CN116235001A - 棱柱形液氢舱 - Google Patents

棱柱形液氢舱 Download PDF

Info

Publication number
CN116235001A
CN116235001A CN202180059283.5A CN202180059283A CN116235001A CN 116235001 A CN116235001 A CN 116235001A CN 202180059283 A CN202180059283 A CN 202180059283A CN 116235001 A CN116235001 A CN 116235001A
Authority
CN
China
Prior art keywords
prismatic
tank
layer
panel
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180059283.5A
Other languages
English (en)
Inventor
S·福丝
S·厄伊恩
A·B·安德森
T·保尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerwei United Co ltd
Original Assignee
Gerwei United Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerwei United Co ltd filed Critical Gerwei United Co ltd
Publication of CN116235001A publication Critical patent/CN116235001A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/002Storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/015Bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0107Frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0138Two or more vessels characterised by the presence of fluid connection between vessels bundled in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0169Details of mounting arrangements stackable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/219Working processes for non metal materials, e.g. extruding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Optics & Photonics (AREA)
  • Thermal Insulation (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

一种用于容纳液化气体的棱柱形舱。舱由挤压材料形成并且包括外隔热层。

Description

棱柱形液氢舱
背景技术
本发明涉及一种用于容纳和运输液化气体的舱,即用于低温液体的容纳系统。本发明具体但不排他地适用于作为货物或者作为燃料的诸如液化氢和液化天然气(LNG)之类的低温液体的储存和运输(以及在作为燃料情况下的消耗)。
运输此类液化气体允许在一次行程中运输大量气体,这减少了污染并增加了运输效率。为了运输这种液化气体,船舶在航行期间必须维持极低的温度。
通过对用于容纳液化气体的舱进行隔热,实现了将气体维持在这些低温下的液态状态。这通常采用一层或多层诸如聚氨酯泡沫之类的隔热材料的形式,其可以喷涂到舱表面上或以预制面板的形式安装,预制面板通常包括使用胶合板,这可防止周围的热量到达货舱(液货舱)并加热液化气体。
这种系统已经成功地用于各种能够在世界范围内安全运输液化气体的气体运载船舶。
然而,发明人已经设计出新的装置,其允许容纳极低温度下的液化气体并且比现有方法更高效地使液化气体与周围条件隔离。更具体地,本文所述的发明允许在接近绝对零度,即低于-250摄氏度的温度下对货舱或燃料舱进行隔热。
有利地,这样的系统允许容纳诸如氢气或甲烷之类的气体并将此类气体维持在液态。在燃烧过程中将氢燃烧为机械能或在燃料电池中将氢转化为电能只产生水作为废物,因此容纳和使用这种燃料的能力提供了显著的环境和效率优势。它还允许船舶和船队运营商遵守未来可能适用于航运业的更加严格的环境法规。
容纳系统可能会发现它用于陆基部门以及固定容纳以及基于公路和铁路的运输。
其它优点在本文中描述。
发明内容
本文描述的发明的各方面在所附权利要求书中阐述。
从本文描述的本发明的第一方面来看,提供了一种如权利要求书中所述的棱柱形或球形舱。
本发明涉及适合于在低温下容纳和运输液化气体的舱的改造。在船上长时间容纳这种液化气体的能力使发明人偏离了船舱设计和制造的现行工业标准。
作为说明,货物容纳系统和舱类型的设计和建造由适用于所有气体运输船的国际散装运输液化气体船舶构造和设备规则(“IGC规则”)以及适用于配备气体燃料推进和辅助系统的船舶的使用气体或其它低闪点燃料船国际安全规则(“IGF规则”)规定。
对于液化气体运输船,即船舶中的货物容纳系统,存在特殊规定。
货物容纳系统是一个术语,用于描述容纳货物(或燃料,视情况而定)的总体装置,包括以下内容:
1.主屏障(货舱),
2.二级屏障(A型舱必须具备),
3.相关联的隔热部,
4.任何中间空间(用于维护),以及
5.如有必要,还包括用于支承这些元件的相邻结构
对于在低至-55摄氏度的温度下运输的货物,船体可充当二级屏障,在这种情况下,它可能是船内货舱空间的边界。
气体运输船上使用的基本货舱类型符合以下定义:
独立舱-类型“A”、“B”和“C”
独立舱完全自支承,不构成船体结构的一部分。此外,它们对船体强度没有贡献。根据IGC规则的定义,主要根据设计压力,气体运输船存在三种不同类型的独立舱。这些被称为:
i)《A》型;
ii)《B》型;以及
iii)《C》型。
《A》型舱
《A》型舱主要由平坦表面构成。此类系统在蒸气空间中的最大允许舱设计压力为0.7barg(巴(表压))。这意味着货物必须在处于或接近大气压力(通常低于0.25barg)的完全冷藏条件下运输。这种类型的舱是自支承的,并且需要常规的内部加强(类似于船舶本身的正常船体结构)。
《A》型舱可能不抗裂纹扩展。因此,为确保安全,万一发生货舱泄漏,需要二级容纳系统。这种二级容纳系统被称为二级屏障,并且是具有能够在-10摄氏度以下运载货物的《A》型舱的所有船舶的特征。
二级屏障必须是完整的屏障,其能够在规定的龙骨角度容纳整个舱体积。IGC规则规定,二级屏障必须能够在15天内容纳舱泄漏。
《B》型舱
《B》型舱可以由平坦表面构成,也可以是球型。与《A》型系统相比,这种类型的容纳系统是更详细的应力分析的对象。这些控制必须包括疲劳寿命调查和裂纹扩展分析。
由于增强的设计因素,“B”型舱只需要承滴盘形式的局部二级屏障,即舱周围和下方的托盘,以收集任何逸出的液体。
如今在LNG服务中存在棱柱形的《B》型舱。棱柱形《B》型舱利用了船舶的主甲板空间。对于《A》型舱,最大设计蒸气空间压力限制为0.7barg。
《C》型舱
《C》型舱通常是设计压力为2表barg或更高的球形或圆柱形压力容器。圆柱形容器可以竖直或水平安装。这种类型的容纳系统总是用于半压和全压的气体运输船。
《C》型舱根据相关压力容器规范设计和建造,并经过详细的应力分析。此外,设计应力保持较低。因此,《C》型舱不需要二级屏障。
《C》型舱可设计成用于约18barg的最大工作压力。对于半压船舶,货舱和相关设备的设计工作压力约为5至7barg,真空度为0.5barg。所陈述,半压船舶的舱钢能够承受低至-104摄氏度的运输温度(对于乙烯,并且还包括-48摄氏度的液化石油气(LPG))。
膜舱
膜容纳系统的概念基于非常薄的主屏障(膜-0.7至1.5毫米厚),该屏障由隔热材料支承。这种舱不像独立舱那样自支承。内壳形成承重结构。膜容纳系统必须始终设有二级屏障,以确保在主屏障泄漏时整个系统的完整性。
根据本文所述的发明,提供了改进的B型舱。具体地,本文所述的发明提供了棱柱形舱,该棱柱形舱可以通过替代设计来容纳2barg或更大的内部压力。
具体地,从本文描述的本发明的第一方面看,提供了一种用于容纳液化气体的棱柱形舱,该舱包括多个基本上平坦的侧壁,这些侧壁限定两个相对的端部、两个相对的侧部以及与下表面相对的上表面,平坦的侧壁限定用于容纳液化气体的容积,棱柱形舱还包括在平坦的侧壁的相交部处的边缘部分,其中边缘部分和平坦的侧壁可以是挤压件。
因此,可以提供由多个挤压部件形成的舱结构。使用挤压件可以形成同种类的部件,从而可以优化材料的使用和强度。这还使会破坏结构强度连续性的接头和联接件最小化。
有利地,该结构允许提供混合舱结构,该混合舱结构将B型舱的属性(如上所述)与适应内部压力的能力相结合。本文描述了一种新型舱设计。
实际上,舱构造限定用于容纳低温液化气体的压力容器。
如上所述,A型和B型舱是非加压型(它们可以承受高达0.7表压的压力),无需考虑欧盟压力指令或与压力容器相关的任何其它要求/法规。C型舱可以承受更高的压力(0.7表压以上),根据定义是压力容器。
本文所述的舱结构不是上述任何一种,而是基于棱柱设计并能够承受2barg以上压力的新型舱。因此,它是压力容器,并且需要符合此类要求。
棱柱形舱的挤压结构允许被工程设计,即设计为适应预定的内部压力。例如,通过选择形成舱的部件的横截面以在应力、应变和安全裕度方面提供所需的强度,可以在这样的舱内容纳2barg或更大的内部压力。舱本身内的加强件也可以包括在内并结合起来作为防止飞溅/晃动的措施,从而允许舱也能够以任何水平高度被填充。
有利地,本文所述的构造允许不需要二级屏障的棱柱形舱;这成为可选的附加。
形成舱的子部件可以是不同的材料,例如壁和边缘部分可以是不同的材料以适应预定载荷。然而,有利地,材料可以是相同的,即共同的材料。这有利地允许热膨胀的连续性、更可靠的焊接或连接以及附加地进一步增强焊接强度诸如摩擦搅拌焊接(FSW)之类的技术的使用。
可以使用任何合适的材料。然而有利的是,可以使用铝或其合金来优化强度同时最小化舱的重量。
舱的平坦的侧壁可由焊接在一起的单个或多个挤压件形成。有利地由焊接在一起的多个区段形成舱的平坦区段允许许多制造和技术优势,包括但不限于:
-使用更小的挤压机来形成棱柱形舱。这增加了舱制造地点的灵活性;
-较低的制造成本;以及
-根据本文描述的方法建造更大的舱的能力。例如,当用作燃料舱应用时,可以建造非常大的燃料舱以安装到船体中以容纳燃料。
边缘区段可具有这样的横截面形状,其具有用于连接到第一侧壁的第一边缘和用于连接到相邻侧壁的第二边缘,第一边缘和第二边缘彼此成90度布置,并且其中,第一边缘和第二边缘限定可以沿着其焊接侧壁的焊接线。
因此,可以提供也可以方便地挤压的拐角区段。每个拐角区段或边缘区段的90度提供了盒或矩形形状的舱。将认识到可以使用其它角度来允许舱装配到不同的应用中。对于本文讨论的ISO集装箱,90度角方便地允许舱遵循由集装箱框架尺寸限定的内部空间。
边缘还提供方便的直线,沿着该直线可以形成焊缝。由于本文所述的舱的加压性质,发明人已经确定,确保焊缝各自从第一侧壁和相邻侧壁的交点移位,这有利地允许在不包含焊缝的情况下根据挤压型材优化边缘和拐角。这种焊缝不利于相邻面板之间在高应力点处的接头强度。可以使用任何合适的位移,诸如例如至少10厘米,这有利于控制边缘和拐角部分内的载荷。
横截面中的边缘部分可以是两个垂直部分的形式,垂直部分用于连接到相关联的平坦的侧壁,以及连接两个垂直部分的中间部分,其中,中间部分与两个垂直部分中的每一个成45度角布置。因此,提供了也可以被挤压的截头拐角。这也有利地优化了边缘或拐角的强度。
通过形成其中在中间部分与垂直部分相交的点处提供半径,可以附加地提供进一步的强度。
如上所述,可以使用不同的焊接技术。有利地,可以使用搅拌摩擦焊接(FSW)形成焊接接头,即边缘部分和平坦侧壁通过FSW连接在一起。这提供了极强的焊接而不熔化材料。
舱还可以设置有围绕舱并允许低温液体容纳在舱内的隔热层。现在将描述隔热的方面。
在一种布置中,舱还可以包括外隔热层,该外隔热层布置在基本上平坦的表面的外表面上和边缘区段的外表面上。
隔热材料可以是隔热泡沫的形式。
隔热层可以是一个或多个同轴套筒的形式,其围绕棱柱形舱限定空间以接纳隔热材料。在另一种布置中,隔热层可以是多个镶嵌隔热面板的形式。因此,任何形状的棱柱形舱都可以完全隔热。
例如,隔热层可以是包括一个或多个镶嵌隔热单元的模块化隔热装置的形式,每个单元包括面向内的第一层以及与第一层间隔开的面向外的第二层,两个层在其间限定空间,并且一个或多个间隔构件在第一层和第二层之间延伸,并且其中,限定第一层、第二层和围绕装置延伸的外周界的表面是不透气表面。
此外,第一层和第二层之间的空间以及限定装置的外周界的表面限定了装置的内部容积,并且其中,间隔构件在使用中布置成,当内部容积被排出空气时,抵抗作用在表面上的大气压力。
因此,可以结合新型舱构造提供真空隔热装置。这将允许低温液体(诸如货物或燃料)容纳在这种棱柱形舱中。
此外,为了方便本文所述的棱柱形舱的运输、装载和卸载,舱可有利地容纳在符合ISO尺寸规定(本文所述)的ISO集装箱框架内。
更进一步地,舱装置可以包括允许选择性地联接至类似框架的周界框架,使得多个棱柱形舱能够以堆叠或矩阵的形式联接在一起。
为了允许方便地装载和卸载舱,可以提供入口和外端口以允许货物和/或燃料装载到舱中和从舱中移除。有利地,相邻舱可以设有预构造的管道以允许同时装载和卸载舱。这对于方便的液体传输或在需要连续燃料流的燃料应用中可能特别有用。
如上所述的多个舱随后可以方便地布置在船上的或船舶内部的矩阵中。
从本文描述的本发明的另一方面看,提供了一种用于船舶的燃料舱,其中,该舱具有用于容纳液化气体的棱柱形结构,该舱包括多个基本上平坦的侧壁,这些侧壁限定两个相对的端部、两个相对的侧部以及与下表面相对的上表面,平坦的侧壁限定用于容纳液化气体的容积,棱柱形舱还包括在平坦的侧壁的相交部处的边缘部分,其中边缘部分和平坦的侧壁是挤压件。
从又一方面来看,提供了一种容纳如本文所述的棱柱形舱的船舶。
附图说明
现在将会参考附图仅通过示例的方式来描述本发明的各方面,在附图中:
图1示出了可包含本文所述的发明的船舶的剖视图;
图2示出了本文所述的棱柱形舱的子部件;
图3A、3B和3C示出了本文所述的舱的边缘型材;
图4示出了本文所述的舱的子部件的替代视图;
图5A、5B和5C示出了棱柱形舱、隔热层和内部加强件的剖视图;
图6A、6B和6C示出了具有替代加强装置的舱的剖视图;
图7A和7B示出了图6A-6C中所示的加强装置;
图8示出了来自图7A和7B的具有舱表面的加强装置;
图9示出了容纳本文所述的棱柱形舱装置的ISO集装箱框架;
图10A和10B示出了ISO集装箱和棱柱形舱以及内部加强件;
图11A和11B示出了常规液化气体运输船舶的剖视图,图11B是船舱的角部放大图;
图12A和12B示出了如本文所述的隔热装置;
图13示出了单个面板的视图,其中一个外表面被移除以示出内部部件;
图14A示出了用于连接到图13所示的装置的面板的上表面;
图14B示出了面板的相对的(下)表面;
图15A和15B示出了面板的周界区段;
图16示出了隔热器的剖视图;
图17示出了通过面板的周界区段的剖视图;
图18A至18D示出了六边形面板装置;
图19示出了六边形面板内的多个内部间隔元件;
图19A示出了形成六边形面板的部件的分解图;
图110示出了六边形面板装置的外表面;
图111示出了六边形的周界,当它联接于图110所示的表面时,周界限定可以被排气的面板的容积;
图112A示出了面板和边沿布置的周界;
图112B示出了周界隔热装置的剖视图;
图112C示出了相邻面板的邻接;
图113和114示出了多个六边形面板,这些面板联接以形成单个单元或面板组;
图115A示出了附连于舱的六边形面板的一种布置;
图115B示出了附连于船舶的房间/保持空间(货物区域)中的内船体的六边形面板的一种布置;
图116示出了联接至面板的示例真空;
图117示出了包含本文所述的隔热系统的用于液化气体的运输系统;
图118示出了图117所示的运输系统的矩阵;
图119A、119B和119C示出了如图117所示的分解的系统的平面图、侧视图和端视图;
图120示出了系统的示例尺寸;以及
图121、122和123示出了根据本文所述的发明的隔热和运输的进一步示例。
尽管本发明易于进行各种修改和替代形式,但在附图中借助示例示出特定实施例并且在本文中详细描述。然而,应当理解,附图和所附的具体实施方式并非旨在将本发明限制为所公开的特定形式,而是旨在涵盖落入本要求保护的发明的精神和范围内的所有变型、等效物和替代物。
本说明书中对现有技术文件的任何引用均不应被视为承认此类现有技术广为人知或构成本领域公知常识的一部分。如本说明书中所使用的,词语“包括”、“包含”和类似词语不应以排他性或穷举性的意义来解释。换言之,它们的意思是“包括但不限于”。参考以下实施例进一步描述本发明。将理解的是,要求保护的本发明不旨在以任何方式受这些实施例的限制。还将认识到,本发明不仅覆盖单独的实施例,而且覆盖本文描述的实施例的组合。
此处描述的各种实施例仅用于辅助理解和教导要求保护的特征。这些实施例仅作为实施例的代表性样本提供,并非详尽和/或排他性的。应当理解,本文描述的优点、实施例、示例、功能、特征、结构和/或其它方面不应被视为对权利要求书所定义的本发明范围的限制或对权利要求等同物的限制,并且在不脱离要求保护的发明的精神和范围的情况下可以使用其它实施例并且可以进行修改。本发明的各种实施例可适当地包括所公开的元件、部件、特征、部分、步骤、手段等的适当组合,或者由或基本上由所公开的元件、部件、特征、部分、步骤、手段等的适当组合组成,除了本文具体描述的那些。此外,本公开可能包括目前未要求保护但将来可能要求保护的其它发明。
将认识到,本文描述的本发明的(一个或多个)方面的特征能够以任何合适的组合方便地和可互换地使用。
具体实施方式
图1示出了船体的剖视图。货物集装箱1位于船舶的甲板2上。多层集装箱可以装在甲板上或船体和货舱中,以在世界各地运输。
在所示的剖视图中,船体容纳舱3,该舱可以容纳液态形式的附加货物。在所示的示例中,舱设有围绕舱的外表面隔热层并且在舱3和船体结构5之间设有空隙4。空隙允许检查隔热。这种布置是船舶上使用的常规布置,并且涉及将隔热泡沫的喷涂层施加到舱的外表面以对内容物进行隔热。对舱进行隔热允许使舱的内容物保持在特定温度。
在舱和围绕其外表面的隔热层之间可能产生小空隙。如果空隙的大气的冷凝点高于舱外表面的温度,则该空隙的大气将由于面向隔热层的舱壁的温度非常低而导致冷凝。为了避免这种情况,小空隙可以填充有在外舱壁的温度下不会冷凝的气体,即<-250摄氏度。这样的气体可以是氦气(He)或氢气(H2)。或者,可通过引入真空将空隙中的任何气体排空。空隙也可以在没有采取任何避免冷凝的措施的情况下留下。在这种情况下,根据大气情况,可能在空隙中发生冷凝,从而在舱外表面上和面板内部形成一层冰。该层将增长,直到其背对舱表面的外表面达到高于空隙大气凝结点的温度。冰的形成可以充当隔热层。
图1中所示的货物集装箱1可符合特定的既定国际尺寸标准。对于货运集装箱存在不同的标准。一项标准是国际标准组织(ISO)标准668:2020。这些标准定义了集装箱的大小和尺寸。
用于货物的ISO集装箱的优势在于它们都可以装载到船舶上并牢固地锁定在一起,其中相邻集装箱之间没有空间。这使船舶上利用的空间最大化。它们还可以在世界各地按照特定标准设置的港口方便地装载、卸载和运输。
如本文所述,发明人设计了棱柱形舱,其尺寸可符合ISO标准,从而方便地允许其在常规货物的正常运输链中使用。同样如本文所述,新的舱装置允许将液化气体容纳到极低的温度。
现在将描述舱的结构和构造。
图2A、2B和2C示出了构成舱体本身的子部件。如图所示,舱的构造是模块化的并且包括多个周界框架区段(如图2B所示)和多个基本上平坦的区段(如图2C所示)。框架区段和平坦区段汇集在一起形成舱(如图2A所示)。
现在将描述各个部件。
参考图2C,示出了平坦区段。这些区段都是挤压的铝制平坦主体,它们沿着舱的每一侧的长度延伸。每个挤压件的在图2C中用w表示的宽度决定了每个挤压件之间是否需要一些接头以形成舱表面的侧面或端面。如图2C所示,两个挤压件可以构成舱的侧表面。类似地,如图所示,两个挤压件可以构成舱的每个端面以及顶部和底部。
挤压平坦区段允许提供优化的表面几何形状。例如,每个平坦区段的外边缘可以比中心区域厚,以允许更方便地将这些部分结合、连结或焊接在一起,同时最小化材料消耗和重量,但同时保持必要的强度。使用常规的挤压技术同样可以提供平坦区段的其它横截面。
铝以最小的重量有利地提供了表面所需的强度。它还有利地提供不易腐蚀的舱表面,这在舱由船舶运输时特别有利。更进一步地,铝合金在低温下保持它们的机械特性并且因此允许方便的制造并且还有强度。
转向图2B,示出了周界框架区段。周界框架区段限定棱柱形舱的边缘并提供连接侧表面、顶表面、底表面和端表面以限定舱的边界壁的手段。
与平坦区段一样,周界框架区段也可以挤压成型,从而受益于与上述相同的优点。具体地,可以针对强度优化框架区段的横截面。
框架区段还有利地允许优化连接于相邻平坦区段的框架所沿着的点或线。具体而言,通过提供挤压的框架区段,由于挤压的连续性质,连接的完整性可以非常高。此外,挤压框架的横截面可以针对强度、重量以及针对与相邻平坦区段的联接进行优化。
现在将参考图3A、3B和3C更详细地描述框架区段。
图3A、3B和3C示出了拐角和拐角区段的侧视图。如图所示,拐角区段包括从舱的底部延伸到顶部的竖直部件和彼此成90度布置以限定侧边缘和端边缘的两个水平部件。
由于可能由蒸发引起的舱内压力的增加,舱容易出现升高的应力集中。正是出于这个原因,棱柱形舱通常不用于压力应用。然而,发明人已经确定,使用诸如图3A中所示的挤压框架横截面,该区段以及由此接头能够承受的力可以非常高。具体地,框架区段的几何形状使得平坦区段连结(焊接)于框架区段所沿着的点或线可以远离极高应力区域。
如图3A所示,焊接点Wp可以被移离制作框架的材料的拐角或转折点。如图所示,通过将焊接点从框架部分的拐角区域移动距离d,进行焊接的位置移离最大应力区域。
这有利地增加了舱边缘的结构完整性,允许具有更大完整性的焊接并且允许横截面的厚度针对强度和重量进行优化。
此外,将线的焊接点移动到舱的平坦区域允许使用搅拌摩擦焊(FSW)等焊接技术。FSW在这种舱应用中是有利的,因为可以在框架区段和相邻的平坦区段之间形成高度均匀和连续的焊缝。
这允许围绕舱的周界形成高度完整的拐角和边缘接头。
如图3B所示的拐角区段可以被施压以在舱的4个拐角中的每一个拐角处形成弯曲的拐角。拐角的数量当然将取决于所选的舱几何形状,因此可能大于4个。
此外,相同的FSW技术可以有利地用于将相邻的平坦区段连结在一起。
因此,可以提供由挤压的子部件形成的高完整性的舱。挤压的简单性允许以具有成本效益的方式和高精度制造舱。与形成舱的模块化部件之间的高完整性接头联接,可以提供高强度和耐用的舱以用于液化气体或类似物的远洋运输。
可以通过将多个上述挤压件汇集在一起然后焊接在一起来方便地形成舱。
图4示出了本文所述的舱的侧视图、俯视图和端视图。各个子部件由以下附图标记表示:
7挤压型材拐角;
8挤压梁(短);
9挤压拐角;
10挤压梁(长);
11挤压面板(舱壁);
12挤压面板(舱壁);以及
13挤压面板(顶部/底部)。
将认识到,其它焊接技术也可以方便地应用于本文所述的模块化装置。
这些附图描述了容纳液化货物或燃料的舱体的构造细节(在燃料舱应用中)。可应用于舱体的隔热部的各方面现在将描述如下。
图5示出了本文所述的舱的剖视图(5A)、局部剖视图(5B)和平面图(5C)。图5A是图5C中的区段A-A’的剖视图。
如图2至4中所述的舱体被隔热层14包围,隔热层14定位成抵靠舱体15的外表面。舱容纳货物/燃料16。
舱的内部容积可以是空的空间以接纳货物/燃料或者可以包含一系列穿孔横向构件或表面17。
布置在舱的内壁之间延伸的多个内表面或肋部17可以有利地提供许多优点:
-首先,表面或肋部可以增加舱体的结构刚度;
-其次,增加刚度使舱能够在内部和外部均能承受更大的压力载荷;
-第三,通过使内部结构更坚固,可以减少并优化舱的壁厚;以及
-内部结构或肋部可以有利地防止或减少液体在舱内的移动(有时称为“晃动”),这在移动液体舱时是不期望的。
下面更详细地描述隔热层14的细节。
转向图6A、6B和6C,这些图以剖视图示出了舱的拐角。图6B是图6A中的剖面A-A’的剖视图。图6C示出了舱结构的拐角的放大图。如图所示,内部肋部18围绕舱的内壁延伸,从而提供舱的周向加强。肋部18还起到有利地减少液体晃动运动的作用,但在该示例中延伸穿过舱,而不是在图5A所示的肋部示例中的沿着舱延伸。
在图6C中,舱壁19示出为被二级屏障或隔热层20包围。隔热层20布置成完全封装舱体(一个或多个装载端口和卸载端口除外),从而使舱体与外部环境温度完全隔绝。
图7A和7B示出了使用图6B和6C中所示的多个肋部18的舱内的加强结构(在一示例中)。将认识到,舱内的这种结构提供了极具刚性的舱。每个肋部可以有利地由铝挤压或切割并且方便地螺栓连接或焊接在一起以制成该结构。这些肋部的尺寸能够以一定程度的间隔进行偏离以更高效地减轻晃动。
图8示出了围绕图7A和7B所示结构的舱表面。
如上所述,本文所述的新型棱柱形舱装置可以方便地布置成对应于货物运输法规中规定的尺寸,例如集装箱的ISO法规。
图9示出了一种这样的示例,它在ISO集装箱封套内包含本文所述的棱柱形挤压舱。舱21可定位在集装箱外框22内。如图所示,外框架22提供标准附连件23,这些标准附连件允许此类集装箱彼此连接和/或固定于诸如船甲板之类的基部并联接在一起以用于例如在船舶上进行大规模运输,如图1所示。
图10A和10B示出了这样的ISO装置和棱柱形挤压舱。图10A还示出了可选的内部肋部,在该示例中,内部肋部沿着舱的长度延伸。
现在将描述棱柱形舱的隔热部以及隔热部和舱的组合。从本文的教导将再次认识到,舱和隔热部的组合可用于货物和燃料舱应用。
图11A示出了穿过常规气体运载船舶111的剖视图,其适用于运输液化气体货物。气体被液化并泵入船内的舱中以进行长距离运输。为了将气体维持在液化状态,船上的舱必须保持在非常低的温度,这需要对货舱进行特殊隔热。
该船舶包括货物支承系统112,该系统为货舱113提供抵靠船舶的船体和在船体内的支承件。舱113作为船舶的主要安全封围屏障并且典型地由指定用于低温应用的钢或铝形成。
设置了屏障间空间114,其限定了舱113和另一个二级屏障之间的空间。这可能是船舶的内船体,并且可能是另一层隔热材料或船舶的隔热装置。在这种情况下,屏障间空间在舱113的外表面和布置在内船体表面上的隔热部之间提供可进入的空间。
替代地,隔热装置可构造成邻近或附连于舱并且本身用作屏障。在这种情况下,屏障间空间将由距舱113的外表面的距离限定,并且隔热装置也起到屏障的作用。
舱113布置成容纳船舶的货物,货物可以是各种液化气体。在一示例中,货物可以是温度保持在-163摄氏度的液化天然气(LNG)。另一示例可以是保持在-253摄氏度温度下的液化氢。
为了符合液化气运输的法律要求,提供了二级保护层115。这可以布置在内船体的表面上或通过替代装置布置。在主舱113发生故障或泄漏的情况下,液化气体可以流入空间,例如屏障间空间114,并且被二级保护层115所容纳。该层防止液化气体接触船体,这可能由于液化气体的极低温度而导致船体发生致命故障。
图11A所示的装置是用于运输液化气体(例如LNG)的船舶的常见结构。这些气体运载船舶提供了安全的主舱来容纳冷液,并在主舱泄漏或故障时提供了二级后备层系统。
这种建造LNG运载船舶的缺点是建造时间和由此产生的成本,以及与建造过程的物流相关的挑战。如本文所述,此类船舶的建造可能很慢,因为在船舶结构和二级屏障首先安装在船体表面之前不能安装舱。如果隔热层与舱相邻或附连于舱,并且还用作二级屏障,则舱可以在船体构造完成后直接安装。
本发明的优点是船舶的部件可以平行安装的方式,从而减少液化气体运载船舶的总建造时间。
图11B示出了图11A中所示常规装置的拐角的近视图。此处,屏障间空间114和二级隔热层115更清晰可见。
图12A和12B(分别)示出了本文所述的隔热装置的一实施例的侧视图和剖视图。
图12A示出了隔热装置的总体布置结构。装置116包括面向内的第一层117和面向外的第二层118。面向内的层在使用中布置成面对或邻接包含液化气体的舱(例如图11A中所示的主封围舱113),即术语“向内”指的是在使用中上述装置的向内面向冷货物的一侧。
相对表面118在使用中布置成向外面向屏障间空间114或船体(参见图11A和11B),即从冷货物面向外。
图12B以示出了装置。如图所示,第一层117和第二层118间隔开距离d,从而限定空腔或空间119。离散元件1110位于两个层或表面117、118之间并且维持两层之间的空间。
图12A和12B还示出了起伏部1111,起伏部在一个或两个表面中形成,并且通过增加层的刚度来增加结构强度并且另外且有利地适应面板表面的热膨胀和收缩。
图12A和12B还示出了真空阀1112,该真空阀允许装置内的空间与外部环境条件之间的空气连通。阀1112布置成接纳空气泵(真空泵),该空气泵可操作以将层之间的空间内的压力降低至或接近真空。这将在下面进一步讨论。
图13示出了图12A和12B中所示的单元的另一视图。此处示出了单元或面板的内部布置。如图所示,一系列起伏部1111横跨并沿着面板的长度布置。参考图14A,示出了对应的轮廓1111B,当将两个部分放在一起时,该轮廓装配在起伏轮廓1111内。因此,起伏部可以增加面板的刚度。
回到图13,在一实施例中,将表面117、118间隔开的离散元件是多个细长构件1114A、1114B、1114C和1114D的形式。将认识到,可以使用任何数量的元件。离散元件从面板的一端延伸至另一端,沿着两个表面的整个长度为它们提供支承。
为了允许面板内和两个相对层之间的空气运动,每个离散间隔元件(1114A-1114D)设有多个孔1113,这些孔允许空气在面板内自由运动。因此,当空气通过阀1112被吸入时,面板内的整个空间可以被排气并且可以形成真空。
有利地,通过在面板中形成真空而不是使用诸如泡沫等的隔热材料,面板的隔热特性可以得到显著改善。此外,面板的重量也可以显著降低,因为面板层之间的空间既没有材料又被排出空气。
然后两个面或层117、118在结构上由多个离散的支承元件彼此支承,图13中示出了一示例。作为一示例,层和支承元件可以通过挤压由铝制成。因此,当空气从面板吸离并建立真空时,面板能够支承或抵抗由作用在两个表面117、118和周界1115(参见图17)上的大气压力引起的力。面板还能够支承施加于面板的任何外部载荷,该外部载荷可能由例如舱的泄漏或破裂导致液体的重量作用在面板上引起。
图14A和14B示出了使用挤压层117、118形成面板的两个相对层的面板结构的一示例。在一实施例中,从铝挤压每一层有利地允许层形成任何实用的长度和宽度。它允许以成本有效且简单的方式来形成每一层,并且此外允许快速且容易地形成起伏部1111。
现在将参考图15A和15B描述每个面板的周界。
如图15A所示,周界P围绕面板的侧部延伸并且一旦连接于图14A和14B所示的两个相对层中的每一个的边缘就提供不可渗透的密封部。端部具有与起伏部1111互补的轮廓。面板通过将周界P焊接至两个层而形成,从而形成由围绕边缘的周界和两个相对面界定的密封内部空间。
作为一示例,现在将参考图15A和15B描述每个面板的周界。周界形成面板的侧边界。一旦面向内的表面和面向外的表面联接于周界(例如借助焊接),密封容积由此形成。空气可以从容积中排出并且在装置内部产生真空。
图15B将周界示出为相邻但未连接的部件P1和P2,其中两个周界部件之间具有空间S。该空间可以用传热性能低于用于P1和/或P2的材料的不同材料桥接(如下所述)。因此,可以形成隔热部。
周界可以有利地是金属,其可以方便地焊接至两个层以提供围绕面板周界的非渗透表面。
因为面向内的面板将靠近冷的主舱,因此面向内的表面的温度将显著低于面向外的层的温度,其可以例如处于环境温度或近似海水温度。
在用于容纳液化氢的设备的一实施例中,面向内的表面可以处于<-250摄氏度的温度,而面向外的表面可以处于>0摄氏度的温度。因此,面板上存在显著的温度差或温度梯度。
可以使用任何合适的材料来形成面板的层和独立的支承元件。例如,可以使用具有低密度并且可以被使用具有起伏部以形成坚固结构的铝。然而,铝的热导率约为121W/mK(瓦/米度),这不利地允许环境温度通过材料传导至面板的冷侧(以及液化气体舱)。·
因此可以使用隔热部来防止两个表面之间的热传递。这在图16的一示例中示出。
图16示出了第一层117和第二层118以及在其间延伸的单个离散支承元件1114。支承元件1114由从第一层延伸的第一部分1116和从第二层延伸的第二部分1117形成。这两个部分可以通过断热部或隔热部1118联接在一起。
隔热部1118可以是与两个部分1116、1117不同的材料。例如,层117、118和部分1116、1117可以由铝形成。在一示例中,部分1116、1117可以例如借助于挤压形成为与层117、118成为一体。或者,它们可以在各部分与相应层的相交处焊接。
在图16所示的示例中,隔热部1118可以是不锈钢的一部分,其具有比相邻的铝低得多的导热率(例如大约12W/mK,而不是121W/mK)。因此,热量被限制以免直接沿着离散元件传递,而是被阻止传递通过隔热部。
在不锈钢用于隔热部1118并且铝用于两个部分1117、1116的布置中,连接可以借助于用于将不锈钢连接至铝的已知焊接技术。可以应用其它合适的结合工艺。
隔热部1118可以替代地由聚合物制成,诸如适用于低温应用的橡胶、POM、PTFE或PEEK。连接可以通过粘合剂粘合或硫化粘合进行。
如图15A和15B所示,还可能需要围绕面板周界的隔热部1118。如图16所示,可以使用类似的布置。重要的是,由于面板内的内部空气被排出时大气压力作用在周界上,周界也经受侧向力。因此需要隔热部来抵抗侧向或横向运动。
图17示出了周界1115如何适合并入隔热部的一示例。此处隔热部1118的横截面是三角形的,这意味着大气压用于将隔热部偏置到周界区段1115的第一部分和第二部分之间的间隙中。隔热部1118可以替代地是焊接板或具有其它几何形状。
隔热部1118可以位于距上层或下层117、118的任何距离处。
在又一示例中,离散支承元件可以由诸如胶合板、竹子、硬纸板或优选地具有低热传递特性的其它材料的木材形成。
图17还示出了可用于方便地允许将两个相邻面板焊接在一起的层的周界。在这样的布置中,可以通过不可渗透的焊接接头将一个或多个相邻面板密封在一起来形成单个内部体积或空间。例如,当两个相邻的面板彼此邻接时,焊接可以应用于面板的上边缘和下边缘。
如上所述,单独面板的形状可以是矩形或正方形,从而允许相邻形状方便地镶嵌和连结在一起(例如通过焊接)。还可使用包括三角形的其它形状。根据要隔热的舱或房间/保持空间的几何形状,可以使用不同形状的组合。
图18A至18C示出了六边形形状形式的替代镶嵌面板。有利地,六边形可以镶嵌,并且当从六边形的中心径向向外测量时,热膨胀是均匀的。图18D示出了允许抽出空气以在六角形面板内部形成真空的排气阀。
现在将参考图19描述六角形面板的内部。
六边形面板可包括以不同分布和构造的范围布置的多个离散支承元件。在图19所示的示例中,支承元件不是沿着面板延伸的细长材料条或横跨面板径向间隔开的同心环,而是多个柱的形式。
柱可以例如是圆柱体或六角柱,其如图19所示从面向内和面向外的表面延伸。柱可以直接放置在向内和/或向外的面板上,或者放置在施加在相应层内侧的材料支承层上。该材料支承层可以有利地具有低热传递特性。当面板中抽真空时,柱可以提供维持两个表面或层分离所需的支承。低导热性意味着横跨面板的热传递最小化。
如图19所示,柱也可以是六角形的形式,这有利地允许这些独立柱在六角形面板的主体内镶嵌并横跨面板的区域延伸。因此,可以容纳垂直和侧向载荷。
每个柱可以参考图16的描述构造有中间的隔热部。然而,也可以有利地使用具有低导热性的单个连续材料,诸如木材(例如胶合板或木材复合材料)、竹子、纸板或不锈钢。因此,可以使用增加简单性和降低制造成本的隔热部。
图19A示出了构成六边形面板的子部件。如图所示,单个六角柱的六角形阵列位于面板的上表面和下表面之间以及外周界内。
在替代的可选装置中,柱本身也可以填充有隔热材料,诸如膨胀泡沫、珍珠岩等。这些柱可以各自全部或部分填充有这样的材料,这可以有利地增加面板的强度和/或热特性。可以填充全部柱或柱的子集,从而可以在强度、重量和热性能之间实现平衡。
图19和110示出了六角形面板的内部细节。图110还示出对应于上文参考图15B描述的周界的两个周界部分P1和P2。图111示出了六边形面板的周界1122。
图19中所示的每个柱可以附加地设有允许空气连通进出每个柱子的洞、槽或孔。因此,空气可以通过图18D中所示的阀从每个柱中抽出,以在整个面板和每个柱的内部形成真空。可以避免面板内的压差并维持真空的热性能。
六边形面板的要求仍然是整个周界是气密的(不透气流),同时维持面向内的表面和面向外的表面之间所需的隔热性能。这可以参考图112A来实现。
图112A示出了六边形面板装置的一实施例。
该面板包括面向内的表面117和面向外的表面118以及附加地(参见图112B)两个唇缘或边沿Ri和Ro
边沿或唇缘在图112B中附加地示出,其中可以看出边沿从面向外的表面延伸并围绕面板的周界。边沿的功能描述如下。
边沿相对于面板周界的垂直侧表面成角度,如角度a所示(大于90度)。如图18C和110所示,面板由面向外的部件P1和面向内的部件P2构成。在形成六边形面板的相对表面的两个部件之间提供分隔部S。
为了围绕面板的周界形成密封,将不锈钢薄层1120联接于面板的外周界以重叠分隔部S并联接于两个部件P1和P2。
不锈钢层可以有利地结合到面板周界内的木材或类似材料的内衬,并且其本身横跨分隔部S延伸。提供背衬层可以使不锈钢层非常薄,并因此同时提供:
(a)围绕面板的周界的所需的气密表面;以及
(b)围绕每个的面板周界的所需的隔热部。
不锈钢可以延伸穿过面板的整个深度,即从图112B中的L1到L2。
图112B示出了薄不锈钢层和如上所述的背衬表面。形成图112A中所示的装置的材料的厚度可以根据面板的期望的热性能和结构性能来选择。例如,尺寸可能在以下范围内:
面向外的层厚度范围为0.2mm至1mm
面向内的层厚度范围为0.2mm至1mm
分隔部S的范围直至200mm
隔热层厚度为小于相邻材料厚度的厚度,例如0.8mm,而相邻材料厚度为1mm。
图112C示出了外边沿R0和内边沿Ri的功能。
如图所示,两个相邻的隔热装置A1和A2邻接以形成隔热系统的镶嵌装置的一部分。在镶嵌装置时,两个相邻装置A1和A2将沿着六边形形状的周界直线接触。
此处,在图112C中的点J处,可以形成焊珠或焊鏠以将两个装置焊接在一起。焊接部本身形成不透气的密封部,从而防止任何空气从装置的冷侧传递到环境侧。当将装置连接至舱时,焊接布置在面板的环境侧,并且相反地当布置被布置在船体上时,焊接布置在面板的冷侧。
边沿的角度a允许相邻装置A1和A2具有一定的挠性和运动性。面板的冷侧的热收缩将倾向于将两个相邻的边沿拉开。在面板的环境侧,热膨胀将倾向于相邻的边缘靠在一起。
有利的是,面板的冷侧或面板的环境侧将不牢固地联接于舱或船体,以允许在舱被清空(并可能升温)并再次填充(并因此冷却)时隔热装置相对于舱/船体表面进行热运动。有利地,与舱或船体的连接是挠性的并且允许舱/船体和面板之间的相对运动。
因为面板没有牢固地连接于舱,并且由于面板的边沿在其冷侧,所以舱表面和隔热面板之间将存在小空隙。如果其冷凝点高于舱外表面的温度,则该空隙的大气将由于面向隔热层的舱壁的温度非常低而导致冷凝。为了避免这种情况,小空隙可以填充有在外舱壁的温度下不会冷凝的气体,即<-250摄氏度。这样的气体可以是氦气(He)或氢气(H2)。或者,可通过引入真空将空隙中的任何气体排空。空隙也可以在没有采取任何避免冷凝的措施的情况下留下。在这种情况下,根据大气情况,可能在空隙中发生冷凝,从而在舱外表面和面板的冷表面上形成一层冰。该层会增长,直到该层的背对舱表面的外表面达到高于空隙大气凝结点的温度。冰的形成可以充当防止冰进一步形成的隔热层。
为了完全优化热性能,相邻面板之间形成的空隙可以用隔热材料填充。例如,空隙可以用聚氨酯、矿棉、EPS(发泡聚苯乙烯)或其它可以方便地以空隙被定位以填充空间的隔热材料填充。或者,可以在空隙中引入真空。
图113和114示出了联接在一起的多个六边形面板,用于连接到船只的内船体或舱的外表面。在这种装置中,围绕周界的非渗透密封仅需要围绕整个装置的最外周界而不是单个面板的周界。因此,可以提供该装置的单个内部容积,并且使用单个排气阀。这允许装置的更快的安装和排气。
在相邻组或多个面板聚集在一个表面上的情况下,相邻组之间的任何空隙可以有利地填充有隔热材料,诸如如上所述的膨胀泡沫等。或者,可以在空隙中引入真空。
此外,它有助于方便地检查和监测装置内的真空水平,这对装置的热性能很重要。在这样的装置中,仅需要检查单个阀以确定多个连接的面板的内部压力。可以附加地或替代地安装压力表。
图115A示出了在舱的外表面上的六边形装置的安装。
图115B示出了在船舶的房间/保持空间(货物区域)中的内船体的六边形装置的安装。
图116示出了连接于面板上的真空阀的真空连接件和相关联的导管,空气可以通过该导管排出。将认识到,多个单独的面板或面板组可以连接于单个真空泵以形成一个或多个真空区段。例如,可提供歧管装置以允许方便的联接和维护。
尽管上述示例涉及六边形面板,但将认识到相同的方法可用于可镶嵌的其它形状。例如,这可以是方形或三角形面板。根据要隔热的舱的几何形状,可以使用不同形状的组合并将其镶嵌在一起以提供覆盖整个舱表面或船体内表面的完整屏障。还遵循的是,边沿和周界隔热装置可同样用于不同的面板形状。
可以使用温度监测和/或压力监测来实现对隔热装置的监测。
由不可渗透密封限定的每个面板或多个面板可连接于压力控制和监测系统并经由真空阀1113真空泵。将监测所定义的真空压力、默认值和实际压力之间的差异。连接于网格或面板组的真空泵将在需要时激活并恢复默认真空压力。
替代地,温度可以代替压力或除了压力之外用作监测参数。可以使用热电偶等传感器或红外(IR)摄像机等被动传感器来实现温度测量,以监测面板之间的温度变化以及相对于期望操作温度的变化。如果温度上升到预定义的默认值以上,则指示真空损失。连接于一个面板或多个面板的网格的真空泵将在需要时并且如果需要则被激活并恢复默认真空压力。
将认识到,本文所述的隔热装置可用于允许在如上所述的货物应用中运输液化气体,即在专门构造用于运载液化气体的船舶上使用大容积舱的情况。发明人已经确定隔热面板装置还可以用于其它相关应用。例如,面板可以安装在舱本身上,或者如果舱没有隔热,则可以安装在放置未隔热舱的房间/保持空间的壁/舱壁上。
附加地或替代地,LNG燃料箱可以使用本文描述的隔热装置来实现。
附加地或替代地,液态氢(LH2)燃料箱可以使用本文描述的隔热装置来实现。因此,可以通过提供这种可以包含液化氢的隔热燃料舱来使用清洁燃料。
上面的讨论聚焦在具有如图115所示的大舱或几个大舱的特制货船以及燃料舱(用于LNG/LH2)中的隔热装置的使用。然而,也可以如现在参考图117至120所描述的那样实现模块化货物布置。
图117示出了包含本文所述的隔热装置的液化气体运输装置。运输装置被布置在ISO标准集装箱的尺寸范围内,诸如但不限于20、40或45英尺长,包括用于在船舶上运输货物的类型的高立方体货运集装箱或任何其它合适的橇状结构。
如图118所示,外部结构1127布置成使得单独的运输装置可以联接在一起。然后可以例如在货船的甲板内或甲板上将单独的液化气运输装置的阵列固定在一起以供运输。在图118中,单独的液化气体运输装置联接在一起形成舱阵列。
现在将参考图119和120描述该装置的隔热部。
图119A示出了该装置的平面图。图119B示出了该装置的侧视图,图119C示出了端视图。
图119A示出了构成围绕舱的隔热层的各个区段的分解图。舱1128布置成包含液化气体,诸如氢气(LH2)或LNG。舱1128被本身由区段形成的隔热层围绕。
舱1128可以被端部区段1129A、1129B和两个套筒区段1130A、1130B围绕。套筒区段1130A、1130B布置成在舱的长度上滑动。然后通过锁定端部区段1129A、1129B以形成围绕舱1128的封套来“密封”舱。参考图117,封闭的舱示出为具有用于加载、卸载的进入端口1131。
如本文所述,隔热层可以是单个面板的镶嵌装置的形式。然而,图119A-119C所示的装置的套筒允许使用具有相同真空内腔的隔热层的更长区段并且方便地制造。如本文所述,当在层内抽真空时,间隔元件可用于提供隔热所需的结构支承。
间隔元件可以是离散元件或者可以是沿着套筒的长度延伸的细长构件(并且在面向舱的层和面向外的层之间限定的空间内)。这允许诸如通过挤压而方便地制造。
图120示出了具有合适尺寸以符合货船和国际运输中使用的集装箱尺寸的装置的侧视图、端视图和平面图。因此,该装置可以使用常规的物流系统方便地工作,而不需要特殊的设备或几何形状来加载和卸载。
在另一种布置中,舱1128可以是圆柱形的并且相应的套筒是圆柱形的以围绕圆柱形舱。然后,端部将是舱的任一端上的两个相对的凹形隔热“盖”。
例如当使用单个集装箱时,本文描述的与真空、温度感测和蒸发处理/管理相关的装置可以方便地布置在集装箱的外边界内。或者,例如当多个容器一起使用时,多个集装箱可以连接于主集装箱,该主集装箱容纳用于真空、温度感测和蒸发装置的控制和监测设备。或者,这可以与其它相关的船上控制装置集成在一起。
还应认识到,每个集装箱都可以设有合适的导管和连接器,从而允许由单个真空源从多个集装箱隔热装置中抽真空。可以类似地提供电连接以用于在集装箱之间传递功率和温度/压力信息。因此,可以实现完全模块化的集装箱系统。
如上所述,本文所述的发明还可用于船舶的燃料舱应用。
在上述任何构造中,装置可包括蒸发管理系统,该系统限制舱中随着液体蒸发成气体而发展的增加的压力,从而确保其保持在安全水平内。这可能包括重新液化以重新注入。
参考图121、122和123阐述根据本文所述的发明的隔热和运输的又一些示例。
上述隔热装置由多个离散单元形成,这些离散单元可以如上所述紧密排列在舱表面和/或船体表面上。
这参考图121进一步说明,图121示出了液化气体运载船只的剖视图,包括船只的在(一个或多个)货物容纳舱上方的上层结构。此处,船只32包括舱33(其是主屏障:自支承、棱柱形、IMO独立舱A型、B型,或者可选地新型舱设计),液化燃料在运输期间装载和容纳在舱中。舱33由多个支承件或“支脚”34支承在船只32的结构内。支承构件34(其为货舱支承件:针对货舱所在的LH2的极端温度(-253摄氏度)的特殊设计),为货舱33提供支承并且还在冷舱与船体的下部结构和表面之间提供一断热部。这将在下面进一步描述。
图121还示出了主隔热层35,主隔热层布置成靠近并联接于舱33,如上文参考面板所述。还示出了二级隔热层36,该二级隔热层可布置成靠近船体并联接于内船体或船体。独立的二级隔热层36提供冗余并且代表附加的风险减轻层。
氢在-253摄氏度时以液态形式表现为LH2。因此,LH2的容纳将需要维持低温,即<-250摄氏度。氮气在-196摄氏度下液化(或沸腾)。为了能够使用N2在船体或船体内壁上的主隔热层35和二级隔热层36之间的空隙37中进行监视/监测,空隙37中的温度必须高于N2的沸点。因此,需要舱上隔热,即主隔热层35。
主隔热层35可以是聚氨酯(PU)喷涂泡沫、真空面板、带胶合板的PU面板或任何其它合适的隔热材料。类似地,二级隔热面板(如果应用)可以是聚氨酯(PU)喷涂泡沫、真空面板、带胶合板的PU面板或任何其它合适的隔热材料。二级隔热层36可覆盖整个容纳空间并掩盖舱支承件。
为了降低所描述且主要由主隔热层和二级隔热层(如果应用)组成的隔热容纳系统的热效率要求,可在舱或主屏障33本身中安装冷却装置。这可以提供冗余并代表另一个附加的风险缓解层。这种冷却装置可包括具有内部热交换器的低温制冷机。
主隔热层和舱之间以及二级隔热层和(内)船体之间的完美接触不太可能实现,因此在各自的隔热面板和表面之间会出现小的分离,从而形成空隙。当舱承载LH2等载荷时,舱和主隔热层35之间的空隙将保持略高于载荷温度的温度。在这个间隙被含有氧气和氮气的空气占据的情况下,这两个成分将分别在-183和-196摄氏度下冷凝,从而形成冰。
舱和主绝缘面板的相邻表面之间的空隙(VbT)可以如图121所示提供(在图122中称为V1)。由于VbT/V1中的温度将低于例如O2和N2的混合大气的沸点/冷凝点,因此将发生凝结并因此形成冰。为防止这种情况,空隙中可能会充满沸点/凝结点低于空隙(VbT/V1)本身中的温度的气体。两种气体候选物是氦气(He)(在大约负-269摄氏度的温度下沸腾/凝结)和氢气(H2)(在大约负-253摄氏度的温度下沸腾/凝结)。第三选项是在空隙VbT/V1中形成真空。在这三种情况中的每一种情况下,空隙/空腔的内容物/大气都在防止冷凝和形成冰。将认识到,真空中根本不存在任何气体。或者,空隙可以填充有温度高于-253摄氏度的气体。这可以是氧气或氮气的混合物。由于空隙VbT中的温度低于氧气和氮气混合物的沸点/冷凝点的缘故,由此产生的冷凝将导致冰的形成。可以允许这种情况发展,直到冰层已经发展到足够的厚度和热容量,使空隙中的温度低于空隙(VbT/V1)中大气的凝结点。在这一刻,凝结和进一步形成冰将停止。
隔热面板和船体之间的空隙不受到那么低的温度影响。这个空隙可以填充有空气、氮气或氦气。
因此可以形成多层隔热系统38,其中以下层从船只内的舱开始。这参考图122示出,图22是穿过图121中所示隔热层的一部分的剖视图。
多层隔热系统可以分为以下几层:
Figure BDA0004113650200000261
Figure BDA0004113650200000271
表1
舱隔热 船体/内船体隔热
1 多个面板 聚氨酯
2 聚氨酯 多个面板
3 多个面板 多个面板
4 聚氨酯 聚氨酯
表2
发明人已经确定,最低的热性能是通过聚氨酯/聚氨酯配对实现的,而最佳的热性能是通过多个(镶嵌)面板/多个面板(如参考图1至20所描述的)实现的。此外,此类面板中的真空装置提供了最佳的热性能。
因此将参考表1、表2和图122认识到,可以为根据本文描述的发明的集装箱提供复杂的热布置。
有利地,可以针对特定货物优化每一层的热性能。此外,制造和安装可以被简化并适于形成多个空隙层。较低的制造公差允许在舱和船体几何形状上有更高的公差,同时提供附加的空隙层。
图123示出了图121中所示的支承构件或“支脚”34。
支承构件34提供舱的支承功能,从而允许它在热膨胀/收缩之后静止和滑动。它还充当断热部,以防止周围环境的热量传导到舱。此外,为了维持上述空隙的完整性,必须密封每个支承件或支脚的周围,以防止气体逸出、进入或失去真空。
这是使用载荷承载热断主构件40实现的。它位于抵靠船体及其相关结构构件的下表面和抵靠舱的上表面上。
如上所述,氦气或其它合适的气体可用于舱之间的空隙中作为防止冷凝和冰形成的缓解措施。在这样的布置中,可以提供附加的例如氦气供应系统,并且因此可以提供通向各个空隙的管道/阀装置。然后可以密封每个空隙的周界以防止诸如氦气之类的所选择的气体进入/流出。
图123示出了舱和船体下表面之间的联接,即舱既被支承又被重要地隔热的方式。
图123示出了图121中所示的多个支承构件34中的一个。如图所示,支脚装置包括断热主构件40,其提供舱壁33和船体之间的连接。这可以由任何合适的材料制成,包括例如木材。本文描述的发明的方面包括图123中描述的装置,其中,能够可选地包括一个或多个部件。
如图所示,主隔热层35布置成遵循从断热部40延伸到舱33的钢支承结构41的侧轮廓。层35的轮廓提供了围绕支脚结构的隔热连续性。
为了提供气体密封以密封热桥接件/舱支承件40,将金属焊接盖或帽42焊接至隔热面板或层36的金属外层43的内表面。焊缝围绕支脚,从而提供气体密封以维持空隙37的完整性,如上所述,空隙可以填充有惰性气体,诸如氮气。
发明人还已经确定,本文所述的包括多重隔热层和空隙布置的面板和隔热装置也可以应用于球体舱,实际上是足球或长球体形状,其中,球体的每个平面表面对应于本文描述的面板。面板可包括各种数量的边,包括五边形和六边形,每个边焊接或联接在一起。
从另一方面来看,提供了一种用于船舶的模块化隔热装置,该装置包括一个或多个如本文所述的镶嵌隔热单元,这些隔热单元布置成抵靠或靠近船舶的载货舱,并限定主隔热层以及与所述第一层隔开的二级隔热层,并在其间限定空间。
第二层也可以是多个镶嵌隔热单元或层或聚氨酯(例如喷涂)。如果该装置不用于LH2但例如LNG,则可能不需要第二隔热层。
一个或多个镶嵌隔热单元与船舶的载货舱之间的间隙或空腔可以填充有选自氦气或氢气的气体,或者替代地可以施加真空。

Claims (24)

1.一种用于容纳液化气体的棱柱形舱,所述舱包括多个基本上平坦的侧壁,所述平坦的侧壁限定两个相对的端部、两个相对的侧部以及与下表面相对的上表面,所述平坦的侧壁限定用于容纳液化气体的容积,所述棱柱形舱还包括在所述平坦的侧壁的相交部处的边缘部分,其中,所述边缘部分和所述平坦的侧壁是挤压件。
2.如权利要求1所述的棱柱形舱,其特征在于,所述挤压件是共同的材料。
3.如权利要求2所述的棱柱形舱,其特征在于,所述材料是铝或其合金。
4.如权利要求1或权利要求3中任一项所述的棱柱形舱,其特征在于,所述平坦的侧壁由焊接在一起的多个挤压件形成。
5.如前述权利要求中任一项所述的棱柱形舱,其特征在于,每个边缘区段具有横截面形状,其具有用于连接到第一侧壁的第一边缘和用于连接到相邻侧壁的第二边缘,所述第一边缘和第二边缘彼此成90度布置,并且其中,所述第一边缘和第二边缘限定能够沿着其焊接侧壁的焊接线。
6.如权利要求5所述的棱柱形舱,其特征在于,所述焊接线各自从所述第一侧壁和相邻侧壁将会相遇的交点移位至少10cm。
7.如前述权利要求中任一项所述的棱柱形舱,其特征在于,所述边缘部分的横截面为两个垂直部分的形式,所述垂直部分用于连接到相关联的平坦的侧壁,并且
连接两个垂直部分的中间部分,其中,所述中间部分布置成与两个垂直部分中的每一个成45度。
8.如权利要求7所述的棱柱形舱,其特征在于,在所述中间部分与所述垂直部分相交的点处设置有半径。
9.如前述权利要求中任一项所述的棱柱形舱,其特征在于,所述边缘部分和平坦的侧壁通过搅拌摩擦焊接连接在一起。
10.如前述权利要求中任一项所述的棱柱形舱,其特征在于,还包括外隔热层,所述外隔热层布置在基本上平坦的表面的外表面上和所述边缘区段的外表面上。
11.如权利要求10所述的棱柱形舱,其特征在于,所述隔热层包括隔热泡沫。
12.如权利要求1至10所述的棱柱形舱,其特征在于,所述隔热层为多个镶嵌隔热面板的形式。
13.如权利要求1至10所述的棱柱形舱,其特征在于,所述隔热层是包括一个或多个镶嵌隔热单元的模块化隔热装置的形式,每个单元包括面向内的第一层以及与所述第一层间隔开的面向外的第二层,两个层在其间限定空间,并且一个或多个间隔构件在所述第一层和所述第二层之间延伸,并且其中,限定所述第一层、所述第二层和围绕所述装置延伸的外周界的表面是不透气表面。
14.如权利要求13所述的棱柱形舱,其特征在于,所述第一层和所述第二层之间的所述空间以及限定所述装置的所述外周界的表面限定了所述装置的内部容积,并且其中,所述间隔构件在使用中布置成,当所述内部容积被排出空气时,抵抗作用在所述表面上的大气压力。
15.如前述权利要求中任一项所述的棱柱形舱,其特征在于,所述棱柱形舱是压力容器的形式。
16.如权利要求15所述的棱柱形舱,其特征在于,所述结构构造成容纳超过2barg的压力。
17.如权利要求15或16所述的棱柱形舱,其特征在于,还包括在所述舱的内表面之间延伸的内部纵向和/或横向加强支承构件。
18.如前述权利要求中任一项所述的棱柱形舱,其特征在于,所述棱柱形舱容纳在符合ISO尺寸规定的ISO集装箱框架内。
19.如前述权利要求中任一项所述的棱柱形舱,其特征在于,还包括周界框架,所述周界框架允许选择性地联接至类似框架,使得多个棱柱形舱能够以堆叠或矩阵的形式联接在一起。
20.如前述权利要求中任一项所述的棱柱形舱,其特征在于,包括入口和外端口以允许货物和/或燃料被装载到所述舱中和从所述舱中移除。
21.一种棱柱形舱阵列,所述棱柱形舱阵列包括多个如前述权利要求中任一项所述的棱柱形舱。
22.如权利要求21所述的棱柱形舱阵列,其特征在于,多个舱彼此流体连通以允许同时和/或顺序地进行装载和卸载。
23.一种呈如前述权利要求中任一项所述的棱柱形舱形式的用于船舶的燃料舱。
24.如权利要求23所述的用于船舶的燃料舱,其特征在于,还包括收集舱或承滴盘,所述收集箱或承滴盘围绕所述舱的基部布置并且部分地围绕所述舱的下周边延伸并且部分地朝向所述舱的顶部延伸。
CN202180059283.5A 2020-07-22 2021-07-22 棱柱形液氢舱 Pending CN116235001A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB2011320.5 2020-07-22
GB2011320.5A GB2597465B (en) 2020-07-22 2020-07-22 Prismatic liquid hydrogen tank
PCT/EP2021/070548 WO2022018210A1 (en) 2020-07-22 2021-07-22 Prismatic liquid hydrogen tank

Publications (1)

Publication Number Publication Date
CN116235001A true CN116235001A (zh) 2023-06-06

Family

ID=72338913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180059283.5A Pending CN116235001A (zh) 2020-07-22 2021-07-22 棱柱形液氢舱

Country Status (7)

Country Link
US (1) US20230258298A1 (zh)
EP (1) EP4185801A1 (zh)
JP (1) JP2023534547A (zh)
KR (1) KR20230043830A (zh)
CN (1) CN116235001A (zh)
GB (1) GB2597465B (zh)
WO (1) WO2022018210A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1409265A (en) * 1972-06-21 1975-10-08 Conch Int Methane Ltd Tank structures
US4282280A (en) * 1976-12-30 1981-08-04 Cook William H Jun Heat insulation for tanks at cryogenic and higher temperatures, using structural honeycomb with integral heat radiation shields
FR2780767B1 (fr) * 1998-07-01 2000-10-13 Agence Spatiale Europeenne Paroi pour reservoir cryogenique
FI20040382A (fi) * 2004-03-10 2005-09-11 Aker Finnyards Oy Menetelmä LNG-varastotankin tai vastaavan suunnittelemiseksi ja valmistamiseksi ja menetelmällä valmistettu alumiininen LNG-varastotankki
US20070194051A1 (en) * 2004-06-25 2007-08-23 Kare Bakken Cellular tanks for storage of fluid at low temperatures
NO330085B1 (no) * 2007-02-20 2011-02-14 Aker Engineering & Technology En tankkonstruksjon for lagring og transport av fluider
NO331928B1 (no) * 2010-03-31 2012-05-07 Aker Engineering & Technology Ekstruderte elementer
WO2012065616A1 (de) * 2010-11-16 2012-05-24 Nordic Yards Wismar Gmbh Tank für transport und/oder lagerung von kryogenen flüssigkeiten
GB2597049B (en) * 2020-06-02 2023-05-10 Cryovac As Vacuum panel

Also Published As

Publication number Publication date
KR20230043830A (ko) 2023-03-31
GB2597465B (en) 2024-04-17
GB202011320D0 (en) 2020-09-02
US20230258298A1 (en) 2023-08-17
GB2597465A (en) 2022-02-02
JP2023534547A (ja) 2023-08-09
EP4185801A1 (en) 2023-05-31
WO2022018210A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
KR101863989B1 (ko) 밀봉된 단열 탱크
KR102391941B1 (ko) 부유식 이중 선체에 배치된 실링 및 단열 탱크
US9376049B2 (en) Method of fabricating type 4 cylinders and arranging in transportation housings for transport of gaseous fluids
CN111164343B (zh) 具有抗对流填充板的密封隔热容器
US9676456B2 (en) Arrangement for containment of liquid natural gas (LNG)
EP3411623B1 (en) Improved liquid natural gas storage tank design
CN111279116B (zh) 具有防对流的填充元件的密封且热隔离的容器
US20170130899A1 (en) Tank
CN115667785A (zh) 真空面板
US3477606A (en) Membrane tank structures
CN116235001A (zh) 棱柱形液氢舱
CN116353772A (zh) 一种低温存储液货舱结构及船舶
US11703185B2 (en) Apparatus, systems, and methods for storing and transporting compressed fluids
CN218751249U (zh) 一种用于油船的氨燃料b型独立舱
KR20230153288A (ko) 밀폐된 유체 배출 도관이 통과하는 탱크 벽
CN116113789A (zh) 用于装载/卸载用于储存和/或运输液化气体的罐的塔的引导结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination