CN116179563A - 控制苹果果实中苹果酸含量的myb基因及其应用 - Google Patents

控制苹果果实中苹果酸含量的myb基因及其应用 Download PDF

Info

Publication number
CN116179563A
CN116179563A CN202210902541.8A CN202210902541A CN116179563A CN 116179563 A CN116179563 A CN 116179563A CN 202210902541 A CN202210902541 A CN 202210902541A CN 116179563 A CN116179563 A CN 116179563A
Authority
CN
China
Prior art keywords
mdmyb123
malic acid
gene
apple
acid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210902541.8A
Other languages
English (en)
Other versions
CN116179563B (zh
Inventor
马百全
郑丽桐
袁阳阳
李明军
马锋旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN202210902541.8A priority Critical patent/CN116179563B/zh
Publication of CN116179563A publication Critical patent/CN116179563A/zh
Application granted granted Critical
Publication of CN116179563B publication Critical patent/CN116179563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因,含有MdMYB123/mdmyb123基因的重组过量表达载体和沉默载体,含有MdMYB123/mdmyb123基因的重组菌和转基因植物组织,调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因编码蛋白以及利用MdMYB123/mdmyb123基因在差异调控苹果果实苹果酸含量中的应用,本发明的MdMYB123能够增加苹果酸含量,而mdmyb123能够降低苹果酸含量;本发明的MdMYB123序列中的SNP位点与苹果酸含量显著相关。

Description

控制苹果果实中苹果酸含量的MYB基因及其应用
技术领域
本发明属于苹果分子遗传育种技术领域,涉及一种调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因。
本发明还涉及一种含有MdMYB123/mdmyb123基因的重组过量表达载体和沉默载体。
本发明还涉及一种含有MdMYB123/mdmyb123基因的重组菌和转基因植物组织。
本发明还涉及一种调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因编码蛋白。
本发明还涉及一种利用MdMYB123/mdmyb123基因在差异调控苹果果实苹果酸含量中的应用。
背景技术
苹果是一种在温带地区广泛种植的木本果树作物,是世界上消费量最大的水果之一。位居世界四大水果之一和我国四大水果之首。由于我国的气候条件、栽培条件等影响,我国也是世界上苹果生产第一大国。苹果的营养元素十分丰富,是人体获取维生素、矿质元素以及纤维素的重要来源。果实酸度作为调控水果风味和品质的重要因素之一,主要取决于水果中有机酸的种类和含量。而苹果酸是苹果中主要的有机酸,在成熟苹果果实中占总有机酸的90%以上,决定了成熟苹果果实的酸度。同时,在苹果驯化过程中发生了果实酸度由高到低的选择,也伴随着可溶性糖成分和含量的变化,而可溶性糖成分和含量是决定果实风味品质的重要因素。
果实酸度是一个由多基因控制的复杂性状。有研究表明,位于16号染色体顶端的苹果果实酸度QTL位点中的MdMa1与位于8号染色体上的另一个苹果果实酸度QTL位点中的MdSAUR37和MdPP2C与成熟期苹果果实中苹果酸含量显著相关。质子泵是一种位于膜上的蛋白质,能够介导H+跨膜转运。MdMa10编码P3A型质子泵,与MdMa1基因协同调控苹果果实中苹果酸的积累。而MdMa12是一种位于线粒体膜上的焦磷酸酶质子泵,过表达MdMa12可以显著增加苹果果实中的苹果酸含量。此外,位于液泡膜上的MdMa11和MdMa13基因分别编码P3A型和P3B型质子泵,这两类质子泵可以直接或间接介导H+的跨膜转运,从而调节液泡酸度。
MYB转录因子作为植物中最大的转录因子家族之一,广泛参与植物发育、激素信号传导和代谢物合成。MYB转录因子分为四个亚家族,即2R-MYB(R2R3-MYB)、3R-MYB(R1R2R3-MYB)、4R-MYB和1R-MYB。R2R3-MYB是这四个亚家族中最大的,它可能是由R1R2R3-MYB亚家族丢失了R1重复进化而来的。在矮牵牛中,编码PH4基因的MYB转录因子的突变导致液泡酸度降低。在柑橘中瞬时过表达CrMYB73基因可显著增加柑橘中柠檬酸含量。葡萄中的MYB5a/b可以增强液泡膜上VvPH5和VvPH1的转录,从而酸化液泡。而在苹果中,MYB1通过直接调节液泡膜上MdVHA-B1和MdVHA-B2的表达来控制果实中苹果酸的积累。MdMYB73可以调节与苹果酸相关的MdMa1、MdVHA-A和MdVHP1的表达,从而影响苹果酸在液泡中的积累和液泡pH值。MdMYB44通过抑制苹果中MdMa1、MdMa10、MdVHA-A3和MdVHA-D2基因的转录负调控苹果果实中苹果酸的积累。
本研究通过转录组分析,鉴定出了影响苹果果实酸度的候选基因MdMYB123;序列分析表明,位于最后一个外显子上的一个SNP(A/T),导致提前终止,命名为mdmyb123;二者在调节苹果果实酸度方面的功能不同;本研究丰富了苹果果实酸度分子遗传调控机制的理论基础。
发明内容
本发明的目的是提供了一种调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因。
本发明所采用的第一个技术方案是,一种调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因,其核苷酸序列如SEQ ID NO.1所示。
本发明所采用的第二个技术方案是,一种调控苹果果实中苹果酸含量的mdmyb123基因,其核苷酸序列如SEQ ID NO.2所示。
本发明所采用的第三个技术方案是一种含有MdMYB123/mdmyb123基因的重组过量表达载体和沉默载体。
其中采用同源重组的方法构建MdMYB123和mdmyb123的pMDC83过表达载体以及pTRV2沉默载体。
本发明所采用的第四个技术方案是,一种含有MdMYB123/mdmyb123基因的重组菌和转基因植物组织。
本发明所采用的第五个技术方案是,一种调控苹果果实中苹果酸含量的MdMYB123/mdmyb123基因编码蛋白,氨基酸序列如SEQ ID NO.3所示。
本发明所采用的第六个技术方案是,一种利用MdMYB123/mdmyb123基因在差异调控苹果果实苹果酸含量中的应用。
本发明的有益效果是:
本发明的MdMYB123能够增加苹果酸含量,而mdmyb123能够降低苹果酸含量;本发明的MdMYB123序列中的SNP位点与苹果酸含量显著相关。
附图说明
图1是本发明MdMYB123基因在苹果不同组织中的qRT-PCR分析得到的相对表达量图;
图2是本发明MdMYB123基因在‘秦冠’苹果不同发育时期中相对表达量以及‘秦冠’不同时期的苹果酸含量图;
图3是本发明MdMYB123基因在‘蜜脆’苹果不同发育时期中的相对表达量‘蜜脆’不同时期的苹果酸含量图;
图4是MdMYB123基因序列中SNP位点示意图;
图5是MdMYB123基因在‘秦冠’、‘蜜脆’杂交群体中该SNP位点与苹果酸含量的相关性分析;
图6是MdMYB123基因在苹果种质资源中该SNP位点与苹果酸含量的相关性分析;
图7是对照组(pMDC83和pTRV2空载)、过表达以及沉默MdMYB123和mdmyb123的‘王林’苹果愈伤组织;
图8是MdMYB123基因在对照组(pMDC83和pTRV2空载)、过表达以及沉默的‘王林’苹果愈伤组织中的相对表达量;
图9是对照组(pMDC83和pTRV2空载)、过表达以及沉默的‘王林’苹果愈伤组织中的苹果酸含量。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
MdMYB123基因在苹果不同组织中的相对表达量:
从‘蜜脆’植株上采集5个苹果组织,分别为盛开的花、根、成熟的叶、成熟的果实和茎部;将所有样品采后立即放到液氮中速冻,用于扩增MdMYB123以及苹果酸含量的测定;用天根生化科技有限公司生产的RNAprep Pure多糖多酚植物总RNA提取试剂盒提取植物总RNA,并使用宝日医生物科技有限公司生产的PrimeScriptTM 1st Strand cDNA SynthesisKit合成cDNA,按照试剂盒操作步骤进行操作;基因表达量使用Applied Biosystems ABI7500型定量PCR仪,定量引物为qRT-MdMYB123-F:AGGAAACAAATGCAGGGGGA,qRT-MdMYB123-R:AGTCGTCGTGGTTAATCTCCG;分析MdMYB123在这些组织中的表达量如图1所示,结果显示,MdMYB123基因在果实中表达量最高,其次是花、茎、根和叶。
实施例2
MdMYB123表达模式及与苹果酸含量的关系:
取‘秦冠’、‘蜜脆’苹果花后30天、60天、90天果实样品进行苹果酸含量测定以及MdMYB123含量测定,每个样品设三个生物学重复;苹果果实苹果酸含量测定方法如下:将转基因愈伤组织在液氮中研磨成粉末,取约0.1g置于2mL离心管中加入1.0mg的去离子水溶解,超声30min(室温下进行),置于离心机中,12000rpm,4℃离心15min,用0.22μM的滤膜过滤,取上清液;过滤后的上清液用于有机酸含量的测定;利用安捷伦1260高效液相色谱系统进行苹果愈伤组织有机酸的测定;测定参数设置如下:紫外检测器,检测波长210nm;色谱柱,C18反相柱(
Figure BDA0003771393750000051
4.6x250mm);柱温40℃;流动相0.02mol/L KH2PO4,pH 2.4,流速0.8mL/min。
分析了MdMYB123在苹果‘秦冠’、‘蜜脆’三个发育阶段的表达水平;结果表明,‘秦冠’、‘蜜脆’在发育过程中表达量持续下降,这与果实发育过程中苹果酸含量的变化相一致。
实施例3
在‘秦冠’、‘蜜脆’杂交群体中SNP位点(A/T)与苹果酸含量的相关性分析:
在蔷薇科基因组数据库(https://www.rosaceae.org)的苹果基因组数据库GDDH13v1.1中获取MdMYB123/mdmyb123基因的编码序列。构建5’-ATGGGGAGAAGCCCTTG-3’/5’-TCAACTACTCTTTCCAACTCCA-3’引物序列的单核苷酸多态性(SNPs),用于苹果种质资源的筛选;利用混合线性模型,使用TASSEL 5.0进行候选基因关联分析;苹果种质的Q矩阵和K矩阵等群体结构与Liao等人2021年文章中一致;候选基因关联分析显示,A/T与苹果酸含量显著相关,p值分别为6.16×10-6和3.68×10-4,分别占2014年和2015年观察表型变异的9.45%和4.02%。
实施例4
MdMYB123与mdmyb123在‘王林’苹果愈伤中的过表达和沉默分析:
1.载体构建:
过表达载体使用pMDC83载体,利用同源重组方法构建;引物序列为:pMDC83-MdMYB123/mdmyb123-F:CGACTCTAGAACTAGTTAATTAAATGGGGAGAAGCCCTTG;pMDC83-MdMYB123/mdmyb123-R:CGGGCCCCCCCTCGAGGCGCGCCCACTACTCTTTCCAACTCCA;
具体按照下述步骤进行:经过测序的目的基因片段,通过PCR扩增添加pMDC83载体接头;选用载体上的酶切位点Asc I和Pac I对载体进行酶切,回收得到线性化载体。利用同源重组酶将线性化载体和目的基因片段进行连接;反应产物转化DH5α大肠杆菌感受态,涂板,挑取阳性克隆并检测。将阳性菌株提取质粒,应用冻融法将重组载体pMDC83-MdMYB123和pMDC83-mdmyb123导入到农杆菌EHA105中;
沉默载体使用pTRV2载体;截取该基因部分序列,通过PCR扩增添加pTRV2载体接头,引物序列为:pTRV2-MdMYB123/mdmyb123-F:TGCAGGGGGACTAATGTTTG;pTRV2-MdMYB123/mdmyb123-R:TGATTCAAGTCGTCGTGGTT;选用载体上的酶切位点EcoR I和BamH I对载体进行酶切,回收得到线性化载体;
利用同源重组酶将线性化载体和目的基因片段进行连接;反应产物转化DH5α大肠杆菌感受态,涂板,挑取阳性克隆并检测。将阳性菌株提取质粒,应用冻融法将重组载体pTRV2-MdMYB123和pTRV2-mdmyb123导入到农杆菌EHA105中。
‘王林’苹果愈伤的遗传转化与阳性鉴定:
首先进行苹果果肉愈伤组织的转化操作,步骤如下:将苹果‘王林’愈伤组织放入苹果果肉愈伤扩增培养基(液体)中,置于25℃恒温摇床中设置转速12000rpm培养10-15d;检测扩繁的菌液的OD值,用紫外分光光度计进行检测,OD600调至0.6~0.8为宜;将扩繁好的菌液在无菌条件下分装至50mL离心管中,用封口膜封紧管口,室温5000rpm离心5min;在无菌条件下倒去上清,将配置好的菌液重悬液等体积(与倒去上清等体积)加入离心管中,摇匀,倒入干净锥形瓶中;用无菌纱布将液体培养基中的苹果愈伤组织过滤收集,将过滤出的果肉愈伤组织转入配置好的重悬液中摇动侵染15min,再次用无菌纱布过滤,将苹果愈伤组织与农杆菌菌液分离,待苹果愈伤组织稍干之后接种到无抗生素的果肉愈伤组织继代培养基中共培养2d(以上步骤均在超净台中操作)。2天后用加入500mg/L的头孢霉素水清洗愈伤组织4~5次,每次清洗后均需用无菌纱布将果肉愈伤分离出来,同样待愈伤组织稍干之后再转移到果肉愈伤组织筛选培养基上铺成薄薄的一层;在培养室中避光筛选培养至长出粒状愈伤细胞团;培养一段时间后观察到长出粒状愈伤细胞团后,将其挑出置于果肉愈伤组织筛选培养基上培养15~20d后继代;将不同的粒状的愈伤细胞团作为不同株系,分别平铺培养;将转化pMDC83与pTRV2空载体的株系作为对照;利用实施例1中的定量引物对愈伤进行检测,结果如图8中qRT-PCR分析显示,过表达株系中MdMYB123和mdmyb123表达量显著上调,沉默株系中表达量显著降低。
过表达和沉默MdMYB123/mdmyb123的‘王林’苹果愈伤中的苹果酸含量测定:
利用实施例2中的高效液相色谱系统方法对‘王林’苹果愈伤中的苹果酸含量进行测定,结果如图9所示,过表达MdMYB123基因的苹果愈伤组织中苹果酸含量显著高于对照,沉默愈伤组织中苹果酸含量显著降低;然而,过表达mdmyb123基因的苹果愈伤组织中苹果酸含量显著低于对照组。
SEQ ID NO.1(SEQUENCE LISTING)
DNA
Figure BDA0003771393750000081
Figure BDA0003771393750000091
SEQ ID NO.2:
Figure BDA0003771393750000092
SEQ ID NO.3:
PRO
Figure BDA0003771393750000093
Figure BDA0003771393750000101
Figure BDA0003771393750000111
SEQ ID NO.4:
PRO
Figure BDA0003771393750000112
Figure BDA0003771393750000121

Claims (8)

1.一种调控苹果果实中苹果酸含量的MdMYB123基因,其特征在于,其核苷酸序列如SEQID NO.1所示。
2.一种调控苹果果实中苹果酸含量的mdmyb123基因,其特征在于,其核苷酸序列如SEQID NO.2所示。
3.一种含有权利要求1或2所述的MdMYB123/mdmyb123基因的重组过量表达载体和沉默载体。
4.根据权利要求3重组过量表达载体和沉默载体,其特征在于,采用同源重组的方法构建MdMYB123和mdmyb123的pMDC83过表达载体以及pTRV2沉默载体。
5.一种含有权利要求1或2所述的MdMYB123/mdmyb123基因的重组菌和转基因植物组织。
6.一种调控苹果果实中苹果酸含量的MdMYB123基因编码蛋白,其特征在于,氨基酸序列如SEQ ID NO.3所示。
7.一种调控苹果果实中苹果酸含量的mdmyb123基因编码蛋白,其特征在于,氨基酸序列如SEQ ID NO.4所示。
8.一种利用权利要求1或2所述的MdMYB123/mdmyb123基因在差异调控苹果果实苹果酸含量中的应用。
CN202210902541.8A 2022-07-29 2022-07-29 控制苹果果实中苹果酸含量的myb基因及其应用 Active CN116179563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210902541.8A CN116179563B (zh) 2022-07-29 2022-07-29 控制苹果果实中苹果酸含量的myb基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210902541.8A CN116179563B (zh) 2022-07-29 2022-07-29 控制苹果果实中苹果酸含量的myb基因及其应用

Publications (2)

Publication Number Publication Date
CN116179563A true CN116179563A (zh) 2023-05-30
CN116179563B CN116179563B (zh) 2024-09-27

Family

ID=86433258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210902541.8A Active CN116179563B (zh) 2022-07-29 2022-07-29 控制苹果果实中苹果酸含量的myb基因及其应用

Country Status (1)

Country Link
CN (1) CN116179563B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121259A (zh) * 2022-10-31 2023-05-16 西北农林科技大学 一种调控苹果果实酸含量的基因MdMYB21及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120066792A1 (en) * 2008-06-06 2012-03-15 Grasslanz Technology Limited Novel Genes Involved In Biosynthesis
CN112126705A (zh) * 2020-10-26 2020-12-25 青岛农业大学 一种苹果中MdMYB44基因启动子SNP变异位点及其在预测苹果果实酸度中的应用
CN112375764A (zh) * 2020-11-05 2021-02-19 青岛农业大学 一种果实低酸调控基因MdMYB44及其应用
GB202106114D0 (en) * 2020-08-31 2021-06-16 Univ Nanjing Agricultural A pear proton pump gene PbrVHA-c4 and its application in regulating and controlling the citric acid content in pulp
CN114517207A (zh) * 2022-03-04 2022-05-20 安徽农业大学 一种草莓MYB转录因子FaMYB5基因的应用
CN116121259A (zh) * 2022-10-31 2023-05-16 西北农林科技大学 一种调控苹果果实酸含量的基因MdMYB21及其应用
LU504962B1 (en) * 2023-08-21 2024-02-22 Univ Northwest A&F MYB21 Gene for Controlling Malic Acid Contents in Apple Fruits and Application Thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120066792A1 (en) * 2008-06-06 2012-03-15 Grasslanz Technology Limited Novel Genes Involved In Biosynthesis
GB202106114D0 (en) * 2020-08-31 2021-06-16 Univ Nanjing Agricultural A pear proton pump gene PbrVHA-c4 and its application in regulating and controlling the citric acid content in pulp
CN112126705A (zh) * 2020-10-26 2020-12-25 青岛农业大学 一种苹果中MdMYB44基因启动子SNP变异位点及其在预测苹果果实酸度中的应用
CN112375764A (zh) * 2020-11-05 2021-02-19 青岛农业大学 一种果实低酸调控基因MdMYB44及其应用
CN114517207A (zh) * 2022-03-04 2022-05-20 安徽农业大学 一种草莓MYB转录因子FaMYB5基因的应用
CN116121259A (zh) * 2022-10-31 2023-05-16 西北农林科技大学 一种调控苹果果实酸含量的基因MdMYB21及其应用
LU504962B1 (en) * 2023-08-21 2024-02-22 Univ Northwest A&F MYB21 Gene for Controlling Malic Acid Contents in Apple Fruits and Application Thereof

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"PREDICTED: Malus domestica transcription repressor MYB5-like (LOC114819622), mRNA", 《GENBANK》, 3 May 2019 (2019-05-03), pages 029088911 *
AMATO A 等: "The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine", 《PLANT J》, vol. 99, no. 6, 27 June 2019 (2019-06-27), pages 1220 - 1241 *
CHEN K: "Functional identification of MdMYB5 involved in secondary cell wall formation in apple", 《FRUIT RESEARCH 1》, vol. 6, 27 July 2021 (2021-07-27), pages 1 - 10 *
HU D 等: "MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples", 《PLANT PHYSIOL》, vol. 170, no. 3, 4 December 2015 (2015-12-04), pages 1315 - 1330 *
HU D 等: "The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple", 《PLANT J》, vol. 91, no. 3, 6 June 2017 (2017-06-06), pages 443 - 454 *
LI K 等: "Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida)", 《PLANT CELL REP》, vol. 41, no. 12, 23 August 2022 (2022-08-23), pages 2293 - 2303 *
QUATTROCCHIO F 等: "PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway", 《PLANT CELL》, vol. 18, no. 5, 7 April 2006 (2006-04-07), pages 1274 - 1291, XP008090984, DOI: 10.1105/tpc.105.034041 *
ZHENG L 等: "Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple", 《PLANT PHYSIOL》, vol. 192, no. 3, 3 July 2023 (2023-07-03), pages 1877 - 1891 *
乔梁 等: "果实酸度调控的遗传、分子与系统生物学研究进展", 《中国南方果树》, vol. 45, no. 4, 28 July 2016 (2016-07-28), pages 158 - 163 *
王萍: "苹果MdMYB70转录因子应答干旱胁迫调控苹果酸积累的机理研究", 《中国优秀博士学位论文全文数据库(电子期刊)农业科技辑》, no. 12, 15 December 2023 (2023-12-15), pages 048 - 21 *
郑丽桐: "MdMYB123/mdmyb123调控苹果果实中苹果酸含量的分子机制", 《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》, no. 5, 15 May 2024 (2024-05-15), pages 048 - 157 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121259A (zh) * 2022-10-31 2023-05-16 西北农林科技大学 一种调控苹果果实酸含量的基因MdMYB21及其应用
CN116121259B (zh) * 2022-10-31 2024-05-14 西北农林科技大学 一种调控苹果果实酸含量的基因MdMYB21及其应用

Also Published As

Publication number Publication date
CN116179563B (zh) 2024-09-27

Similar Documents

Publication Publication Date Title
CN108864267B (zh) 甘薯类胡萝卜素合成和耐盐抗旱相关蛋白IbARF5及其编码基因与应用
CN107435047B (zh) 一种植物磷信号网络中耐低磷关键基因GmPHR25及其与应用
CN110845590B (zh) 野葡萄VyPPR基因及其编码蛋白在干旱胁迫中的应用
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
CN109750048B (zh) 苹果果实糖转运蛋白基因MdERDL6及其应用
CN116179563B (zh) 控制苹果果实中苹果酸含量的myb基因及其应用
CN114703198B (zh) 一种番茄转运蛋白SlZIF1的克隆及其应用
CN112575001B (zh) GmLCL1基因在调节大豆光周期和开花时间以及提高大豆产量中的应用
CN109762828B (zh) 苹果果实己糖转运蛋白基因MdHT2.2及其应用
CN114480341A (zh) 枳蛋白激酶PtrSnRK2.4在植物抗旱遗传改良中的应用
CN110452917B (zh) 野葡萄VyGOLS基因及其编码蛋白在干旱胁迫中的应用
CN116426496B (zh) 一种紫花苜蓿ipt基因在调控植物耐旱性中的应用
CN114686494B (zh) SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用
CN113337522B (zh) 棉花GhNFYC4基因在促进植物开花中的应用
CN115058433B (zh) 一种烟叶落黄调控基因NtMYB2、蛋白及其应用
CN112725375B (zh) 一种沉默载体及其在转基因植株中的用途
CN108841831B (zh) 成花素基因GmFT2a的应用
CN108148849B (zh) 一种苹果MdPHR1基因及其制备方法和应用
CN111690672A (zh) 甘薯绿原酸合成途径关键酶基因IbPAL2及应用
CN114941003B (zh) 野葡萄VyMPBQ基因及其编码的蛋白和应用
CN114875044B (zh) 野葡萄VyVTE1基因及其编码的蛋白和应用
CN116970052B (zh) 一种影响中山杉118耐旱能力的ThDREB2基因及其应用
CN111197048B (zh) 葡萄VyNRT1基因及其编码蛋白和基因在抗旱品种育种中的应用
CN115029354B (zh) 一种植物生长调控基因PmGRF7及其应用
CN110835367B (zh) 梨调控开花转录因子PbrSPL15及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant