CN116196908B - 一种改性磷石膏固相微萃取纤维的制备方法及应用 - Google Patents

一种改性磷石膏固相微萃取纤维的制备方法及应用 Download PDF

Info

Publication number
CN116196908B
CN116196908B CN202211607551.5A CN202211607551A CN116196908B CN 116196908 B CN116196908 B CN 116196908B CN 202211607551 A CN202211607551 A CN 202211607551A CN 116196908 B CN116196908 B CN 116196908B
Authority
CN
China
Prior art keywords
phase microextraction
fiber
modified phosphogypsum
solid
phosphogypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211607551.5A
Other languages
English (en)
Other versions
CN116196908A (zh
Inventor
张娟
许力
余晓英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Three Gorges Laboratory
Wuhan Institute of Technology
Original Assignee
Hubei Three Gorges Laboratory
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Three Gorges Laboratory, Wuhan Institute of Technology filed Critical Hubei Three Gorges Laboratory
Priority to CN202211607551.5A priority Critical patent/CN116196908B/zh
Publication of CN116196908A publication Critical patent/CN116196908A/zh
Priority to PCT/CN2023/102377 priority patent/WO2024124854A1/zh
Application granted granted Critical
Publication of CN116196908B publication Critical patent/CN116196908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种改性磷石膏固相微萃取纤维的制备方法及应用,以湿法磷酸工艺中产生的固体废弃物磷石膏为原料,采用十八烷基三甲氧基硅烷对磷石膏进行改性,通过简单的物理涂敷法将改性磷石膏粘附在不锈钢丝表面,经老化处理后,即可得到新型的改性磷石膏固相微萃取纤维。本发明以固体废弃物为原料,实现了磷石膏资源化利用;该改性磷石膏固相微萃取纤维的制备方法简单,且该固相微萃取纤维具有较好的热稳定性和化学稳定性。基于该固相微萃取纤维的顶空固相微萃取‑气相色谱检测方法对多环芳烃的检测线性范围宽,检测限低,精密度高,对实际样品中PAHs的分析具有很好的应用前景。

Description

一种改性磷石膏固相微萃取纤维的制备方法及应用
技术领域
本发明涉及分析化学及固相微萃取技术领域,具体涉及一种改性磷石膏固相微萃取纤维的制备方法及应用。
背景技术
近年来,随着磷化工行业的快速发展,磷石膏的排放量不断增加。由于磷石膏中含有磷、氟、硅铝铁以及一些酸性有害物质,磷石膏的长期堆存会对环境造成严重的污染,因此磷石膏的无害化处置及资源化利用是目前磷化工行业迫切需要解决的主要问题。
多环芳烃(PAHs)是一类具有两个或两个以上芳香环的有机污染物。多环芳烃来源广泛,可通过垃圾焚烧、交通排放、食物摄取等途径进入人类生存环境或人体。因其具有高毒性、高致突变性和高致癌性,被认定为影响人类健康的主要有机污染物之一。由于多环芳烃在环境和食品中含量较低且样品基质较为复杂,需要对样品进行前处理以排除基质干扰提高检测灵敏度。固相微萃取(SPME)是集采样、萃取、浓缩、解析和进样为一体的一种无溶剂消耗和简便高效的样品前处理技术。它是基于分析物与萃取涂层之间的相互作用以达到吸附平衡来实现的。因此涂层材料是SPME的核心。目前商品化的涂层有聚二甲基硅氧烷、聚丙烯酸、聚乙二醇等,但商品化涂层种类有限、价格昂贵且稳定性能有待提高。因此开发新型的SPME涂层用于实际样品的前处理分析具有重要意义。
发明内容
本发明的目的在于提供一种改性磷石膏固相微萃取纤维的制备方法及应用,解决了磷石膏长期堆存带来的环境污染问题,实现了废弃物磷石膏的资源化利用。
本发明以工业湿法硫酸生产工艺产生的固体废弃物磷石膏为原料,采用十八烷基三甲氧基硅烷(OTMS)对磷石膏(PG)进行改性,增强磷石膏的疏水性能,并将其涂敷于不锈钢丝表面制备得到PG/OTMS固相微萃取纤维,基于疏水作用、阳离子与π电子间的相互作用以及多孔材料的吸附性能,用于疏水性环境污染物PAHs的顶空固相微萃取,结合气相色谱用于环境水样中PAHs的分析和检测。基于PG/OTMS固相微萃取纤维的顶空固相微萃取-气相色谱分析方法开辟了废弃物磷石膏在色谱分析和样品前处理领域应用的新途径,此外,PG/OTMS新型吸附材料的应用解决了磷石膏长期堆存带来的环境污染问题,实现了废弃物磷石膏的资源化利用。
本发明的目的通过以下技术方案实现:
一种改性磷石膏固相微萃取纤维,包括载体纤维和粘附着在其表面的涂层材料,所述涂层材料为十八烷基三甲氧基硅烷改性的磷石膏。
所述的载体纤维包括长度为1~5cm的不锈钢丝;
涂层材料为载体纤维长度的5-80%;所述涂层材料的厚度为50~100μm。
所述的涂层材料采用硅酮密封胶粘附在载体纤维表面。
一种改性磷石膏固相微萃取纤维的制备方法,该方法步骤如下:
(1)PG/OTMS的制备
将十八烷基三甲氧基硅烷的乙醇溶液中加入磷石膏,室温下搅拌反应后,将得到的产物经洗涤研磨成颗粒得到PG/OTMS;
(2)改性磷石膏固相微萃取纤维的制备
采用经环己烷稀释的硅酮密封胶将PG/OTMS材料粘附到载体纤维上,老化后得到改性磷石膏固相微萃取纤维。
步骤(1)中磷石膏经磨碎至粒径为200-300目;再在50-80℃下的清水中洗涤、烘干;
步骤(1)中十八烷基三甲氧基硅烷在乙醇溶液中的质量分数为1-20%,进行反应前,采用乙酸、或甲酸调节pH值至4-5。
步骤(2)中环己烷稀释的硅酮密封胶中,硅酮密封胶和环己烷的比例以g/ml计0.5:1-5;
采用经环己烷稀释的硅酮密封胶将PG/OTMS材料粘附到载体纤维上的方法包括浸渍、喷涂、旋涂中的任意一种。
所述的老化处理是在气相色谱进样口进行,温度为280~300℃,老化时间为0.5~3h。
所述的载体纤维包括长度为1~5cm的不锈钢丝;
涂层材料为载体纤维长度的5-80%;所述涂层材料的厚度为50~100μm;
所述的载体纤维的涂层部分在粘附涂层材料之前先进行打磨。
本发明的另一技术方案是将所述的改性磷石膏固相微萃取纤维或者所述方法制备得到的改性磷石膏固相微萃取纤维在检测水环境中多环芳烃上的应用,所述的水环境包括江、河、湖、堰塘、地下水环境中的任意一种。
与现有技术相比,本发明的有益效果包括:
本发明提供了一种简单、快速、高效的湖水中多环芳烃的测定方法,具有如下优势:
1)方法灵敏度高,对于湖水中的微量多环芳烃可准确测定;2)利用自制的涂覆有PG/OTMS涂层的固相微萃取纤维进行萃取,由于OTMS本身的疏水性,改性后的PG与未改性的PG相比,PG/OTMS材料的疏水性大大提高,对多环芳烃的萃取性能有较大幅度提高,基于PG/OTMS固相微萃取纤维的顶空固相微萃取-气相色谱分析检测方法对PAHs的检测线性范围宽(1-100ng mL-1),检测限低(0.03-0.31ng mL-1),精密度高(RSD<9.53%),可应用于实际样品中PAHs分析和检测。
附图说明
图1是本发明PG/OTMS固相微萃取纤维的制备及对PAHs的萃取分析和检测示意图。
图2是本发明PG/OTMS固相微萃取纤维扫描电镜图(A),不锈钢丝扫描电镜图(B)。
图3是本发明PG/OTMS涂层材料的元素分析图。
图4是本发明PG,PG/OTMS涂层材料的红外光谱图。
图5是本发明基于SPME纤维的萃取条件,包括萃取温度(A),萃取时间(B),解析温度(C),解析时间(D),搅拌速度(E),盐浓度(F)对PAHs萃取性能的影响;6种PAHs水溶液的浓度均为50ng·mL-1
图6是本发明SPME纤维对湖水样品加标前后萃取色谱图,湖水(a),加标50.0ngmL-1PAHs(b),峰值识别:1-苊烯,2-苊,3-芴,4-菲,5-荧蒽,6-芘。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
1.本发明提供一种改性磷石膏固相微萃取纤维,包括不锈钢丝载体和载体上的萃取涂层,其中载体为长度1.1-5.0cm的不锈钢丝,一端涂敷有涂层材料,涂层材料为PG/OTMS材料。
2.本发明纤维的制备方法,如图1所示。
本发明所用的硅酮密封胶购买自西卡Sikdsil C。
实施例1
(1)PG/OTMS的制备
使用高速球磨机将PG磨碎后过筛(200目以下),将所得PG粉末用水清洗后在60℃烘箱烘干待用,将0.5g的PG加入20mL含OTMS的乙醇混合溶液(10%,w/w)中,并加入乙酸,将pH调节为4.0,搅拌反应12h,反应后用乙醇冲洗,真空干燥后研磨成细微颗粒。
(2)PG/OTMS固相微萃取纤维的制备
先将不锈钢丝的一端用120目砂纸打磨处理,依次用甲醇和蒸馏水超声清洗不锈钢丝,随后在烘箱中干燥待用,再采用环己烷稀释的硅酮密封胶将PG/OTMS材料粘附到经打磨处理的不锈钢丝端部;硅酮密封胶和环己烷的比例为0.5g:1mL,将粘附好的纤维在气相色谱进样口老化,进样口温度为280℃,老化时间为0.5h。
从图2A,B中可以看出,裸蚀刻的不锈钢丝的表面是光滑的,而在涂覆PG/OTMS材料后,纤维是多孔且均匀的。此外,如图3所示,PG/OTMS的元素分析证实存在原子比为4.24%的Si元素,表明OTMS已成功接枝到PG中,表明PG/OTMS已成功合成。
对该材料进行了红外表征,如图4所示,在2923cm-1和2853cm-1出现了明显的C-H键(-CH2,-CH3)振动伸缩吸收峰,表明有十八烷基三甲氧基硅烷(OTMS)成功进入磷石膏晶片层及其表面。在其它区域,都存在磷石膏的特征峰,说明磷石膏的晶体结构基本没有改变。
实施例2
(1)PG/OTMS的制备
使用高速球磨机将PG磨碎后过筛(200目以下),将所得PG粉末用水清洗后在60℃烘箱烘干待用,将0.5g的PG加入20mL含OTMS的乙醇混合溶液(5%,w/w)中,并加入乙酸,将pH调节为4.0)搅拌12h,之后用乙醇冲洗,真空干燥后研磨成细微颗粒。
(2)PG/OTMS固相微萃取纤维的制备
先将不锈钢丝的一端用120目砂纸打磨处理,依次用甲醇和蒸馏水超声清洗不锈钢丝,随后在烘箱中干燥待用,再通过环己烷稀释的硅酮密封胶将PG/OTMS复合材料粘附到不锈钢丝打磨处理的端部;硅酮密封胶和环己烷的比例为0.5g:1mL,将粘附好的纤维在气相色谱进样口老化,进样口温度为280℃,老化时间为0.5h。
实施例3
(1)PG/OTMS的制备
使用高速球磨机将PG磨碎后过筛(200目以下),将所得PG粉末用水清洗后在60℃烘箱烘干待用,将0.5g的PG加入20mL含OTMS的乙醇混合溶液(2%,w/w)中,并加入乙酸,将pH调节为4.0,搅拌反应12h之后用乙醇冲洗,真空干燥后研磨成细微颗粒。
(2)PG/OTMS固相微萃取纤维的制备
先将不锈钢丝的一端用120目砂纸打磨处理,依次用甲醇和蒸馏水超声清洗不锈钢丝,随后在烘箱中干燥待用,再通过环己烷稀释的硅酮密封胶将PG/OTMS材料粘附到经打磨处理的不锈钢丝端部;硅酮密封胶和环己烷的比例为0.5g:1mL,将粘附好的纤维在气相色谱进样口老化,进样口温度为280℃,老化时间为0.5h。
实施例1、2、3中,通过调节改性剂十八烷基三甲氧基硅烷的浓度,制备得到不同形貌和萃取性能的PG/OTMS涂层材料。
3.本发明提供一种改性磷石膏固相微萃取纤维用于污染物PAHs萃取分析和检测方法,如图1所示,将固相微萃取纤维固定到固相微萃取手柄上并插入装有一定浓度PAHs溶液的样品瓶的上方,在一定温度、搅拌速度、盐浓度下顶空萃取一定的时间,拔出手柄后直接插入气相色谱进样口解吸分析。
具体地,PAHs为苊烯、苊、芴、菲、荧蒽或芘中的一种或多种;萃取时间20~60min,萃取温度30~70℃,搅拌速0~1200rpm,NaCl浓度0~36wt%;解吸时间1~5min;解吸温度240~320℃。
进一步的,本发明采用GC-FID分析检测PAHs,色谱条件:HP-5毛细管柱(30m×0.32mm(i.d.)×0.25μm);载气:高纯氮,纯度>99.999%;流速:恒流,2mL min-1进样方式:不分流进样。升温程序从45℃开始并保持1min,然后以15℃min-1的速度上升到130℃并保持5min,之后以15℃min-1的速度上升到280℃并保持4.6min。此外,进样口的温度设定为280℃,检测器的温度设定为300℃。
应用例1
将上述实施例1制备的PG/OTMS固相微萃取纤维固定于固相微萃取手柄上并插入装有浓度为50ng mL-1PAHs溶液的样品瓶的上方,在一定萃取温度、搅拌速度、盐浓度下顶空萃取一定的时间,拔出手柄后直接插入气相色谱进样口解吸分析。
在设定的色谱方法下,优化对多环芳烃的萃取条件,如萃取时间(20min、30min、40min、50min、60min)、萃取温度(30℃、40℃、50℃、60℃、70℃)、搅拌速度(0、200rpm、400rpm、600rpm、800rpm、1000rpm、1200rpm)、离子浓度(NaCl浓度0、5%、10%、15%、20%、25%、30%、36%)、解吸时间(1min、2min、3min、4min、5min)和解吸温度(240、260、280、300、320℃);
图4为萃取时间、萃取温度及盐浓度对PAHs萃取性能的影响。从图5A可以看出,苊烯,苊和芴这三种物质随着萃取温度从30℃增加到70℃,峰面积逐渐减小,萃取性能降低,这可能是由于对于低沸点的多环芳烃,随着萃取温度升高容易从探针上解吸附下来,而对于沸点较高的菲、荧蒽、芘,随着萃取温度升高,峰面积逐渐增大,综合考虑选择萃取温度为70℃。从图5B中可以看出苊烯、苊、芴、菲这四种PAHs随着萃取时间增加,峰面积基本保持不变,表明这四种物质由于挥发性强、沸点较低,能快速分配到萃取涂层上,达到吸附平衡。而荧蒽、芘这两种沸点较高、疏水性强的PAHs随萃取时间延长,峰面积逐渐增加,当萃取时间超过50min,峰面积基本保持不变,表明此时已达到吸附平衡,最终选择萃取时间为50min。从图5C中可以看出,所有分析物的峰面积随着解吸温度从240℃至300℃而增加,表明300℃的解吸温度是合适的,以保证多环芳烃的完全解吸,而不会在纤维上残留。从图5D中可以看出,随着解吸时间的增加,所有多环芳烃的峰面积没有明显变化。因此,选择解吸时间为1分钟。如图5E所示,在0rpm至1200rpm的范围内研究了搅拌速度对萃取效率的影响。结果表明,苊烯、苊、芴、菲这四种PAHs随着搅拌速度增加,峰面积逐渐增加,荧蒽和芘的峰面积在1000rpm之前不断增长,之后开始逐渐下降,是由于搅拌速度过快产生的气泡和涡流会减少靶和涂层之间的接触,还会对涂层造成不可逆的损坏。最终选择搅拌速度为1200rpm。盐浓度影响PAHs在水相和涂层材料固定相两相之间的分配,从图5F中可以看出,随着NaCl盐浓度增大,PAHs峰面积逐渐增加,萃取性能逐渐增大。综合考虑盐的溶解度问题,选取NaCl浓度为36%。
优化后的最佳萃取条件为:最佳萃取时间50min,最佳萃取温度70℃,最佳搅拌速度1000rpm,最佳离子浓度为36%,最佳解吸时间1min,最佳解吸温度300℃。
应用例2
将上述实施例1制备的PG/OTMS固相微萃取纤维固定于固相微萃取手柄上,在最优的萃取条件下:最佳萃取时间50min,最佳萃取温度70℃,最佳搅拌速度1000rpm,最佳离子浓度为36%,最佳解吸时间1min,最佳解吸温度300℃,对检测方法进行线性范围、检测限、精密度进行考察,并将该方法用于实际样品湖水中PAHs的萃取和分析检测;从表1可以看出,检测线性范围为1-100ng mL-1;检测限在1-100ng mL-1之间;精密度RSD<9.53%,对实际样品进行加标实验,计算回收率。从表2可以看出回收率范围在63.88~116.51%之间,表明该方法准确度较高,可以满足定量分析需要。从图6中可以看出,涂敷有PG/OTMS材料的SPME纤维可以用于蜂蜜中PAHs的检测。
表1PAHs的线性范围、检测限、定量限及精密度考察
表2湖水样品加标回收率考察
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (10)

1.一种改性磷石膏固相微萃取纤维,包括载体纤维和粘附着在其表面的涂层材料,其特征在于,所述涂层材料为十八烷基三甲氧基硅烷改性的磷石膏。
2.根据权利要求1所述的改性磷石膏固相微萃取纤维,其特征在于,所述的载体纤维包括长度为1~5 cm的不锈钢丝。
3.根据权利要求2所述的改性磷石膏固相微萃取纤维,其特征在于,涂层材料为载体纤维长度的5-80%;所述涂层材料的厚度为50~100 μm。
4.根据权利要求3所述的改性磷石膏固相微萃取纤维,其特征在于,所述的涂层材料采用硅酮密封胶粘附在载体纤维表面。
5.一种改性磷石膏固相微萃取纤维的制备方法,其特征在于,该方法步骤如下:
(1) PG/OTMS的制备
将十八烷基三甲氧基硅烷的乙醇溶液中加入磷石膏,室温下搅拌反应后,将得到的产物经洗涤研磨成颗粒得到PG/OTMS;
(2)改性磷石膏固相微萃取纤维的制备
采用经环己烷稀释的硅酮密封胶将PG/OTMS材料粘附到载体纤维上,老化后得到改性磷石膏固相微萃取纤维。
6.根据权利要求5所述的改性磷石膏固相微萃取纤维的制备方法,其特征在于,步骤(1)中磷石膏经磨碎至粒径为200-300目;再在50-80℃下的清水中洗涤、烘干;
步骤(1)中十八烷基三甲氧基硅烷在乙醇溶液中的质量分数为1-20%,进行反应前,采用乙酸、或甲酸调节pH值至4-5。
7.根据权利要求5所述的改性磷石膏固相微萃取纤维的制备方法,其特征在于,步骤(2)中环己烷稀释的硅酮密封胶中,硅酮密封胶和环己烷的比例以g/ml计0.5 : 1-5;
采用经环己烷稀释的硅酮密封胶将PG/OTMS材料粘附到载体纤维上的方法包括浸渍、喷涂、旋涂中的任意一种。
8.根据权利要求5所述的改性磷石膏固相微萃取纤维的制备方法,其特征在于,所述的老化处理是在气相色谱进样口进行,温度为280~300℃,老化时间为0.5~3 h。
9.根据权利要求5所述的改性磷石膏固相微萃取纤维的制备方法,其特征在于,所述的载体纤维包括长度为1~5 cm的不锈钢丝;
涂层材料为载体纤维长度的5-80%;所述涂层材料的厚度为50~100 μm;
所述的载体纤维的涂层部分在粘附涂层材料之前先进行打磨。
10.一种权利要求1-4任一项所述的改性磷石膏固相微萃取纤维或者权利要求5-9任一项所述方法制备得到的改性磷石膏固相微萃取纤维在检测水环境中多环芳烃上的应用,所述的水环境包括江、河、湖、堰塘、地下水环境中的任意一种。
CN202211607551.5A 2022-12-14 2022-12-14 一种改性磷石膏固相微萃取纤维的制备方法及应用 Active CN116196908B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211607551.5A CN116196908B (zh) 2022-12-14 2022-12-14 一种改性磷石膏固相微萃取纤维的制备方法及应用
PCT/CN2023/102377 WO2024124854A1 (zh) 2022-12-14 2023-06-26 一种改性磷石膏固相微萃取纤维的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211607551.5A CN116196908B (zh) 2022-12-14 2022-12-14 一种改性磷石膏固相微萃取纤维的制备方法及应用

Publications (2)

Publication Number Publication Date
CN116196908A CN116196908A (zh) 2023-06-02
CN116196908B true CN116196908B (zh) 2024-07-05

Family

ID=86506745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211607551.5A Active CN116196908B (zh) 2022-12-14 2022-12-14 一种改性磷石膏固相微萃取纤维的制备方法及应用

Country Status (2)

Country Link
CN (1) CN116196908B (zh)
WO (1) WO2024124854A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196908B (zh) * 2022-12-14 2024-07-05 湖北三峡实验室 一种改性磷石膏固相微萃取纤维的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383882A (zh) * 2014-11-06 2015-03-04 昆明理工大学 一种制取重金属铬吸附剂的方法及应用
CN107126942A (zh) * 2017-05-05 2017-09-05 山东省分析测试中心 一种金属‑有机纳米管涂层的制备方法及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759126B1 (en) * 1998-09-21 2004-07-06 University Of South Florida Solid phase microextraction fiber structure and method of making
US20150068279A1 (en) * 2013-09-11 2015-03-12 King Abdulaziz City For Science And Technology Electro-enhanced solid-phase microextraction method
RU2646297C1 (ru) * 2016-08-30 2018-03-02 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) Способ получения сорбента для извлечения урана из подземной воды
CN108034055B (zh) * 2017-12-29 2021-04-06 中国烟草总公司郑州烟草研究院 一种共价有机骨架固相微萃取纤维及其制备方法
CN108579708B (zh) * 2018-04-28 2020-03-06 江南大学 一种多环芳烃富集检测用固相微萃取纤维及制作方法
CN109173981A (zh) * 2018-08-07 2019-01-11 济南大学 一种聚乙烯亚胺功能化二氧化硅气凝胶涂层固相微萃取纤维的制备方法
CN112892506A (zh) * 2019-12-04 2021-06-04 广西民族大学 MIL-53(Al)固相微萃取纤维及其制备方法和应用
CN112457861A (zh) * 2020-12-07 2021-03-09 安徽辉隆中成科技有限公司 一种制备磷石膏土壤改良剂的方法及装置
CN112759345A (zh) * 2021-01-05 2021-05-07 凌池英 一种固化用淤泥添加剂及其制备方法
CN114797806A (zh) * 2022-03-18 2022-07-29 武汉工程大学 一种基于COF@rGO杂化材料的固相微萃取探针和制备方法及应用
CN116196908B (zh) * 2022-12-14 2024-07-05 湖北三峡实验室 一种改性磷石膏固相微萃取纤维的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383882A (zh) * 2014-11-06 2015-03-04 昆明理工大学 一种制取重金属铬吸附剂的方法及应用
CN107126942A (zh) * 2017-05-05 2017-09-05 山东省分析测试中心 一种金属‑有机纳米管涂层的制备方法及其应用

Also Published As

Publication number Publication date
WO2024124854A1 (zh) 2024-06-20
CN116196908A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
Asadollahzadeh et al. Solid-phase microextraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber
Mohammadi et al. Dodecylsulfate-doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons
Li et al. Evaluation of the solid-phase microextraction fiber coated with single walled carbon nanotubes for the determination of benzene, toluene, ethylbenzene, xylenes in aqueous samples
CN104134606B (zh) 一种微萃取探针电喷雾离子源及其制备方法和应用
CN100585400C (zh) 一种测定污泥中多环芳烃的方法
CN116196908B (zh) 一种改性磷石膏固相微萃取纤维的制备方法及应用
Pan et al. Ultrasonic assisted extraction combined with titanium-plate based solid phase extraction for the analysis of PAHs in soil samples by HPLC-FLD
CN108273481B (zh) 聚亚苯基-共轭微孔聚合物固相微萃取涂层的制备及其应用
CN110514774B (zh) 一种分析水中酚类化合物的方法
Zhu et al. Solid phase extraction of trace copper in water samples via modified corn silk as a novel biosorbent with detection by flame atomic absorption spectrometry
Martins et al. Sulphoxine immobilized onto chitosan microspheres by spray drying: application for metal ions preconcentration by flow injection analysis
CN110652749B (zh) 一种复合纳米纤维在线微固相萃取柱及其制备方法
Sarafraz-Yazdi et al. Comparative study of the three sol–gel based solid phase microextraction fibers in extraction of BTEX from water samples using gas chromatography-flame ionization detection
CN102169109B (zh) 雌激素替代模板分子印迹固相微萃取萃取头的制备方法
CN109158086B (zh) 一种超灵敏分析水中痕量多溴联苯醚的方法
Zhu et al. Extraction of natural estrogens in environmental waters by dispersive multiwalled carbon nanotube-based agitation-assisted adsorption and ultrasound-assisted desorption
Amiri et al. Polypyrrole/carbon nanotube coated stainless steel mesh as a novel sorbent
Hordijk et al. Quantitative high-pressure liquid chromatography-fluorescence determination of some important lower fatty acids in lake sediments
Abolghasemi et al. Preparation and evaluation of a layered double hydroxide film on a nanoporous anodic aluminum oxide/aluminum wire as a highly thermal-resistant solid-phase microextraction fiber
CN109675536A (zh) 一种基于氧化石墨烯分散酸性硅胶填料、制备方法及应用
CN108479111A (zh) 一种表面修饰纳米SiO2的固相微萃取探针的制备方法和应用
CN109374766B (zh) 一种脂肪醇聚氧乙烯醚和烷基酚聚氧乙烯醚高富集能力固相微萃取探针的制备及应用
CN110441429A (zh) 离子液体/poss复合涂层的制备及其在固相微萃取方面的应用
Hu et al. Preparation of nylon-6 modified cellulose paper for extraction and determination of perfluoroalkyl substances in water
Sun et al. Determination of 17 kinds of banned organochlorine pesticides in water by activated carbon fiber-solid phase microextraction coupled with GC-MS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant