CN116200726A - 一种镍基高温合金表面化学气相沉积AlCr涂层方法 - Google Patents

一种镍基高温合金表面化学气相沉积AlCr涂层方法 Download PDF

Info

Publication number
CN116200726A
CN116200726A CN202211690267.9A CN202211690267A CN116200726A CN 116200726 A CN116200726 A CN 116200726A CN 202211690267 A CN202211690267 A CN 202211690267A CN 116200726 A CN116200726 A CN 116200726A
Authority
CN
China
Prior art keywords
coating
vapor deposition
workpiece
chemical vapor
alcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211690267.9A
Other languages
English (en)
Inventor
李宏然
崔启政
任建伟
张乔
崔慧然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Turbine Blade Co Ltd
Original Assignee
Wuxi Turbine Blade Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Turbine Blade Co Ltd filed Critical Wuxi Turbine Blade Co Ltd
Priority to CN202211690267.9A priority Critical patent/CN116200726A/zh
Publication of CN116200726A publication Critical patent/CN116200726A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/10Deposition of chromium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种镍基高温合金表面化学气相沉积AlCr涂层方法,其可以为高温合金材料表面制备涂层,同时其制备过程绿色无污染,产生的废物易于处理,处理成本低。本发明采用化学气相沉积法制备AlCr涂层为两步法,先渗Cr后渗Al;工艺过程使用纯Al、纯Cr作为原材料,无其他元素杂质引入,涂层纯净度高,同时整个工艺过程均为化学气相沉积,工艺过程是纯气体环境,反应气体均匀流动,涂层制备不受工件尺寸及外形影响,可以对工件的内腔制备相应的涂层,且涂层制备均匀性高。

Description

一种镍基高温合金表面化学气相沉积AlCr涂层方法
技术领域
本发明涉及镍基高温合金制备涂层方法技术领域,具体为一种镍基高温合金表面化学气相沉积AlCr涂层方法。
背景技术
高温合金表面涂覆高温防护涂层既可以满足抗高温氧化和防止热腐蚀要求,同时也不损伤基体的力学性能,因而被广泛应用在航空发动机、燃气轮机的零件制备。AlCr涂层作为具有优异性能的高温防护涂层,主要由NiAl相组成,但Cr元素的添加不仅可以获得良好的抗高温氧化性能,同时还可以提高涂层抗高温和防止热腐蚀性能;同时AlCr涂层内部沉积了富Cr元素,形成了扩散障碍,有效阻止了Al元素的扩散,在高温氧化、腐蚀环境下,涂层形成的Cr2O3比Al2O3拥有更好的高温抗氧化性能;并且Cr元素固溶在β-NiAl相中,可以有效延缓β-NiAl相在快速冷却时的相转变,提升涂层的稳定性,提高涂层的使用寿命。
目前,传统的在高温合金材料表面制备涂覆AlCr涂层时,通常采用浆料渗AlCr的方式,或者采用先电镀Cr、再气相渗Al的方式,然而采用这两种AlCr涂层制备方式,不仅无法为复杂结构高温合金工件内腔制备涂层,同时产生的废料为难以处理的污染物,增大了处理废物的处理成本,且易对环境造成污染。
发明内容
针对现有的高温合金材料表面涂覆AlCr涂层,难以为复杂结构高温合金工件内腔制备涂层,且产生的废料为污染物,增加了处理成本,且易对环境造成污染的问题,本发明提供了一种镍基高温合金表面化学气相沉积AlCr涂层方法,整个工艺过程均为化学气相沉积,工艺过程是纯气体环境,反应气体均匀流动,涂层制备不受工件尺寸及外形影响,可以对工件的内腔制备相应的涂层,且涂层制备均匀性高,涂层制备后无需对表面进行清理,同时工艺过程绿色环保,产生的废液易于处理,处理成本低。
其技术方案是这样的:一种镍基高温合金表面化学气相沉积AlCr涂层方法,其特征在于:其包括以下步骤:S1、将待加工工件安放至涂层工装,在化学气相沉积反应炉的内部发生器中放入纯Cr颗粒;
S2、对所述化学气相沉积反应炉内部进行抽低真空,然后冲入氩气,对所述化学气相沉积反应炉加热,工艺压力控制在100-500mbar;炉内温度加热至1000-1050℃后保温,向所述内部发生器通入氢气和氯化氢的混合气体,流量为8-15L/min,其中氢气流量为8-14L/min、氯化氢流量为0.5-1 L/min,保温2-4h;所述内部发生器产生的CrCl、CrCl3高活性化合物与所述工件反应,沉积一层富Cr涂层;
S3、反应结束后,通入氩气对所述化学气相沉积反应炉进行冷却,气体流量控制在20-30L/min;
S4、将所述内部发生器的Cr颗粒更换为纯Al颗粒,将渗Cr后的所述工件放置在对应工装上,将外部发生器内部放入Al颗粒;
S5、对所述气相沉积反应炉内部再次进行抽低真空,然后冲入氩气,对所述化学气相沉积反应炉及所述外部发生器分别进行加热,工艺压力控制在100-500mbar;所述气相沉积反应炉温度加热至1000-1050℃后保温,所述外部发生器加热至290-320℃后保温,向所述外部发生器通入氢气和氯化氢的混合气体,流量为8-15L/min,其中氢气流量为8-14 L/min、氯化氢流量为0.5-1 L/min,保温4-5h;所述内部发生器及所述外部发生器产生的AlCl、AlCl3高活性化合物与所述工件表面反应,形成AlCr涂层;
S6、反应结束后,分别通入氩气对所述化学气相沉积反应炉及所述外部发生器进行冷却,气体流量控制在20-30L/min。
其进一步特征在于:在S1中,在将所述工件放入所述涂层工装之前,将所述工件表面先进行湿喷砂处理,喷砂介质为白刚玉砂粒,砂粒目数120-220目,喷砂压力控制在0.2-0.4Mpa;再使用超声波清洗喷砂后的所述工件,烘干。
S6中,所述工件出炉后,使用碱性清洗剂超声波清洗工件不低于10min,然后用去离子水清洗,放入烘箱,烘箱温度为80℃-100℃烘干。
S6中,所述气相沉积反应炉内部剩余反应物经过冷却后,通入装有氢氧化钠溶液的中和站溶解过滤,产生氩气、氢气。
所述工件为K418B高温合金,所述K418B高温合金的表面均匀沉积了一层AlCr涂层,所述AlCr涂层厚度为30-42μm,涂层中Al含量为25-28wt.%,Cr含量为8-10wt.%。
采用了上述结构后,本发明采用化学气相沉积法制备AlCr涂层为两步法,先渗Cr后渗Al;工艺过程使用纯Al、纯Cr作为原材料,无其他元素杂质引入,涂层纯净度高,同时整个工艺过程均为化学气相沉积,工艺过程是纯气体环境,反应气体均匀流动,涂层制备不受工件尺寸及外形影响,可以对工件的内腔制备相应的涂层,且涂层制备均匀性高,涂层制备后无需对表面进行清理,同时工艺过程绿色环保,产生的废液易于处理,处理成本低。
通过精确控制反应气体氢气流量、氯化氢流量及反应时间可有效控制AlCr涂层的元素含量和涂层厚度。
产生的剩余反应物经过冷却后,通入装有氢氧化钠溶液的中和站溶解过滤,产生无毒无害气体排放,同时无固体废弃物产生,对环境没有污染。
附图说明
图1为本发明涂层工艺原理示意图;
图2为涂层微观组织结构图。
具体实施方式
如图1所示,一种镍基高温合金表面化学气相沉积AlCr涂层方法,包括以下步骤:S1、将待加工工件安放至涂层工装,在化学气相沉积反应炉的内部发生器中放入纯Cr颗粒;
S2、对化学气相沉积反应炉内部进行抽低真空,然后冲入氩气,对化学气相沉积反应炉加热,工艺压力控制在100-500mbar;炉内温度加热至1000-1050℃后保温,向放入内部发生器通入氢气和氯化氢的混合气体,流量为8-15L/min,其中氢气流量为8-14 L/min、氯化氢流量为0.5-1 L/min,保温2-4h;内部发生器产生的CrCl、CrCl3高活性化合物与工件反应,沉积一层富Cr涂层;
S3、反应结束后,通入氩气对化学气相沉积反应炉进行冷却,气体流量控制在20-30L/min;
S4、将内部发生器的Cr颗粒更换为纯Al颗粒,将渗Cr后的工件放置在对应工装上,将外部发生器内部放入Al颗粒;
S5、对气相沉积反应炉内部再次进行抽低真空,然后冲入氩气,对化学气相沉积反应炉及外部发生器分别进行加热,工艺压力控制在100-500mbar;气相沉积反应炉温度加热至1000-1050℃后保温,外部发生器加热至290-320℃后保温,向外部发生器通入氢气和氯化氢的混合气体,流量为8-15L/min,其中氢气流量为8-14 L/min、氯化氢流量为0.5-1 L/min,保温4-5h;内部发生器及外部发生器产生的AlCl、AlCl3高活性化合物与工件表面反应,形成AlCr涂层;
S6、反应结束后,分别通入氩气对化学气相沉积反应炉及外部发生器进行冷却,气体流量控制在20-30L/min。
优选的,在S1中,在将工件放入涂层工装之前,将工件表面先进行湿喷砂处理,喷砂介质为白刚玉砂粒,砂粒目数120-220目,喷砂压力控制在0.2-0.4Mpa;再使用超声波清洗喷砂后的工件,烘干。
优选的,S6中,工件出炉后,使用碱性清洗剂超声波清洗工件不低于10min,然后用去离子水清洗,放入烘箱,烘箱温度为80℃-100℃烘干。
优选的,S6中,气相沉积反应炉内部剩余反应物经过冷却后,通入装有氢氧化钠溶液的中和站溶解过滤,产生氩气、氢气。
优选的,工件为K418B高温合金,K418B高温合金的表面均匀沉积了一层AlCr涂层,AlCr涂层厚度为30-42μm,涂层中Al含量为25-28wt.%,Cr含量为8-10wt.%,如图2所示,通过本发明制作的涂层微观图示,涂层均匀,AlCr涂层厚度为D1=35.55um。
本发明采用化学气相沉积法制备AlCr涂层,采用两步法,先渗Cr后渗Al;工艺过程使用纯Al、纯Cr颗粒作为原材料,无其他元素杂质引入,涂层纯净度高,同时整个工艺过程均为化学气相沉积,工艺过程是纯气体环境(采用惰性气体氩气作为保护气体),反应混合气体均匀流动,涂层制备不受工件尺寸及外形影响,可以对工件的内腔制备相应的涂层,且涂层制备均匀性高,涂层制备后无需对工件表面进行清理,同时工艺过程绿色环保,产生的废液易于处理,处理成本低。
通过精确控制反应气体氢气和氯化氢的流量、及反应时间可有效控制AlCr涂层的元素含量和涂层厚度。
产生的剩余反应物经过冷却后,通入装有氢氧化钠溶液的中和站溶解过滤,产生无毒无害气体排放,同时无固体废弃物产生,对环境没有污染。
以上,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

1.一种镍基高温合金表面化学气相沉积AlCr涂层方法,其特征在于:其包括以下步骤:
S1、将待加工工件安放至涂层工装,在化学气相沉积反应炉的内部发生器中放入纯Cr颗粒;
S2、对所述化学气相沉积反应炉内部进行抽低真空,然后冲入氩气,对所述化学气相沉积反应炉加热,工艺压力控制在100-500mbar;炉内温度加热至1000-1050℃后保温,向所述内部发生器通入氢气和氯化氢的混合气体,流量为8-15L/min,其中氢气流量为8-14 L/min、氯化氢流量为0.5-1 L/min,保温2-4h;所述内部发生器产生的CrCl、CrCl3高活性化合物与所述工件反应,沉积一层富Cr涂层;
S3、反应结束后,通入氩气对所述化学气相沉积反应炉进行冷却,气体流量控制在20-30L/min;
S4、将所述内部发生器的Cr颗粒更换为纯Al颗粒,将渗Cr后的所述工件放置在对应工装上,将外部发生器内部放入Al颗粒;
S5、对所述气相沉积反应炉内部再次进行抽低真空,然后冲入氩气,对所述化学气相沉积反应炉及所述外部发生器分别进行加热,工艺压力控制在100-500mbar;所述气相沉积反应炉温度加热至1000-1050℃后保温,所述外部发生器加热至290-320℃后保温,向所述外部发生器通入氢气和氯化氢的混合气体,流量为8-15L/min,其中氢气流量为8-14 L/min、氯化氢流量为0.5-1 L/min,保温4-5h;所述内部发生器及所述外部发生器产生的AlCl、AlCl3高活性化合物与所述工件表面反应,形成AlCr涂层;
S6、反应结束后,分别通入氩气对所述化学气相沉积反应炉及所述外部发生器进行冷却,气体流量控制在20-30L/min。
2.根据权利要求1所述的一种镍基高温合金表面化学气相沉积AlCr涂层方法,其特征在于:在S1中,在将所述工件放入所述涂层工装之前,将所述工件表面先进行湿喷砂处理,喷砂介质为白刚玉砂粒,砂粒目数120-220目,喷砂压力控制在0.2-0.4Mpa;再使用超声波清洗喷砂后的所述工件,烘干。
3.根据权利要求2所述的一种镍基高温合金表面化学气相沉积AlCr涂层方法,其特征在于:S6中,所述工件出炉后,使用碱性清洗剂超声波清洗工件不低于10min,然后用去离子水清洗,放入烘箱,烘箱温度为80℃-100℃烘干。
4.根据权利要求3所述的一种镍基高温合金表面化学气相沉积AlCr涂层方法,其特征在于:S6中,所述气相沉积反应炉内部剩余反应物经过冷却后,通入装有氢氧化钠溶液的中和站溶解过滤,产生氩气、氢气。
5.根据权利要求4所述的一种镍基高温合金表面化学气相沉积AlCr涂层方法,其特征在于:所述工件为K418B高温合金,所述K418B高温合金的表面均匀沉积了一层AlCr涂层,所述AlCr涂层厚度为30-42μm,涂层中Al含量为25-28wt.%,Cr含量为8-10wt.%。
CN202211690267.9A 2022-12-28 2022-12-28 一种镍基高温合金表面化学气相沉积AlCr涂层方法 Pending CN116200726A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211690267.9A CN116200726A (zh) 2022-12-28 2022-12-28 一种镍基高温合金表面化学气相沉积AlCr涂层方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211690267.9A CN116200726A (zh) 2022-12-28 2022-12-28 一种镍基高温合金表面化学气相沉积AlCr涂层方法

Publications (1)

Publication Number Publication Date
CN116200726A true CN116200726A (zh) 2023-06-02

Family

ID=86518215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211690267.9A Pending CN116200726A (zh) 2022-12-28 2022-12-28 一种镍基高温合金表面化学气相沉积AlCr涂层方法

Country Status (1)

Country Link
CN (1) CN116200726A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117187738A (zh) * 2023-11-07 2023-12-08 中国航发沈阳黎明航空发动机有限责任公司 空心叶片内外表面气相沉积铬铝渗层的工艺方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117187738A (zh) * 2023-11-07 2023-12-08 中国航发沈阳黎明航空发动机有限责任公司 空心叶片内外表面气相沉积铬铝渗层的工艺方法

Similar Documents

Publication Publication Date Title
CN104213096B (zh) 一种含钨涂层坩埚的制备方法
WO2020207155A1 (zh) 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
CN103160773A (zh) 通过控制热生长氧化层成分延长发动机热障涂层寿命的方法
CN112430802B (zh) 复杂内腔叶片氟离子清洗及铝化物涂层制备的方法及装置
CN116200726A (zh) 一种镍基高温合金表面化学气相沉积AlCr涂层方法
CN106637071A (zh) 一种多段式包埋渗铝结合微弧氧化制备复合涂层的方法
CN101497998A (zh) 铱铝高温抗氧化涂层的制备方法
GB1602040A (en) Process for producing protective coatings on metals and metal alloys for use at high temperatures
CN109943872B (zh) 一种用于熔融氟化盐中含Cr不锈钢防护的复合涂层的制备方法
CN115110068A (zh) 一种耐腐蚀性类水滑石/金属复合涂层及其制备方法与应用
CN104987134B (zh) 一种在陶瓷表面利用原位还原法制备镍涂层的方法
CN113088883A (zh) 一种高温合金复合金属陶瓷涂层及其制备方法
CN110616444B (zh) 一种铂/二氧化铈共改性铝化物涂层及其制备方法
CN112299882B (zh) 一种碳材料表面HfC基三元碳化物梯度涂层的原位制备方法
CN117107311A (zh) 一种Pt改性的叶片叶尖防护涂层及其制备方法
CN107190261B (zh) 一种高温抗氧化铌合金表面复合硅化物涂层及制备方法
WO2024138594A1 (zh) 一种镍基高温合金表面化学气相沉积AlCr涂层方法
CN113073285B (zh) 一种热障涂层及其制备方法和应用
JP2022104855A (ja) 耐食性ネオジム鉄ホウ素磁石、表面処理方法及び水酸基化合物の使用
JP2016510089A (ja) 耐食コーティングを堆積させる方法
CN105525259A (zh) 一种优化镍基单晶高温合金n5性能的梯度涂层方法
CN117684225A (zh) 一种能提高氧化膜粘附性的镍基高温合金Ru/Zr共改性β-NiAl涂层及其制备方法
CN117947375B (zh) 镍基合金表面渗硼用渗硼剂及渗硼方法
CN114507839B (zh) 一种抗cmas侵蚀的热障涂层材料及其制备工艺
CN114672761B (zh) 空心叶片内外表面共沉积改性铝化物涂层及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination