CN116212884A - 氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途 - Google Patents

氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途 Download PDF

Info

Publication number
CN116212884A
CN116212884A CN202310183101.6A CN202310183101A CN116212884A CN 116212884 A CN116212884 A CN 116212884A CN 202310183101 A CN202310183101 A CN 202310183101A CN 116212884 A CN116212884 A CN 116212884A
Authority
CN
China
Prior art keywords
nife
zno
flower
zno heterojunction
heterojunction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310183101.6A
Other languages
English (en)
Inventor
陈燕
杨振宇
杨建栋
张文慧
林丰
付乌有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202310183101.6A priority Critical patent/CN116212884A/zh
Publication of CN116212884A publication Critical patent/CN116212884A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明的氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途属于光催化材料制备的技术领域,首先用水热法制备结晶ZnO,然后将所得到的结晶ZnO与硝酸铁、硝酸镍采用共沉积法制备得到花状NiFe2O4/ZnO异质结材料;所制备的花状NiFe2O4/ZnO异质结材料可以作为催化剂用于光催化降解EE2或还原6价铬离子污染物原液。本发明首次合成出氧空位修饰的花状NiFe2O4/ZnO异质结材料,具有表面粗糙、比表面积较大、活性位点高等特点。用于降解EE2或还原Cr6+,降解率或还原率超98%。本发明为进一步研究NiFe2O4/ZnO异质结复合材料在降解污染物方面的应用奠定了基础。

Description

氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途
技术领域
本发明属于光催化材料制备的技术领域,特点涉及一种氧空位修饰的花状NiFe2O4/ZnO异质结复合材料在光催化降解合成雌激素17α-炔雌醇污染物、还原Cr6+方面的应用。
背景技术
17α-炔雌醇(EE2)是一种合成雌激素,具有强烈的雌激素活性,其主要来源是人类排泄。17α-炔雌醇(EE2)因生态毒理学风险较高而引起世界人民越来越多的关注。此外,在重金属离子中,铬(Cr6+)是电镀、钢铁加工、金属加工等多种工业过程中产生的剧毒污染物。在处理这两种污染物过程中,由于其不完全去除,最终进入自然环境,对环境所造成的污染很大。因此,有效降解17α-炔雌醇(EE2)和还原铬(Cr6+)是缓解自然环境可持续性发展的主要途径。
纯ZnO材料易制备,生产成本低,化学稳定性好。但光吸收波长小于400nm,紫外响应有限,因此,对太阳光的利用率低,光催化活性小,其应用领域受到严重限制。尖晶石结构的NiFe2O4窄带隙半导体磁性材料,对可见光的吸收能力较强。
经研究表明,影响光催化活性的一个重要的方面就是载流子分离率以及可见光吸收范围。当载流子分离率越高,可见光吸收范围越高,其光催化降解能力以及还原能力好。研究发现成功构建异质结材料可以形成内置电场,有效加快电子和空穴的转移速率,抑制载流子分离率,增加可见光的吸收范围。另一方面,氧空位可以作为晶体缺陷和电子俘获位点,可以促进电荷向缺陷层的转移。以上两个方面都可有效的提升光催化降解和还原的能力。
人们致力于降解17α-炔雌醇(EE2)和还原铬(Cr6+),就目前而言使用氧空位修饰的花状NiFe2O4/ZnO异质结材料作为光催化剂的研究还未出现。
发明内容
本发明要解决的技术问题是,提供一种新型异质结复合材料的制备方法并将其用作光催化降解17α-炔雌醇(EE2)和还原铬(Cr6+)方面,方法简单,易于控制,重复性好,降解效果和还原效果极佳,可二次回收以及稳定性效果极佳。
具体技术方案如下:
一种氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法,首先将硝酸锌水溶液和六次甲基四胺水溶液按摩尔比1:1混合后进行搅拌得到均一的反应溶液,然后将导电玻璃片放于所述反应溶液中,将反应溶液密封后置于水浴锅中,90℃保温24小时,反应结束后,将生成的样品从导电玻璃上刮下进行离心、清洗、干燥,最后放在马弗炉中退火处理,得到结晶ZnO;将硝酸铁水溶液和硝酸镍水溶液按摩尔比2:1进行混合搅拌,然后加入所述结晶ZnO继续搅拌1h,其中每mmol硝酸铁使用0.18g结晶ZnO,搅拌完成后将所得混合溶液放置在100℃的恒温搅拌器中,将NaOH水溶液缓慢滴入上述混合液中,按摩尔比,硝酸铁:NaOH=1:16,最后将所得沉淀离心、清洗、干燥后在马弗炉退火处理,所得样品用研钵研磨成粉末,得到氧空位修饰的花状NiFe2O4/ZnO异质结材料。
作为优选,纯ZnO样品在马弗炉中退火温度为500℃,反应时间为2小时;氧空位修饰的花状NiFe2O4/ZnO异质结材料在马弗炉中退火温度为550℃,反应时间为3h。
一种氧空位修饰的花状NiFe2O4/ZnO异质结材料的用途,是用于光催化降解污染物,首先将污染物原液和NiFe2O4/ZnO异质结材料按照2.5mL:1mg的比例充分混合;光照前,在黑暗条件下搅拌2h,随后,放置一盏可模拟太阳光照射的灯,在照射18~60分钟;在催化降解后,用磁铁将所述氧空位修饰的花状NiFe2O4/ZnO异质结材料从悬浮液中分离出来,用去离子水和无水乙醇清洗、干燥,以备再次使用。
作为优选,所述污染物原液优选17α-炔雌醇污染物原液或6价铬离子污染物原液。
有益效果:
本发明首次合成出氧空位修饰的花状NiFe2O4/ZnO异质结材料;NiFe2O4纳米粒子均匀附着于ZnO纳米管表层,表面粗糙,比表面积较大,活性位点高。在降解17α-炔雌醇(EE2)时,60min内降解率可达到98.9%,在还原铬(Cr6+)时,18min内还原率可达到98%。经循环降解五次后其降解率依然非常高,未见明显降低。本发明为进一步研究NiFe2O4/ZnO异质结复合材料在降解污染物方面的应用奠定了基础。
附图说明
图1是实施例1制得的NiFe2O4/ZnO异质结材料的XRD谱图。
图2是实施例1制得的NiFe2O4/ZnO异质结材料的SEM谱图。
图3是实施例1制得的NiFe2O4/ZnO异质结材料的TEM谱图。
图4是实施例2制得的NiFe2O4/ZnO异质结光催化降解EE2图。
图5是实施例2制得的NiFe2O4/ZnO异质结降解EE2循环利用效率。
图6是实施例2制得的NiFe2O4/ZnO异质结复合材料回收图。
图7是实施例3制得的NiFe2O4/ZnO异质结复合材料光催化还原Cr6+图。)
具体实施方式
实施例1
氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备,首先制备ZnO,将100ml硝酸锌水溶液(0.1mol/l)和100ml六次甲基四胺水溶液(0.1mol/l)混合后进行搅拌。然后将FTO(导电玻璃)玻璃片以一定角度放于烧杯中,将烧杯中的混合溶液密封后置于90℃的水浴锅中,保温24小时。反应结束后,将样品从FTO玻璃上刮下进行离心、清洗、干燥,最后放在马弗炉中500℃退火处理2h。接着采用共沉积法制备NiFe2O4/ZnO花状异质结催化剂。将100ml硝酸铁水溶液(0.005M)和100ml硝酸镍水溶液(0.0025M)进行混合搅拌5min,然后加入0.09g的ZnO继续搅拌1h。搅拌完成后将混合溶液放置在100℃的恒温搅拌器中,使用分液漏斗将100ml NaOH(浓度为0.08mol/l)水溶液缓慢滴入上述混合液中。最后对所得沉淀进行离心、清洗、干燥、退火处理。
图1给出本条件所制备的氧空位修饰的花状NiFe2O4/ZnO异质结材料的XRD图,31.81°、34.42°、36.25°、47.56°、56.66°、68.03°和69.15°处的衍射峰分别对应于ZnO的(100)、(002)、(101)、(102)、(110)、(112)和(201)晶面。35.62°、43.36°和62.90°处的衍射峰分别对应于NiFe2O4的(311)、(400)和(440)晶面。图2给出本条件所制备的氧空位修饰的花状NiFe2O4/ZnO异质结材料的SEM图,可看出形貌为花状,其表面粗糙。图3给出本条件所制备的氧空位修饰的花状NiFe2O4/ZnO异质结材料的TEM图,可以看出ZnO纳米管被NiFe2O4纳米颗粒紧密包裹。
实施例2
氧空位修饰的花状NiFe2O4/ZnO异质结材料用于光催化降解污染物17α-炔雌醇(EE2),将EE2污染物原液(20ppm,100ml)和实施例1制备的NiFe2O4/ZnO异质结材料(40mg)混合。光照前,在黑暗条件下充分搅拌。随后,放置一盏Xe灯,共照射60分钟。在光照射期间,选择每15min取10ml样液置于取样瓶中,待反应结束后用液体紫外分光光度计进行测试,进而表征样品的催化性能。
图4给出了NiFe2O4/ZnO异质结复合材料的光催化降解EE2图,可以看出其光催化降解率可达到98.9%。图5给出NiFe2O4/ZnO异质结复合材料降解EE2循环利用效率图,可以看出在经过五次循环降解EE2之后,其光催化降解率依然能够达到97%。图6给出NiFe2O4/ZnO异质结复合材料回收图,可发现该材料磁性可回收,可有效避免在使用后对环境的二次污染。
实施例3
氧空位修饰的花状NiFe2O4/ZnO异质结材料用于光催化还原铬(Cr6+),将富含铬(Cr6+)污染物原液(10mg/L,100ml)和实施例1制备的NiFe2O4/ZnO异质结材料(40mg)混合后用超声波处理。光照前,在黑暗条件下充分搅拌。随后,放置一盏Xe灯,共照射18分钟。在光照射期间,选择每3min取样液置于提前准备好的取样瓶中,待反应结束后采用1,5-二苯基卡脲比色法测定了上清液中Cr6+(VI)的浓度,表征样品的光催化还原性能。
图7给出了NiFe2O4/ZnO异质结复合材料的光催化还原Cr6+图,可看出经18min后光催化还原率可达到98%。

Claims (4)

1.一种氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法,首先将硝酸锌水溶液和六次甲基四胺水溶液按摩尔比1:1混合后进行搅拌得到均一的反应溶液,然后将导电玻璃片放于所述反应溶液中,将反应溶液密封后置于水浴锅中,90℃保温24小时,反应结束后,将生成的样品从导电玻璃上刮下进行离心、清洗、干燥,最后放在马弗炉中退火处理,得到结晶ZnO;将硝酸铁水溶液和硝酸镍水溶液按摩尔比2:1进行混合搅拌,然后加入所述结晶ZnO继续搅拌1h,其中每mmol硝酸铁使用0.18g结晶ZnO,搅拌完成后将所得混合溶液放置在100℃的恒温搅拌器中,将NaOH水溶液缓慢滴入上述混合液中,按摩尔比,硝酸铁:NaOH=1:16,最后将所得沉淀离心、清洗、干燥后在马弗炉退火处理,所得样品用研钵研磨成粉末,得到氧空位修饰的花状NiFe2O4/ZnO异质结材料。
2.根据权利要求1所述的一种氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法,其特征在于,纯ZnO样品在马弗炉中退火温度为500℃,反应时间为2小时;氧空位修饰的花状NiFe2O4/ZnO异质结材料在马弗炉中退火温度为550℃,反应时间为3h。
3.一种权利要求1所述的氧空位修饰的花状NiFe2O4/ZnO异质结材料的用途,是用于光催化降解污染物,首先将污染物原液和NiFe2O4/ZnO异质结材料按照2.5mL:1mg的比例充分混合;光照前,在黑暗条件下搅拌2h,随后,放置一盏可模拟太阳光照射的灯,在照射18~60分钟;在催化降解后,用磁铁将所述氧空位修饰的花状NiFe2O4/ZnO异质结材料从悬浮液中分离出来,用去离子水和无水乙醇清洗、干燥,以备再次使用。
4.根据权利要求3所述的一种氧空位修饰的花状NiFe2O4/ZnO异质结材料的用途,其特征在于,所述污染物原液优选17α-炔雌醇污染物原液或6价铬离子污染物原液。
CN202310183101.6A 2023-03-01 2023-03-01 氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途 Pending CN116212884A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310183101.6A CN116212884A (zh) 2023-03-01 2023-03-01 氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310183101.6A CN116212884A (zh) 2023-03-01 2023-03-01 氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途

Publications (1)

Publication Number Publication Date
CN116212884A true CN116212884A (zh) 2023-06-06

Family

ID=86578273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310183101.6A Pending CN116212884A (zh) 2023-03-01 2023-03-01 氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途

Country Status (1)

Country Link
CN (1) CN116212884A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949200A (zh) * 2014-05-12 2014-07-30 台州学院 一种NiFe2O4/ZnO复合水处理材料的制备方法
CN106390979A (zh) * 2016-09-28 2017-02-15 陕西科技大学 一种负载型ZnO纳米阵列光催化剂的制备方法
CN107008333A (zh) * 2017-05-05 2017-08-04 常州大学怀德学院 磁性异相光芬顿NiFe2O4/ZnO复合纳米材料的制备方法及该材料的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949200A (zh) * 2014-05-12 2014-07-30 台州学院 一种NiFe2O4/ZnO复合水处理材料的制备方法
CN106390979A (zh) * 2016-09-28 2017-02-15 陕西科技大学 一种负载型ZnO纳米阵列光催化剂的制备方法
CN107008333A (zh) * 2017-05-05 2017-08-04 常州大学怀德学院 磁性异相光芬顿NiFe2O4/ZnO复合纳米材料的制备方法及该材料的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUA-YUE ZHU等: ""Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation"", APPLIED SURFACE SCIENCE, vol. 369, 31 December 2016 (2016-12-31), pages 1 *
JING CAO等: ""Large-Scale Synthesis and Microwave Absorption Enhancement of Actinomorphic Tubular ZnO/CoFe2O4 Nanocomposites"", J. PHYS. CHEM. B, vol. 113, 31 December 2009 (2009-12-31), pages 4642 - 4647 *
徐姝颖等: "《抗菌性氧化锌薄膜材料》", 31 March 2022, 冶金工业出版社, pages: 10 *

Similar Documents

Publication Publication Date Title
Liu et al. Progress in black titania: a new material for advanced photocatalysis
Mao et al. Fabrication of highly efficient Bi 2 WO 6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr (VI) from wastewater
Pang et al. Rapid Cr (VI) reduction in aqueous solution using a novel microwave-based treatment with MoS2-MnFe2O4 composite
Liu et al. Green synthetic approach for Ti 3+ self-doped TiO 2− x nanoparticles with efficient visible light photocatalytic activity
CN114192171A (zh) Cu:ZnIn2S4-Ti3C2复合光催化剂的制备方法及应用
CN111686770B (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
Chen et al. Co/S co-doped Mn3O4-based sulfur-oxide nano-flakes catalyst for highly efficient catalytic reduction of organics and hexavalent chromium pollutants
Kaci et al. Synthesis, physical and electrochemical properties of CoMn 2 O 4: application to photocatalytic Ni 2+ reduction
CN112495400B (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN111632619A (zh) 一种铜-氮共掺杂二氧化钛光催化材料、制备方法及应用
CN110918099A (zh) 一种氧化镍-钴酸镍-黑二氧化钛复合物光催化还原处理含六价铬废水的方法
CN108772053B (zh) 一种钛酸铋/氧化铋光催化剂及其制备方法和应用
Yang et al. Revealing the charge transfer mechanism and assessing product toxicity in the 2D/1D Bi 2 O 2 CO 3/Bi 8 (CrO 4) O 11 heterostructure system
CN115007146B (zh) Z型Cu|CuO/TiO2复合膜光催化剂及其制备方法和应用
CN104874401B (zh) Nd3-xCoxTaO7-沸石复合多孔纳米催化材料的制备及应用
CN116212884A (zh) 氧空位修饰的花状NiFe2O4/ZnO异质结材料的制备方法及用途
CN107973367B (zh) 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
CN113976107B (zh) 一种利用有机废液制备Mn基复合催化剂的方法及其分解室内甲醛的应用
CN109589963B (zh) 一种铌酸锂型氧化物/凹凸棒石非线性光学复合光催化材料及其制备方法与应用
Shi et al. Efficient removal of high-concentration dye pollutants in wastewater using composite photocatalyst NH2-MIL-125 (Ti)/g-C3N4 nanosheets under visible light
CN110639560B (zh) 一种复合卤氧化铋光催化剂及其制备方法和应用
CN109574127B (zh) 一种硫化物光阳极活化亚硫酸盐处理水中氨氮污染物的方法
CN111701605A (zh) 一种制备磁性碘七氧化五铋复合光催化材料的方法
Hao et al. Photocatalytic degradation of tetracycline over Ce-doped TiO 2@ SiO 2@ Fe 3 O 4 magnetic material
CN107774280A (zh) 一种Fe和Mn掺杂的ZnO光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination