≤0.5%,LPCVD的气体流量区间为50-200mL/min,实际沉积区域气体浓度梯度≤5%;LTO薄膜生长工艺温度为380-450℃,SiH4流量为0.1-0.5slm,氧气流量为0.5-2.5slm,单片连续履带式生长,压力为常压,薄膜的厚度为4000-6000埃。该工艺在衬底背面形成POLY+LTO薄膜,可以对衬底起到很好的吸杂作用,同时该热处理工艺窗口的设置可以对衬底起到退火的作用,消除衬底内部氧施主的效应,使衬底的电阻率达到3000Ω·cm以上,并保持稳定。
对于无吸杂要求的衬底,使用本发明设计的退火工艺,也可以使衬底的电阻率在退火后达到3000Ω·cm以上,并保持稳定。
在本发明中,电阻率均匀性的测试方法为:使用四探针法分别测试衬底样片中心位置及边缘四点(每点间隔90°)的电阻率数值,边缘四点电阻率的平均值与中心点电阻率的差值除以中心点电阻率数值得到的比值即为电阻率均匀性。
氧含量均匀性的测试方法为:使用傅里叶红外光谱法测试衬底样片中心位置及边缘四点(每点间隔90°)的氧含量数值,边缘四点氧含量的平均值与中心点氧含量的差值除以中心点氧含量数值得到的比值即为氧含量均匀性。
实施例1
通过使用本发明中的直拉法单晶生长技术拉制8英寸硅单晶,单晶生长过程中磁场强度为3000高斯,坩埚转速为0.1rpm,晶体转速为1rpm。
采用本发明的如下工序将该单晶加工成硅衬底抛光片:单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→POLY薄膜生长→LTO薄膜生长→化学机械抛光。POLY薄膜生长厚度为8000埃,工艺温度为615℃,实际沉积区域温度梯度≤0.5%,LPCVD的气体流量区间为150mL/min,实际沉积区域气体浓度梯度≤5%。LTO薄膜生长工序中采用APCVD工艺,温度为400℃,SiH4流量为0.2slm,氧气流量为1.0slm,单片连续履带式生长,压力为常压,薄膜的厚度为4000埃。
对使用本发明的方法制备的硅衬底抛光片进行抽样检测,数据如下:
Figure BDA0004019397510000041
实施例2
通过使用本发明中的直拉法单晶生长技术拉制8英寸硅单晶,单晶生长过程中磁场强度为3000高斯,坩埚转速为0.1rpm,晶体转速为5rpm。
采用本发明的如下工序将该单晶加工成硅衬底抛光片:单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→POLY薄膜生长→LTO薄膜生长→化学机械抛光。POLY薄膜生长厚度为8500埃,工艺温度为615℃,实际沉积区域温度梯度≤0.5%,LPCVD的气体流量区间为180mL/min,实际沉积区域气体浓度梯度≤5%。LTO薄膜生长工序中采用APCVD工艺,温度为400℃,SiH4流量为0.2slm,氧气流量为1.0slm,单片连续履带式生长,压力为常压,薄膜的厚度为5000埃。
对使用本发明的方法制备的硅衬底抛光片进行抽样检测,数据如下:
Figure BDA0004019397510000042
/>
实施例3
通过使用本发明中的直拉法单晶生长技术拉制8英寸硅单晶,单晶生长过程中磁场强度为3000高斯,坩埚转速为0.1rpm,晶体转速为3rpm。
采用本发明的如下工序将该单晶加工成硅衬底抛光片:单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→退火→化学机械抛光。退火温度为650℃,退火时间为30min。
对使用本发明的方法制备的硅衬底抛光片进行抽样检测,数据如下:
Figure BDA0004019397510000051
/>

Claims (5)

1.一种直拉法制备超高电阻率硅衬底的方法,该方法的工艺流程为:直拉法制备硅单晶→单晶棒滚磨→多线切割→边缘倒角→双面研磨→化学腐蚀→热处理→化学机械抛光;其特征在于,
在所述直拉法制备硅单晶的工序中,单晶生长过程中使用水平超导磁场,磁场强度为1000-5000高斯,同时,采用特定的晶体转速和坩埚转速相配合,晶体转速为1-12rpm,坩埚转速为0.1-2rpm;
在所述热处理工序为POLY+LTO薄膜生长;或者为高温退火。
2.根据权利要求1所述的直拉法制备超高电阻率硅衬底的方法,其特征在于,在所述POLY薄膜生长工序中,采用LPCVD工艺,温度区间为600-630℃,实际沉积区域温度梯度≤0.5%,LPCVD的气体流量区间为50-200mL/min,实际沉积区域气体浓度梯度≤5%;
在所述LTO薄膜生长工序中采用APCVD工艺,温度为380-450℃,SiH4流量为0.1-0.5slm,氧气流量为0.5-2.5slm,生长速率为1000-1500埃/分钟。
3.根据权利要求2所述的直拉法制备超高电阻率硅衬底的方法,其特征在于,所生长的POLY薄膜的厚度为6000-10000埃,片内均匀性≤5%,片间均匀性≤10%;
所述LTO薄膜采用单片连续履带式生长,压力为常压,薄膜的厚度为4000-6000埃;片内均匀性≤5%,片间均匀性≤10%,进行电极法检测致密性,气泡数少于3个,无杂质导致的漏电失效。
4.根据权利要求1所述的直拉法制备超高电阻率硅衬底的方法,其特征在于,在所述高温退火工序中,热处理温度为500-700℃,热处理时间为20-60min。
5.根据权利要求1所述的直拉法制备超高电阻率硅衬底的方法,其特征在于,所制备的硅衬底为P型,电阻率大于3000Ω·cm,氧含量小于5ppma,电阻率均匀性小于5%,氧含量均匀性小于10%。
CN202211727056.8A 2022-12-27 2022-12-27 直拉法制备超高电阻率硅衬底的方法 Pending CN116240621A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211727056.8A CN116240621A (zh) 2022-12-27 2022-12-27 直拉法制备超高电阻率硅衬底的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211727056.8A CN116240621A (zh) 2022-12-27 2022-12-27 直拉法制备超高电阻率硅衬底的方法

Publications (1)

Publication Number Publication Date
CN116240621A true CN116240621A (zh) 2023-06-09

Family

ID=86626939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211727056.8A Pending CN116240621A (zh) 2022-12-27 2022-12-27 直拉法制备超高电阻率硅衬底的方法

Country Status (1)

Country Link
CN (1) CN116240621A (zh)

Similar Documents

Publication Publication Date Title
US9691607B2 (en) Process for producing epitaxial silicon carbide single crystal substrate and epitaxial silicon carbide single crystal substrate obtained by the same
TW526297B (en) Silicon wafer and silicon epitaxial wafer and production methods thereof
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
JP2000044389A (ja) エピタキシャルシリコン単結晶ウエ―ハの製造方法及びエピタキシャルシリコン単結晶ウエ―ハ
JP2019206451A (ja) シリコン単結晶の製造方法、エピタキシャルシリコンウェーハ及びシリコン単結晶基板
WO2001016408A1 (fr) Plaquette de silicium epitaxiale
JP2021502944A (ja) 少量のバナジウムをドーピングした半絶縁炭化ケイ素単結晶、基板、製造方法
JP4656788B2 (ja) シリコンエピタキシャルウェーハの製造方法
CN116240621A (zh) 直拉法制备超高电阻率硅衬底的方法
CN1395744A (zh) 退火单晶片的制造方法及退火单晶片
CN112735942B (zh) 一种igbt用硅衬底抛光片的制备方法
TW200402776A (en) Silicon wafer for epitaxial growth, epitaxial wafer, and its manufacturing method
JP7231120B2 (ja) エピタキシャルウェーハの製造方法
JP5589867B2 (ja) シリコンエピタキシャルウェーハの製造方法
KR20010068377A (ko) 에피택셜 실리콘 웨이퍼 제조 방법
CN105543951B (zh) 一种在高COP硅单晶衬底上制备200mm-300mm低缺陷外延片的方法
JP7347350B2 (ja) エピタキシャル成長条件の設定方法及びエピタキシャルウェーハの製造方法
TW202130845A (zh) 磊晶晶圓之製造方法及磊晶晶圓
CN101792901B (zh) 一种在钇掺杂氧化锆衬底上制备立方结构氧化铟单晶薄膜的方法
CN110993504A (zh) 基于SiC衬底的Ga2O3薄膜的制备方法及基于SiC衬底的Ga2O3薄膜
JPH04237134A (ja) エピタキシャルウェハーの製造方法
CN103094316B (zh) 一种具有高金属吸杂能力的n/n+硅外延片及其制备方法
CN111606322B (zh) 一种铁磁薄膜外延单层石墨烯及其制备方法
CN116926672A (zh) 基于单晶二硒化钨的垂直异质外延高定向金属铂的方法
CN118213264A (zh) 一种氧化镓n型掺杂的生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination