CN116162312A - 一种高分子材料耐磨混凝土输送管道 - Google Patents

一种高分子材料耐磨混凝土输送管道 Download PDF

Info

Publication number
CN116162312A
CN116162312A CN202211672799.XA CN202211672799A CN116162312A CN 116162312 A CN116162312 A CN 116162312A CN 202211672799 A CN202211672799 A CN 202211672799A CN 116162312 A CN116162312 A CN 116162312A
Authority
CN
China
Prior art keywords
high molecular
parts
molecular weight
ultra
weight polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211672799.XA
Other languages
English (en)
Other versions
CN116162312B (zh
Inventor
樊新波
王桂红
何志坚
简忠武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Industry Polytechnic
Original Assignee
Hunan Industry Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Industry Polytechnic filed Critical Hunan Industry Polytechnic
Priority to CN202211672799.XA priority Critical patent/CN116162312B/zh
Publication of CN116162312A publication Critical patent/CN116162312A/zh
Application granted granted Critical
Publication of CN116162312B publication Critical patent/CN116162312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/36Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing nitrogen, e.g. by nitration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本发明涉及高分子材料领域,具体为一种高分子材料耐磨混凝土输送管道,按重量份计包括:离子液体改性超高分子量聚乙烯100‑130份、高密度聚乙烯20‑40份、热致液晶高分子10‑20份、超高分子量聚乙烯纤维10‑30份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯3‑6份、助剂1‑3份,本发明所制备的混凝土输送管道具有较低的摩擦因数,耐磨性能良好,拉伸强度≥43.5MPa,弯曲强度≥66.5MPa。

Description

一种高分子材料耐磨混凝土输送管道
技术领域
本发明涉及高分子材料领域,具体为一种高分子材料耐磨混凝土输送管道。
背景技术
泵送混凝土是用混凝土泵或泵车沿输送管运输和浇筑混凝土拌合物,是一种有效的混凝土拌合物运输方式,具有速度快、效率高,劳动量小等诸多优点,尤其适合于大体积混凝土和高层建筑混凝土的运输和浇筑。
但是在混凝土输送过程中,一方面管道内壁耐磨性差,混凝土骨料颗粒不断冲击管道内壁,对壁面产生严重的冲蚀磨损,造成混凝土输送管道寿命降低,另一方面管道内壁摩擦系数较大,在输送过程中阻力较大,容易引起管道堵塞,影响施工进度。
发明内容
发明目的:针对上述技术问题,本发明提出了一种高分子材料耐磨混凝土输送管道。
所采用的技术方案如下:
一种高分子材料耐磨混凝土输送管道,按重量份计包括:
离子液体改性超高分子量聚乙烯100-130份、高密度聚乙烯20-40份、热致液晶高分子10-20份、超高分子量聚乙烯纤维10-30份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯3-6份、助剂1-3份。
进一步地,按重量份计包括:
离子液体改性超高分子量聚乙烯120份、高密度聚乙烯25份、热致液晶高分子20份、超高分子量聚乙烯纤维20份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯5份、助剂2份。
进一步地,所述离子液体改性超高分子量聚乙烯的制备方法如下:
用γ射线对超高分子量聚乙烯进行辐照后,保护性气体氛围下,加入到离子液体的甲醇溶液中,再加入硫酸,升温至40-50℃反应2-4h,过滤,所得固体用甲醇洗涤后干燥至恒重即可。
进一步地,辐照吸收剂量为50-100kGy。
进一步地,所述离子液体为1-乙烯基-3-丁基咪唑四氟硼酸盐。
进一步地,所述热致液晶高分子为热致液晶高分子Vectra A950。
进一步地,所述超高分子量聚乙烯纤维表面原位生成有纳米SiO2
进一步地,所述超高分子量聚乙烯纤维的制备方法如下:
在40-50℃下,用磷酸对超高分子量聚乙烯纤维进行预处理,处理过的超高分子量聚乙烯纤维水洗后干燥,再浸入无水乙醇、氨水、水组成的混合溶液中,超声振荡20-40min后加入正硅酸乙酯在45-55℃反应5-10h在超高分子量聚乙烯纤维表面原位生成纳米SiO2
进一步地,所述助剂包括抗氧剂和润滑剂;
所述抗氧剂为抗氧剂1010和/或抗氧剂264;
所述润滑剂为油酸酰胺、芥酸酰胺、N-亚乙基双硬脂酸酰胺中的任意一种或多种组合。
本发明的有益效果:
本发明提供了一种高分子材料耐磨混凝土输送管道,超高分子量聚乙烯虽然其分子结构排列与普通聚乙烯完全相同,但由于其具有非常高的相对分子量(普通聚乙烯的相对分子量仅为2-3万,而超高分子量聚乙烯一般在150万以上)和高度缠结的结构,则赋予其优异的综合性能,是一种性能非常优异的新型工程塑料,高密度聚乙烯作为低熔点、低黏度的聚合物,能够与超高分子量聚乙烯混合形成共混体系,提高其蠕变性能和加工性能,热致液晶高分子的分子链为棒状刚性链或半刚性链的结构,这种刚性链的大分子具有较长的松弛时间,在熔融加工过程中,可沿流动方向充分高度取向排列,冷却固化后这种刚性增强相被保持下来,不仅可以提高超高分子量聚乙烯的加工性能,而且拉伸强度、弯曲强度和耐磨性也有较大提高,离子液体对超高分子量聚乙烯进行改性后表现出更为优异的减摩抗磨性能,这可能归因于稳定摩擦所形成的化学反应膜,在超高分子量聚乙烯纤维表面原位生成有纳米SiO2,相比于将纳米SiO2作为填料直接加入,具有更好的分散性,而且超高分子量聚乙烯纤维表面原位生成的纳米SiO2与超高分子量聚乙烯具有良好的界面作用,结合力强,本发明所制备的高分子材料耐磨混凝土输送管道具有较低的摩擦因数,耐磨性能良好,拉伸强度≥43.5MPa,弯曲强度≥66.5MPa。
附图说明
图1为本发明实施例1所制备试样经过摩擦磨损实验后表面的SEM图。
图2为本发明对比例1所制备试样经过摩擦磨损实验后表面的SEM图。
具体实施方式
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。本发明未提及的技术均参照现有技术。
实施例1:
一种高分子材料耐磨混凝土输送管道,按重量份计包括:
离子液体改性超高分子量聚乙烯120份、高密度聚乙烯25份、热致液晶高分子Vectra A950 20份、超高分子量聚乙烯纤维20份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯5份、N-亚乙基双硬脂酸酰胺1.5份、抗氧剂1010 0.5份。
其中,离子液体改性超高分子量聚乙烯的制备方法如下:
取超高分子量聚乙烯粉末150g,用γ射线进行辐照,辐照吸收剂量为80kGy,在氮气保护下,加入到1-乙烯基-3-丁基咪唑四氟硼酸盐的甲醇溶液中(m1-乙烯基-3-丁基咪唑四氟硼酸盐=15g,m甲醇=500g),再加入10mL 1mol/L硫酸,升温至50℃反应4h,过滤,所得固体用甲醇洗涤后60℃干燥至恒重即可。
超高分子量聚乙烯纤维的制备方法如下:
在50℃下,取50g超高分子量聚乙烯纤维,用200mL 20%磷酸对其进行预处理,时间为30min,将处理过的超高分子量聚乙烯纤维水洗后干燥,再浸入由400mL无水乙醇、25mL氨水、66mL水组成的混合溶液中,超声振荡30min后加入120g正硅酸乙酯在505℃反应8h在超高分子量聚乙烯纤维表面原位生成纳米SiO2
上述高分子材料耐磨混凝土输送管道的制备方法如下:
将离子液体改性超高分子量聚乙烯、高密度聚乙烯、热致液晶高分子VectraA950、超高分子量聚乙烯纤维、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯、N-亚乙基双硬脂酸酰胺、抗氧剂1010加入搅拌机内混合均匀,将所得混合料加入双螺杆挤出机中,在螺杆的作用下将混合物输送到加料段,经塑化、挤出成型、定型冷却、牵引、切割,制成管道,其中,塑化的温度控制在200-220℃,挤出成型的温度控制在240-260℃,定型冷却阶段采用水冷却的方式进行冷却,冷却温度控制在80-100℃。
实施例2:
一种高分子材料耐磨混凝土输送管道,按重量份计包括:
离子液体改性超高分子量聚乙烯130份、高密度聚乙烯40份、热致液晶高分子Vectra A950 20份、超高分子量聚乙烯纤维30份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯6份、N-亚乙基双硬脂酸酰胺1.5份、抗氧剂1010 0.5份。
其中,离子液体改性超高分子量聚乙烯、超高分子量聚乙烯纤维的制备方法同实施例1。
实施例3:
一种高分子材料耐磨混凝土输送管道,按重量份计包括:
离子液体改性超高分子量聚乙烯100份、高密度聚乙烯20份、热致液晶高分子Vectra A950 10份、超高分子量聚乙烯纤维10份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯3份、N-亚乙基双硬脂酸酰胺1.5份、抗氧剂1010 0.5份。
其中,离子液体改性超高分子量聚乙烯和超高分子量聚乙烯纤维的制备方法同实施例1。
实施例4:
一种高分子材料耐磨混凝土输送管道,按重量份计包括:
离子液体改性超高分子量聚乙烯130份、高密度聚乙烯20份、热致液晶高分子Vectra A950 20份、超高分子量聚乙烯纤维10份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯6份、N-亚乙基双硬脂酸酰胺1.5份、抗氧剂1010 0.5份。
其中,离子液体改性超高分子量聚乙烯和超高分子量聚乙烯纤维的制备方法同实施例1。
实施例5:
一种高分子材料耐磨混凝土输送管道,按重量份计包括:
离子液体改性超高分子量聚乙烯100份、高密度聚乙烯40份、热致液晶高分子Vectra A950 10份、超高分子量聚乙烯纤维30份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯3份、N-亚乙基双硬脂酸酰胺1.5份、抗氧剂1010 0.5份。
其中,离子液体改性超高分子量聚乙烯和超高分子量聚乙烯纤维的制备方法同实施例1。
对比例1:
与实施例1基本相同,区别在于,超高分子量聚乙烯不经过离子液体改性。
对比例2:
与实施例1基本相同,区别在于,直接加入超高分子量聚乙烯纤维,不在其表面原位生成纳米SiO2
对比例3:
与实施例1基本相同,区别在于,不加入热致液晶高分子Vectra A950。
性能测试:
将本发明实施例1-5及对比例1-3中的高分子材料耐磨混凝土输送管道制备成用于检测性能的规则试样;
其中,摩擦磨损实验在UMT-5型球盘式摩擦磨损试验机上进行,上试样为直径为9mm的GCr15钢球,下试样为所制备的规则试样,每次实验前,需要对上下试样用丙酮进行清洗以除去表面的杂质。摩擦实验条件为:载荷50N,振幅0.5cm,频率2Hz,测试时间20min;
弯曲性能测试按照GB/T9341-2008进行,试样长度为(80±0.5)mm,宽度为(10.0±0.5)mm,厚为(4.0±0.5)mm,试样跨距为64mm,弯曲速率为10mm/min;
拉伸实验按照GB/T1040.2/1A-2006进行,(80±0.5)mm,宽度为(10.0±0.5)mm,厚为(4.0±0.5)mm的哑铃型,试样标距为25mm,拉伸速率为50mm/min;
测试结果如下表1所示:
表1:
Figure BDA0004016289780000071
由上表1可知,本发明所制备的高分子材料耐磨混凝土输送管道具有较低的摩擦因数,耐磨性能良好,拉伸强度≥43.5MPa,弯曲强度≥66.5MPa。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种高分子材料耐磨混凝土输送管道,其特征在于,按重量份计包括:
离子液体改性超高分子量聚乙烯100-130份、高密度聚乙烯20-40份、热致液晶高分子10-20份、超高分子量聚乙烯纤维10-30份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯3-6份、助剂1-3份。
2.如权利要求1所述的高分子材料耐磨混凝土输送管道,其特征在于,按重量份计包括:
离子液体改性超高分子量聚乙烯120份、高密度聚乙烯25份、热致液晶高分子20份、超高分子量聚乙烯纤维20份、高密度聚乙烯接枝甲基丙烯酸缩水甘油酯5份、助剂2份。
3.如权利要求1所述的高分子材料耐磨混凝土输送管道,其特征在于,所述离子液体改性超高分子量聚乙烯的制备方法如下:
用γ射线对超高分子量聚乙烯进行辐照后,保护性气体氛围下,加入到离子液体的甲醇溶液中,再加入硫酸,升温至40-50℃反应2-4h,过滤,所得固体用甲醇洗涤后干燥至恒重即可。
4.如权利要求3所述的高分子材料耐磨混凝土输送管道,其特征在于,辐照吸收剂量为50-100kGy。
5.如权利要求3所述的高分子材料耐磨混凝土输送管道,其特征在于,所述离子液体为1-乙烯基-3-丁基咪唑四氟硼酸盐。
6.如权利要求1所述的高分子材料耐磨混凝土输送管道,其特征在于,所述热致液晶高分子为热致液晶高分子Vectra A950。
7.如权利要求1所述的高分子材料耐磨混凝土输送管道,其特征在于,所述超高分子量聚乙烯纤维表面原位生成有纳米SiO2
8.如权利要求7所述的高分子材料耐磨混凝土输送管道,其特征在于,所述超高分子量聚乙烯纤维的制备方法如下:
在40-50℃下,用磷酸对超高分子量聚乙烯纤维进行预处理,处理过的超高分子量聚乙烯纤维水洗后干燥,再浸入无水乙醇、氨水、水组成的混合溶液中,超声振荡20-40min后加入正硅酸乙酯在45-55℃反应5-10h在超高分子量聚乙烯纤维表面原位生成纳米SiO2
9.如权利要求1所述的高分子材料耐磨混凝土输送管道,其特征在于,所述助剂包括抗氧剂和润滑剂;
所述抗氧剂为抗氧剂1010和/或抗氧剂264;
所述润滑剂为油酸酰胺、芥酸酰胺、N-亚乙基双硬脂酸酰胺中的任意一种或多种组合。
CN202211672799.XA 2022-12-26 2022-12-26 一种高分子材料耐磨混凝土输送管道 Active CN116162312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211672799.XA CN116162312B (zh) 2022-12-26 2022-12-26 一种高分子材料耐磨混凝土输送管道

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211672799.XA CN116162312B (zh) 2022-12-26 2022-12-26 一种高分子材料耐磨混凝土输送管道

Publications (2)

Publication Number Publication Date
CN116162312A true CN116162312A (zh) 2023-05-26
CN116162312B CN116162312B (zh) 2024-05-03

Family

ID=86414040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211672799.XA Active CN116162312B (zh) 2022-12-26 2022-12-26 一种高分子材料耐磨混凝土输送管道

Country Status (1)

Country Link
CN (1) CN116162312B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024574A1 (en) * 1992-05-29 1993-12-09 Neste Oy Liquid crystal polymer blends, process for the preparation thereof and products manufactured from the blends
CN1986639A (zh) * 2005-12-23 2007-06-27 中国科学院化学研究所 一种热塑性树脂基复合材料及其制备方法
US20080027231A1 (en) * 2004-07-23 2008-01-31 Sigma-Aldrich Co. High stability diionic liquid salts
CN101161727A (zh) * 2006-10-11 2008-04-16 中国科学院化学研究所 一种聚砜/热致液晶聚合物/刚性填料的复合材料及其制备方法
US20100286314A1 (en) * 2007-12-05 2010-11-11 The Research Foundation Of State University Of New York Polyolefin nanocomposites with functional ionic liquids and carbon nanofillers
JP2011213862A (ja) * 2010-03-31 2011-10-27 Kuraray Co Ltd イオン伝導性硬化性組成物
CN105175342A (zh) * 2015-10-14 2015-12-23 大连工业大学 一种离子液体及其均相改性芦苇增强pe复合材料的方法
CN106317553A (zh) * 2016-08-14 2017-01-11 安徽理工大学 高强度导爆管及其制备方法
US20170015794A1 (en) * 2014-03-12 2017-01-19 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
CN107338094A (zh) * 2017-06-22 2017-11-10 中国科学院兰州化学物理研究所 一种适用于水润滑的超高分子量聚乙烯多元纳米复合材料
CN109054156A (zh) * 2018-07-19 2018-12-21 佛山市高明区爪和新材料科技有限公司 一种高耐热高强度塑料母料的制备方法
US20190194431A1 (en) * 2017-12-14 2019-06-27 Asahi Kasei Kabushiki Kaisha Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber
CN110041631A (zh) * 2019-05-11 2019-07-23 王德秀 一种改性的耐磨塑料及其制备方法
CN110078996A (zh) * 2019-04-30 2019-08-02 杭州久阳塑胶管业有限公司 煤矿用自润滑型高密度聚乙烯管材及其制备方法
WO2020065842A1 (ja) * 2018-09-27 2020-04-02 東洋紡株式会社 ポリエチレン繊維、およびそれを用いた製品
JP2021066784A (ja) * 2019-10-21 2021-04-30 長瀬産業株式会社 樹脂組成物
CN113024736A (zh) * 2021-03-17 2021-06-25 广州鹿山新材料股份有限公司 离子型抗静电聚乙烯接枝物及其制备方法
CN113444305A (zh) * 2020-03-27 2021-09-28 福建纳川管业科技有限责任公司 一种uhmwpe基复合挤出管材及其制备方法
CN113831648A (zh) * 2021-11-08 2021-12-24 重庆会通科技有限公司 一种超高分子量聚乙烯增强聚丙烯复合材料及其制备方法
WO2022014391A1 (ja) * 2020-07-13 2022-01-20 東洋紡株式会社 ポリエチレン繊維および該繊維を含む製品

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024574A1 (en) * 1992-05-29 1993-12-09 Neste Oy Liquid crystal polymer blends, process for the preparation thereof and products manufactured from the blends
US20080027231A1 (en) * 2004-07-23 2008-01-31 Sigma-Aldrich Co. High stability diionic liquid salts
CN1986639A (zh) * 2005-12-23 2007-06-27 中国科学院化学研究所 一种热塑性树脂基复合材料及其制备方法
CN101161727A (zh) * 2006-10-11 2008-04-16 中国科学院化学研究所 一种聚砜/热致液晶聚合物/刚性填料的复合材料及其制备方法
US20100286314A1 (en) * 2007-12-05 2010-11-11 The Research Foundation Of State University Of New York Polyolefin nanocomposites with functional ionic liquids and carbon nanofillers
JP2011213862A (ja) * 2010-03-31 2011-10-27 Kuraray Co Ltd イオン伝導性硬化性組成物
US20170015794A1 (en) * 2014-03-12 2017-01-19 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
CN105175342A (zh) * 2015-10-14 2015-12-23 大连工业大学 一种离子液体及其均相改性芦苇增强pe复合材料的方法
CN106317553A (zh) * 2016-08-14 2017-01-11 安徽理工大学 高强度导爆管及其制备方法
CN107338094A (zh) * 2017-06-22 2017-11-10 中国科学院兰州化学物理研究所 一种适用于水润滑的超高分子量聚乙烯多元纳米复合材料
US20190194431A1 (en) * 2017-12-14 2019-06-27 Asahi Kasei Kabushiki Kaisha Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber
CN109054156A (zh) * 2018-07-19 2018-12-21 佛山市高明区爪和新材料科技有限公司 一种高耐热高强度塑料母料的制备方法
WO2020065842A1 (ja) * 2018-09-27 2020-04-02 東洋紡株式会社 ポリエチレン繊維、およびそれを用いた製品
CN110078996A (zh) * 2019-04-30 2019-08-02 杭州久阳塑胶管业有限公司 煤矿用自润滑型高密度聚乙烯管材及其制备方法
CN110041631A (zh) * 2019-05-11 2019-07-23 王德秀 一种改性的耐磨塑料及其制备方法
JP2021066784A (ja) * 2019-10-21 2021-04-30 長瀬産業株式会社 樹脂組成物
CN113444305A (zh) * 2020-03-27 2021-09-28 福建纳川管业科技有限责任公司 一种uhmwpe基复合挤出管材及其制备方法
WO2022014391A1 (ja) * 2020-07-13 2022-01-20 東洋紡株式会社 ポリエチレン繊維および該繊維を含む製品
CN113024736A (zh) * 2021-03-17 2021-06-25 广州鹿山新材料股份有限公司 离子型抗静电聚乙烯接枝物及其制备方法
CN113831648A (zh) * 2021-11-08 2021-12-24 重庆会通科技有限公司 一种超高分子量聚乙烯增强聚丙烯复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TENG-HUI WANG ETAL.: ""Structural Reorganization of Imidazolium Ionic Liquids Induced by Pressure-Enhanced Ionic Liquid-Polyethylene Oxide Interactions"", 《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》, no. 22, 19 January 2021 (2021-01-19), pages 1 - 16 *

Also Published As

Publication number Publication date
CN116162312B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
Xiong et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method
Wu et al. Effect of a vinyl ester-carbon nanotubes sizing agent on interfacial properties of carbon fibers reinforced unsaturated polyester composites
Maadani et al. Studying the corrosion protection behavior of an epoxy composite coating reinforced with functionalized graphene oxide by second and fourth generations of poly (amidoamine) dendrimers (GO-PAMAM-2, 4)
Wu et al. The reinforcing effect of polydopamine functionalized graphene nanoplatelets on the mechanical properties of epoxy resins at cryogenic temperature
JP2010513212A (ja) 新規なプロッパント用コーティング組成物及びその製造方法
Xiao et al. Enhancing the thermal and mechanical properties of epoxy resins by addition of a hyperbranched aromatic polyamide grown on microcrystalline cellulose fibers
Ma et al. Interfacial enhancement of carbon fiber composites by generation 1–3 dendritic hexamethylenetetramine functionalization
JP2014101401A (ja) 多層カーボンナノチューブを含むポリアミド樹脂組成物
US20100243965A1 (en) Process for preparing a thermosetting composite material with a high nanotube content
Wang et al. Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites
EP2308807A1 (en) Shrinkage-reducing agent for hydraulic material and shrinkage reducing agent composition for hydraulic material
FR2967417A1 (fr) Melange maitre de nanotubes de carbone et de durcisseur pour les resines thermodurcissables
CN104788930A (zh) 超韧pc/abs合金及其制备方法
Jamshidi et al. Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flexible diamine
KR20170026741A (ko) 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법
Wu et al. Chemically grafting carbon nanotubes onto carbon fibers by poly (acryloyl chloride) for enhancing interfacial strength in carbon fiber/unsaturated polyester composites
Yang et al. Polystyrene/attapulgite nanocomposites prepared via in situ suspension polymerization with redox initiation system
Zhong et al. Graphitic carbon nanofiber (GCNF)/polymer materials. II. GCNF/epoxy monoliths using reactive oxydianiline linker molecules and the effect of nanofiber reinforcement on curing conditions
Vasileva Dencheva et al. Dually reinforced all‐polyamide laminate composites via microencapsulation strategy
Bakar et al. Synergistic effects of thermoplastic and nanoclay on the performance properties and morphology of epoxy resin
CN116162312B (zh) 一种高分子材料耐磨混凝土输送管道
CN114736584A (zh) 一种耐腐蚀酚醛树脂涂料及其制备方法
Men et al. On use of polyvinylpyrrolidone to modify polyethylene fibers for improving tensile properties of high strength ECC
KR102292413B1 (ko) 향상된 마찰 부착강도를 가지는 실리카 나노 입자 코팅 탄소섬유를 포함하는 시멘트 페이스트 조성물
Zhou et al. Tribological properties of differently shaped zinc‐based metal‐organic framework particles reinforced epoxy resin composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant