CN116178020A - 一种固体氧化物燃料电池陶瓷连接体材料及其制备方法 - Google Patents

一种固体氧化物燃料电池陶瓷连接体材料及其制备方法 Download PDF

Info

Publication number
CN116178020A
CN116178020A CN202310198839.XA CN202310198839A CN116178020A CN 116178020 A CN116178020 A CN 116178020A CN 202310198839 A CN202310198839 A CN 202310198839A CN 116178020 A CN116178020 A CN 116178020A
Authority
CN
China
Prior art keywords
powder
ceramic
fuel cell
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310198839.XA
Other languages
English (en)
Inventor
李希超
郑莉莉
戴作强
张洪信
何田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202310198839.XA priority Critical patent/CN116178020A/zh
Publication of CN116178020A publication Critical patent/CN116178020A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种固体氧化物燃料电池陶瓷连接体材料,该陶瓷材料为改性钛硅碳,其化学式为(Ti1‑xNx)3(Si,Al)C2(N为V或Zr,x=0.01~0.3),N在Ti位置的掺杂能提高钛硅碳陶瓷的抗氧化能力,以及氧化后的导电性能,Al在Si位置的掺杂能提高掺杂陶瓷的致密度,提高陶瓷的烧结性能,减小气体的渗透率。该陶瓷连接体的制备工艺为冷等静压加后续无压烧结。热膨胀系数为(9.0±0.7)×10‑6K‑1,与SOFCs电解质氧化钇稳定的氧化锆热膨胀系数相近;具有优异的抗蠕变性能和热稳定性;致密度高,可避免发生渗漏等问题。本发明最大的特点是:通过冷等静压成型,然后无压烧结的方法,直接制备出连接体,制备过程和设备简单,不需要二次加工,直接烧结制备出流道结构,生产效率和成品率高;且耐高温氧化腐蚀,且生成氧化膜导电性高;热膨胀系数与电解质YSZ接近,可避免启停的热应力;在工作环境中不会产生挥发性污染物,可避免阴极毒化和电堆老化加速的问题,能解决合金连接体在使用时的挥发问题,在SOFCs上拥有巨大的实用化前景。

Description

一种固体氧化物燃料电池陶瓷连接体材料及其制备方法
技术领域
本发明属于能源工程与技术领域,具体涉及一种固体氧化物燃料电池陶瓷连接体材料。
背景技术
固体氧化物燃料电池由于具有可使用含碳燃料、发电效率高和发电成本低等优点,在分布式电站和动力电源等领域均有广阔的应用前景。当SOFC使用温度在600-800℃,合金能够作为连接体材料,这些合金主要为铬基合金、镍基合金和铁基合金,合金连接体材料有其自身的优点。但也有致命缺点:1.铬的化合物挥发问题。2.热膨胀系数不匹配问题。3.抗蠕变性能不足。因此,发展新型的性能优异的固体氧化物燃料电池连接体材料具有十分重要的实用化意义。发明人在前研究中,提出的解决方案如:申请号201711121195.5一种用于固体氧化物燃料电池(SOFCs)连接体的新型陶瓷材料钛钨硅碳,其化学式为(Ti1-xWx)3SiC2(x=0.005~0.2)。该陶瓷材料热膨胀系数为(9.7±0.5)×10-6K-1,该陶瓷材料最大的特点是:1.热膨胀系数与YSZ接近;2.在SOFCs工作环境中不会产生挥发性污染物,可以避免阴极毒化和电堆老化加速的问题。但传统的热压烧结法烧结过程复杂,生产效率低,而且加工成本高、效率低、成品率很低的问题,要想进一步实际应用,需要对制备方法进行优化,以推动固体氧化物燃料电池的产业化进程。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种用于固体氧化物燃料电池(SOFCs)连接体的新型陶瓷材料改性钛硅碳(Ti1-xNx)3(Si,Al)C2(N为V或Zr,x=0.01~0.3),及其无压烧结制备工艺,其在SOFCs上具有大的实用化前景,可以推动固体氧化物燃料电池的产业化进程。
本发明采取的技术方案是:
一种固体氧化物燃料电池陶瓷连接体材料,所述连接体材料为改性钛硅碳陶瓷材料,是钛硅碳在Ti位置进行V或者Zr掺杂改性的陶瓷相材料,所述改性钛硅碳化学式为(Ti1-xNx)3(Si,Al)C2,N为V或Zr。
该陶瓷材料不是五种原料粉末的简单烧结,而是通过原位无压烧结获得(Ti1-xNx)3(Si,Al)C2单相粉料,然后通过冷等静压加后续无压烧结获得所需陶瓷连接体,形成的是一种相成分,是一种单相。五种原料粉末中任何一种单独元素都没有合成单相材料的性能,之前研究过Ti与C元素形成TiC,这种材料的抗氧化性能差,在工作中会发生严重氧化,一段时间后基体会全部氧化成氧化物,这会导致氧化膜电阻过大,达不到连接体材料的导电性能要求。而用Ti,Si与C粉末去合成Ti3SiC2材料,该材料氧化后,其表面形成的氧化膜较厚,导电性能较差。用V或者Zr,与Si和C粉末烧结制备不能得到单相,只能形成碳化物与SiC等混合杂相,无法形成单相成分。
进一步的,所述化学式(Ti1-xNx)3(Si,Al)C2中,x=0.01~0.3。
更进一步的,所述化学式(Ti1-xNx)3(Si,Al)C2中,Al掺杂取代3at.%的Si,促进掺杂陶瓷的致密度,提高陶瓷的烧结性能,最后能降低连接体的气体渗透率。
进一步的,所述改性钛硅碳材料的致密度>95%。
更进一步的,所述改性钛硅碳材料在600~800℃温度区间内的氧化速率常数是1.06×10-13g2·cm-4·s-1~5.67×10-13g2·cm-4·s-1,热膨胀系数是(9.0±0.7)×10-6K-1。其热膨胀系数与SOFCs电解质氧化钇稳定的氧化锆(YSZ)的热膨胀系数(10.5×10-6K-1)非常相近,最为突出的特点是在工作时不会产生挥发性产物导致阴极中毒问题。
进一步的,所述改性钛硅碳材料在SOFCs阴极工作环境下,控制氧化温度为800℃,氧化100~700小时后,得到氧化产物为晶态的掺杂金红石TiO2和非晶态SiO2,氧化膜表面平整,氧化膜的氧化层为单层结构,氧化膜厚度≤6μm。
更进一步的,所述改性钛硅碳材料在SOFCs阴极工作环境下,控制氧化温度为800℃,氧化500小时后,材料的面比电阻为62±5mΩ·cm2
进一步的,改性钛硅碳陶瓷材料的制备过程如下:
将高纯Ti粉、V粉(或者Zr粉)、Si粉、Al粉和石墨粉按照设计材料分析式进行混合均匀;
在10~20MPa压力下冷压成型,然后以流动的氩气作为保护气,在1450~℃1600℃无压烧结1小时,将获得的材料粉碎,并用球磨机研磨成不同粒径的粉料。
采用(Ti1-xNx)3(Si,Al)C2粉为原料粉,将粉料置于特制的连接体模具中,在30~50MPa压力下冷压成型,然后利用冷等静压在不同压力(100~300MPa)将坯体再次压制成型,最后将(Ti1-xNx)3(Si,Al)C2坯体分别埋入((Ti1-xNx)3(Si,Al)C2粉、SiC粉或TiC粉中,一同放入烧结炉中,以流动的氩气作为保护气,在1200~1600℃温度下,无压烧结10~120分钟,得到(Ti1-xNx)3(Si,Al)C2连接体。
本发明的有益效果为:
1.采用将(Ti1-xNx)3(Si,Al)C2粉体冷等静压成型,然后无压烧结的方法,直接制备出连接体,制备过程和设备简单,不需要二次加工,生产效率和成品率高,能够极大地推进陶瓷连接体的商业化应用。
2、改性钛硅碳材料的热膨胀系数与SOFCs电解质YSZ的相近,从而可以减少电堆在升降温过程中产生的热应力;
3、改性钛硅碳材料具有较高的致密度(>95%),可以减小在服役过程中出现气体泄漏率;
4、改性钛硅碳材料具有高的热导率,热导率为(19.2±6.3)W·m-1·K-1,高的热导率可以提高固体氧化物燃料电池电堆系统对热量的利用;
5、改性钛硅碳材料具有高的弹性模量,在1050℃温度以下,材料的内耗基本不会增加;
6、N在Ti位置的掺杂能提高钛硅碳陶瓷的氧化后的导电性能,Al在Si位置的掺杂能提高掺杂陶瓷的致密度,减少气体泄漏率,提高陶瓷的烧结性能。
附图说明
图1通过冷等静压加后续无压烧结方法合成制备方法烧结得到的块体改性钛硅碳材料(Ti0.98V0.02)3(Si,Al)C2的表面形貌;
图2为改性钛硅碳材料(Ti0.98V0.02)3(Si,Al)C2在SOFCs阴极工作环境中800℃温度下氧化500小时后的表面形貌;
图3通过冷等静压加后续无压烧结方法合成制备方法烧结得到的块体改性钛硅碳材料(Ti0.85Zr0.15)3(Si,Al)C2的表面形貌。
图4为改性钛硅碳材料(Ti0.85Zr0.15)3(Si,Al)C2在SOFCs阴极工作环境中800℃温度下氧化300小时后的表面形貌。
具体实施方式
下面通过实施例进一步叙述本发明材料。
实施例1
改性钛硅碳材料(Ti0.98V0.02)3(Si,Al)C2,N为V的掺杂,x=0.02时,制备过程如下:
采用Ti,V,Si,Al,C元素粉为合成材料,上述材料粉末按照2.94:0.06:0.97:0.03:2的配比配置原粉料,配好的原料粉用酒精混合放入球磨罐中球磨,球磨时间为30小时,取出过筛;在石墨模具中以12MPa压力冷压成型,放入高温炉中热压合成,合成过程中以流动的氩气作为保护气,在1520℃无压烧结1小时,将获得的材料粉碎,并用球磨机研磨成大约3μm粒径的粉料。
采用(Ti0.98V0.02)3(Si,Al)C2粉为原料粉,将粉料置于特制的连接体模具中,在40MPa压力下冷压成型,然后利用冷等静压在200MPa下将坯体再次压制成型,最后将(Ti0.98V0.02)3(Si,Al)C2坯体埋入(Ti0.98V0.02)3(Si,Al)C2粉中,一同放入烧结炉中,以流动的氩气作为保护气,在1550℃温度下,无压烧结30分钟,得到(Ti0.98V0.02)3(Si,Al)C2连接体。
图1为烧结出的致密(Ti0.95V0.02)3(Si,Al)C2块体的表面形貌。测得该块体材料的致密度为95.5%。从烧结致密的大块材料上用线切割方法切10×10×2mm3的块体试样,然后用600#,800#,1000#最后用2000#SiC砂纸打磨,然后用粒度W=1的抛光膏抛光,最后用酒精超声清洗,以备做氧化实验。氧化实验条件是:气氛为模拟SOFCs阴极环境即空气环境,氧化温度为800℃。
改性钛硅碳材料(Ti0.98V0.02)3(Si,Al)C2在SOFCs阴极工作环境中800℃温度下氧化500小时,图2中反应出改性钛硅碳材料(Ti0.98V0.02)3(Si,Al)C2在SOFCs阴极工作环境800℃氧化500小时后的表面形貌。从图中可以看出,表面生成的氧化膜平整,无块体剥落现象。
本实施例中,(Ti0.98V0.02)3(Si,Al)C2的热膨胀系数是9.0×10-6K-1;在800℃氧化500小时后,800℃时样品的面比电阻为60mΩ·cm2,可用于固体氧化物燃料电池的连接体材料。
实施例2
改性钛硅碳材料(Ti0.8V0.2)3(Si,Al)C2中N为V的掺杂,x=0.2,制备过程如下:
Ti,V,Si,Al,C元素粉为合成材料,上述材料粉末按照2.4:0.6:0.97:0.03:2的配比配置原粉料,配好的原料粉用酒精混合放入球磨罐中球磨,球磨时间为25小时,取出过筛;在石墨模具中以15MPa压力冷压成型,放入高温炉中合成。合成过程中以流动的氩气作为保护气,在1550℃无压烧结1小时,将获得的材料粉碎,并用球磨机研磨成大约2μm粒径的粉料。然后采用(Ti0.8V0.2)3(Si,Al)C2粉为原料粉,将粉料置于特制的连接体模具中,在45MPa压力下冷压成型,然后利用冷等静压在300MPa下将坯体再次压制成型,最后将(Ti0.8V0.2)3(Si,Al)C2坯体埋入TiC粉中,一同放入烧结炉中,以流动的氩气作为保护气,在1580℃温度下,无压烧结50分钟,得到(Ti0.8V0.2)3(Si,Al)C2连接体。
所合成材料的致密度为95.2%。在800℃的氧化动力学常数为:2.53×10-13g2·cm-4·s-1。在800℃氧化200小时后,800℃时样品的面比电阻为56mΩ·cm2,可用于固体氧化物燃料电池的连接体材料。
综合上述实施例,可以看出,与Nb、Ta和W不同,利用V的变价,可以在钛硅碳氧化产物TiO2中产生更多的缺陷,提高TiO2的抗氧化性能,以及准自由电子浓度,增加导电性。
实施例3
改性钛硅碳材料(Ti0.85Zr0.15)3(Si,Al)C2中N为Zr的掺杂,x=0.15,制备过程如下:
采用Ti,Zr,Si,Al,C元素粉为合成材料,上述材料粉末按照2.55:0.45:0.97:0.03:2的配比配置原粉料,配好的原料粉用酒精混合放入球磨罐中球磨,球磨时间为30小时,取出过筛;在石墨模具中以15MPa压力冷压成型,放入高温炉中合成。合成过程中以流动的氩气作为保护气,在1480℃无压烧结1小时,将获得的材料粉碎,并用球磨机研磨成大约3μm粒径的粉料。采用(Ti0.85Zr0.15)3(Si,Al)C2粉为原料粉,将粉料置于特制的连接体模具中,在35MPa压力下冷压成型,然后利用冷等静压在250MPa下将坯体再次压制成型,最后将(Ti0.85Zr0.15)3(Si,Al)C2坯体埋入SiC粉中,一同放入烧结炉中,以流动的氩气作为保护气,在1520℃温度下,无压烧结50分钟,得到(Ti0.85Zr0.15)3(Si,Al)C2连接体。
图3通过冷等静压加后续无压烧结方法合成制备方法烧结得到的块体改性钛硅碳材料(Ti0.85Zr0.15)3(Si,Al)C2的表面形貌。所合成材料的致密度为95.9%。在800℃的氧化动力学常数为:5.24×10-13g2·cm-4·s-1。图4反应出改性钛硅碳材料(Ti0.85Zr0.15)3(Si,Al)C2在SOFCs阴极工作环境800℃氧化300小时后的表面形貌。从图中可以看出,表面生成的氧化膜平整,无块体剥落现象。
在800℃氧化300小时后,800℃时样品的面比电阻为52mΩ·cm2,可用于固体氧化物燃料电池的连接体材料。
实施例4
改性钛硅碳材料(Ti0.7Zr0.3)3(Si,Al)C2中N为Zr的掺杂,x=0.3,制备过程如下:
采用Ti,Zr,Si,Al,C元素粉为合成材料,上述材料粉末按照2.1:0.9:0.97:0.03:2的配比配置原粉料,配好的原料粉用酒精混合放入球磨罐中球磨,球磨时间为30小时,取出过筛;在石墨模具中以15MPa压力冷压成型,放入高温炉中合成。合成过程中以流动的氩气作为保护气,在1600℃无压烧结1小时,将获得的材料粉碎,并用球磨机研磨成大约2μm粒径的粉料。采用(Ti0.7Zr0.3)3(Si,Al)C2粉为原料粉,将粉料置于特制的连接体模具中,在40MPa压力下冷压成型,然后利用冷等静压在300MPa下将坯体再次压制成型,最后将(Ti0.7Zr0.3)3(Si,Al)C2坯体埋入TiC粉中,一同放入烧结炉中,以流动的氩气作为保护气,在1600℃温度下,无压烧结70分钟,得到(Ti0.7Zr0.3)3(Si,Al)C2连接体。测得该块体材料的致密度为96.1%。从烧结致密的大块材料上用线切割方法切10×10×2mm3的块体试样,然后用600#,800#,1000#最后用2000#SiC砂纸打磨,然后用粒度W=1的抛光膏抛光,最后用酒精超声清洗,以备做氧化实验。氧化实验条件是:气氛为模拟SOFCs阴极环境即空气环境,氧化温度为800℃。改性钛硅碳材料(Ti0.7Zr0.3)3(Si,Al)C2在SOFCs阴极工作环境800℃氧化500小时后的表面形貌平整,无块体剥落现象。
本实施例中,(Ti0.7Zr0.3)3(Si,Al)C2的氧化速率常数是4.82×10-13g2·cm-4·s-1,热膨胀系数是9.5×10-6K-1;在800℃氧化300小时后,800℃时样品的面比电阻为57mΩ·cm2,可用于固体氧化物燃料电池的连接体材料。Zr与Ti是同族元素,氧化产物也为4价,虽然不能向Nb、W、Ta和V等让TiO2中产生更多的缺陷,但由于与Ti离子半径的不同,使得TiO2晶格发生畸变,Ti-O键键长发生改变,降低O扩散率,提高TiO2的抗氧化性能,最终提高连接体的导电性能。
本申请中的各组分原料通过上述制备工艺合成单相材料,并且把该种单相材料改性钛硅碳作为固体氧化物燃料电池连接体属本领域中的首例,应用本申请中的生产工艺制备该材料也属于首例。相关研究文献中部分公开本申请中的元素对应的化合物或单粉,由于原料不同、采用不同的制备工艺,在加工时容易形成多种物相混合物或合金,其与本申请中的单相物质属于完全不同的物质形态,材料的最终性能指标截然不同,也无法应用到本申请中的固体氧化物燃料电池连接体领域。
本申请中的V与Zr元素与其余各元素对应的原料组分相互反应,可提高材料的导电性能,化学式中x的取值范围保证了得到单相材料,单相材料的获得是此材料具有各方面优良性能的保证。同时能有效克服原料的大量浪费,避免产物中过多的杂质相影响材料的使用性能。传统的热压烧结法烧结过程复杂,生产效率低,而且加工成本高、效率低、成品率很低的问题。本申请中提出采用将(Ti1-xNx)3(Si,Al)C2粉体冷等静压成型,然后无压烧结的方法,直接制备出(Ti1-xNx)3(Si,Al)C2连接体,制备过程和设备简单,不需要二次加工,生产效率和成品率高,为连接体制备提供新思路,能够极大地推进(Ti1-xNx)3(Si,Al)C2连接体的商业化应用。
该陶瓷材料具有比合金连接体材料较好的性能,如:
(1)较高的抗氧化性能,可以保证其作为连接体具有良好的稳定性,基体材料不被严重氧化;
(2)较高的导电性能,此陶瓷材料的电导率比合金材料高2个数量级,氧化反应后材料表面生成的氧化膜导电性能较好;
(3)热稳定性好,该种单相材料的热分解温度大于1550℃,且抗氧化性良好,这样能保证材料不会在服役期内变性,发生结构失效;
(4)抗蠕变性能高,高的抗蠕变性能,能减少蠕变失效,减少固体氧化物燃料电池各组件之间的热应力;
(5)不需要二次加工,生产效率和成品率高,能减少连接体材料的加工成本。
以上所述并非是对本发明的限制,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明实质范围的前提下,还可以做出若干变化、改型、添加或替换,这些改进和修饰也应视为本发明的保护范围。

Claims (9)

1.一种固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述连接体材料为改性钛硅碳陶瓷材料,所述改性钛硅碳化学式为(Ti1-xNx)3(Si,Al)C2,N为V或Zr,N在Ti位置的掺杂提高钛硅碳陶瓷的抗氧化和导电性能,Al在Si位置的掺杂用于提高致密度并减少气体渗透率,提高陶瓷的烧结性能。
2.根据权利要求1所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述化学式(Ti1-xNx)3(Si,Al)C2中,x=0.01~0.3。
3.根据权利要求1所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述陶瓷连接体材料是通过冷等静压成型,然后无压烧结的方法,直接制备出的连接体,制备过程和设备简单,不需要二次加工,直接烧结制备出流道结构,生产效率和成品率高。
4.根据权利要求2所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述化学式(Ti1-xNx)3(Si,Al)C2中,Al掺杂取代3at.%的Si,促进掺杂陶瓷的致密度减少气体渗透率,提高陶瓷的烧结性能。
5.根据权利要求4所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述改性钛硅碳材料的致密度>95%。
6.根据权利要求4所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述改性钛硅碳材料在600~800℃温度区间内的氧化速率常数是1.06×10-13g2·cm-4·s-1~5.67×10-13g2·cm-4·s-1,热膨胀系数是(9.0±0.7)×10-6K-1
7.根据权利要求4所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述改性钛硅碳材料在SOFCs阴极工作环境下,控制氧化温度为800℃,氧化100~700小时后,得到氧化产物为晶态的掺杂金红石TiO2和非晶态SiO2,氧化膜表面平整,氧化膜的氧化层为单层结构,氧化膜厚度≤6μm。
8.根据权利要求4所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述改性钛硅碳材料在SOFCs阴极工作环境下,控制氧化温度为800℃,氧化500小时后,材料的面比电阻为62±5mΩ·cm2
9.根据权利要求1所述的固体氧化物燃料电池陶瓷连接体材料,其特征在于:所述改性钛硅碳陶瓷材料的制备方法,步骤如下:
将高纯Ti粉、V粉(或者Zr粉)、Si粉、Al粉和石墨粉按照设计材料分子式进行混合均匀;
在10~20MPa压力下冷压成型,然后以流动的氩气作为保护气,在1450℃~1600℃无压烧结1小时,将获得的材料粉碎,并用球磨机研磨成不同粒径的粉料。
采用(Ti1-xNx)3(Si,Al)C2粉为原料粉,将粉料置于特制的连接体模具中,在30~50MPa压力下冷压成型,然后利用冷等静压在不同压力(100~300MPa)将坯体再次压制成型,最后将(Ti1-xNx)3(Si,Al)C2坯体分别埋入((Ti1-xNx)3(Si,Al)C2粉、SiC粉或TiC粉中,一同放入烧结炉中,以流动的氩气作为保护气,在1200~1600℃温度下,无压烧结10~120分钟,得到(Ti1-xNx)3(Si,Al)C2连接体。
CN202310198839.XA 2023-03-03 2023-03-03 一种固体氧化物燃料电池陶瓷连接体材料及其制备方法 Pending CN116178020A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310198839.XA CN116178020A (zh) 2023-03-03 2023-03-03 一种固体氧化物燃料电池陶瓷连接体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310198839.XA CN116178020A (zh) 2023-03-03 2023-03-03 一种固体氧化物燃料电池陶瓷连接体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116178020A true CN116178020A (zh) 2023-05-30

Family

ID=86432536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310198839.XA Pending CN116178020A (zh) 2023-03-03 2023-03-03 一种固体氧化物燃料电池陶瓷连接体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116178020A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826077A (zh) * 2023-08-30 2023-09-29 中石油深圳新能源研究院有限公司 电池连接器的制备方法、电池连接器和电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552662A (zh) * 2003-05-28 2004-12-08 中国科学院金属研究所 一种无TiC杂质的Ti3SiC2材料的制备方法
CN101070247A (zh) * 2006-05-12 2007-11-14 中国科学院金属研究所 一种硅铝碳化钛锆固溶体材料及其制备方法
CN101343183A (zh) * 2007-07-13 2009-01-14 中国科学院金属研究所 碳化锆钛颗粒增强硅铝碳化钛锆基复合材料及其制备方法
CN102117907A (zh) * 2009-12-31 2011-07-06 中国科学院金属研究所 一类用于燃料电池中的固体氧化物燃料电池连接体材料
CN102557638A (zh) * 2010-12-09 2012-07-11 中国科学院金属研究所 锆钛铝硅碳固溶体材料及其制备方法
CN104058749A (zh) * 2013-03-21 2014-09-24 中国科学院宁波材料技术与工程研究所 一种无压烧结制备钛硅碳陶瓷块体材料的方法
CN112209729A (zh) * 2020-09-15 2021-01-12 中国海洋大学 一种基于Ni箔中间层的三元层状陶瓷钛硅碳及其固溶体与铁素体不锈钢的扩散连接方法
CN113555576A (zh) * 2021-06-22 2021-10-26 青岛大学 一种燃料电池金属连接体涂层

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552662A (zh) * 2003-05-28 2004-12-08 中国科学院金属研究所 一种无TiC杂质的Ti3SiC2材料的制备方法
CN101070247A (zh) * 2006-05-12 2007-11-14 中国科学院金属研究所 一种硅铝碳化钛锆固溶体材料及其制备方法
CN101343183A (zh) * 2007-07-13 2009-01-14 中国科学院金属研究所 碳化锆钛颗粒增强硅铝碳化钛锆基复合材料及其制备方法
CN102117907A (zh) * 2009-12-31 2011-07-06 中国科学院金属研究所 一类用于燃料电池中的固体氧化物燃料电池连接体材料
CN102557638A (zh) * 2010-12-09 2012-07-11 中国科学院金属研究所 锆钛铝硅碳固溶体材料及其制备方法
CN104058749A (zh) * 2013-03-21 2014-09-24 中国科学院宁波材料技术与工程研究所 一种无压烧结制备钛硅碳陶瓷块体材料的方法
CN112209729A (zh) * 2020-09-15 2021-01-12 中国海洋大学 一种基于Ni箔中间层的三元层状陶瓷钛硅碳及其固溶体与铁素体不锈钢的扩散连接方法
CN113555576A (zh) * 2021-06-22 2021-10-26 青岛大学 一种燃料电池金属连接体涂层

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE-TIAN WAN ET AL.: "A New Method to Improve the High-Temperature Mechanical Properties of Ti3SiC2by Substituting Ti with Zr, Hf, or Nb", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》》, vol. 93, no. 6, pages 1749 - 1753 *
LE FLEM MARION ET AL.: "Saturation of irradiation damage in (Ti, Zr)3(Si, Al)C2 compounds", 《JOURNAL OF NUCLEAR MATERIALS》, vol. 433, no. 1, pages 534 - 537 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826077A (zh) * 2023-08-30 2023-09-29 中石油深圳新能源研究院有限公司 电池连接器的制备方法、电池连接器和电池

Similar Documents

Publication Publication Date Title
Lv et al. Structure and electrochemical properties of Sm0. 5Sr0. 5Co1− xFexO3− δ cathodes for solid oxide fuel cells
JP5936897B2 (ja) 固体電解質、固体電解質の製造方法、固体電解質積層体及び固体電解質積層体の製造方法及び燃料電池
TWI423857B (zh) 用於固態氧化物燃料電池之連接板的製造方法
CN102117907B (zh) 一类用于燃料电池中的固体氧化物燃料电池连接体材料的制备方法
JP5936898B2 (ja) 固体電解質積層体、固体電解質積層体の製造方法及び燃料電池
CN106884132A (zh) 一种高温热障涂层材料
CN110165292B (zh) 一种改性nasicon型固态电解质片及其制备方法
CN116178020A (zh) 一种固体氧化物燃料电池陶瓷连接体材料及其制备方法
Antunes et al. YSZ/Al2O3 multilayer thick films deposited by spin coating using ceramic suspensions on Al2O3 polycrystalline substrate
CN100519477C (zh) 一种原位热压/固液相反应制备钽铝碳陶瓷的方法
CN103183511B (zh) 三氧化二铝弥散强化钛四铝氮三陶瓷复合材料及制备方法
Li et al. Electrolyte-electrode interface: A key factor for advanced protonic ceramic electrochemical cells
CN107915488B (zh) 一种用于固体氧化物燃料电池连接体的陶瓷材料钛钨硅碳
Suzuki et al. Anisotropic electric conductivity and battery performance in c-axis oriented lanthanum silicate oxyapatite prepared by slip casting in a strong magnetic field
CN116178021A (zh) 一种固体氧化物燃料电池陶瓷连接体材料
CN102557638B (zh) 锆钛铝硅碳固溶体材料及其制备方法
CN111690926B (zh) 热压烧结法制备不锈钢连接体致密Mn-Co尖晶石保护层的方法
CN103326036B (zh) 活性(Mn,Re,Co)3O4尖晶石混合电极材料的制备方法及其在HEMAA的应用
JP2000044340A (ja) ランタンガレート系焼結体およびその製造方法、ならびにそれを固体電解質として用いた燃料電池
CN107879742A (zh) 一种用于固体氧化物燃料电池连接体的陶瓷材料钛钽硅碳
CN113584422A (zh) 质子交换膜燃料电池金属钛双极板表面Ti4O7涂层的制备方法
CN111276705A (zh) 金属支撑型氧化物燃料电池半电池的制备方法
CN103137979A (zh) 中温固体氧化物燃料电池复合阴极及其制备方法
CN110078503B (zh) 一种低温烧结8ysz电解质的方法
Chen et al. Experimental study on effect of compaction pressure on performance of SOFC anodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination