CN116159561A - 一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法 - Google Patents

一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法 Download PDF

Info

Publication number
CN116159561A
CN116159561A CN202310199944.5A CN202310199944A CN116159561A CN 116159561 A CN116159561 A CN 116159561A CN 202310199944 A CN202310199944 A CN 202310199944A CN 116159561 A CN116159561 A CN 116159561A
Authority
CN
China
Prior art keywords
ammonia borane
cufeco
ternary metal
nano catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310199944.5A
Other languages
English (en)
Inventor
谭双陵
黎四芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202310199944.5A priority Critical patent/CN116159561A/zh
Publication of CN116159561A publication Critical patent/CN116159561A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,涉及储氢材料及催化剂的制备技术领域。将聚乙烯吡咯烷酮溶解于去离子水中,加入氧化石墨烯形成分散液,再将二水合氯化铜、四水合氯化亚铁和六水合氯化钴的水溶液加入到该分散液中,混合均匀后加入硼氢化钠和氨硼烷在15℃~35℃下进行还原反应1~5h,然后将所得混合物离心、洗涤、再离心,最后经冷冻干燥得到三元金属CuFeCo纳米催化剂。本发明制得的三元金属CuFeCo纳米催化剂对氨硼烷水解脱氢反应具有较高的催化活性,并且催化剂重复使用稳定性良好。

Description

一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂 的制备方法
技术领域
本发明涉及储氢材料及催化剂的制备技术领域,尤其涉及一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法。
背景技术
近年来,在工业化进程中,煤、石油等化石能源不可避免的大量消耗,它们的不可再生性导致的能源短缺和使用附带的污染问题日益严重。而随着社会发展对能源的需求量仍在不断增加,这使得高效清洁的能源开发显得更加重要。氢能作为一种清洁、高效和可再生的能源,被认为是化石能源的理想替代和21世纪最具发展潜力的二次清洁能源。
然而,大量氢气的储存和运输问题是制约氢能大规模应用的重大制约因素。高压气态储氢即使在50MPa的高压下,储氢密度只有40g/L,不仅储氢密度较小,而且成本高,存在安全问题。低温液态储氢虽然储氢密度比高压气态储氢有所增加,达到71g/L,但需要在-240℃、1.3MPa的条件下,极其苛刻。相比于上述物理储氢,化学储氢具有较大的储氢量,其中氨硼烷具有储氢密度大(152.9g/L)、释放氢气的条件温和、无毒以及常温下为稳定的固体而易于储运等特点成为最有前景的储氢材料之一。氨硼烷在合适的催化剂作用下,在常温下进行水解即可以释放3个当量的氢气。
氨硼烷水解脱氢反应的催化剂按所含金属种类可分为单金属与多元金属体系,其中单金属催化剂中贵金属的催化活性较好;非贵金属成本低、资源丰富,但活性普遍较弱;单金属催化剂易团聚,易氧化,催化活性较低,性能不稳定;多元金属体系活性普遍有所提升,含贵金属的催化剂活性更高,但是使用贵金属成本较高。
中国专利CN 113522288 B公开以P-Cu-Co-3O-4@C为催化剂,用于氨硼烷水解脱氢,其表观活化能为38.31kJ/mol,经过5次循环催化反应后,催化活性就降至68%,稳定性较差。中国专利CN 113083325 A公开以Ru(1-x)Cox/P25为催化剂,用于氨硼烷水解脱氢,贵金属Ru价格昂贵,催化剂成本很高。中国专利CN 113522312 A公开以Ru-Fe-Co合金为催化剂,用于氨硼烷水解脱氢,同样贵金属Ru价格昂贵,催化剂成本很高。上述催化剂在制备过程中温度较高,存在安全隐患,使用了贵金属的催化剂在成本上过高,并且催化剂的循环稳定性较差。
发明内容
本发明的目的在于解决现有技术中的上述问题,提供一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,操作简单安全,成本低廉,具有良好重复使用的稳定性。
为达到上述目的,本发明采用如下技术方案:
一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法:在室温下将聚乙烯吡咯烷酮溶解于去离子水中,加入氧化石墨烯形成分散液,再将二水合氯化铜、四水合氯化亚铁和六水合氯化钴的水溶液加入到该分散液中,混合均匀后加入硼氢化钠和氨硼烷在15℃~35℃下进行还原反应1~5h,然后将所得混合物离心、洗涤、再离心,最后经冷冻干燥得到三元金属CuFeCo纳米催化剂。
所述聚乙烯吡咯烷酮的重均分子量为44000~54000,商品规格为K30;
所述聚乙烯吡咯烷酮的用量为二水合氯化铜质量的10%~200%;
所述氧化石墨烯使用量为二水合氯化铜质量50%~200%;
所述四水合氯化亚铁、六水合氯化钴和二水合氯化铜的摩尔比为0.5~3.5:0.5~3.5:1;
所述硼氢化钠的摩尔数与二水合氯化铜、四水合氯化亚铁和六水合氯化钴的总摩尔数之比为0.2~5:1;
所述氨硼烷的摩尔数与二水合氯化铜、四水合氯化亚铁和六水合氯化钴的总摩尔数之比为5~15:1。
催化剂对氨硼烷水解脱氢的催化活性用转换频率(TOF)表示:
Figure BDA0004108824840000021
式中,nmetal为催化剂中金属的总摩尔数,t为水解反应时间,
Figure BDA0004108824840000022
为放出的氢气的摩尔数。
相对于现有技术,本发明技术方案取得的有益效果是:
1、本发明所使用的非贵金属盐二水合氯化铜、四水合氯化亚铁和六水合氯化钴廉价易得,催化剂成本较低。
2、本发明中,聚乙烯比咯烷酮具有优异的分散性能和胶体保护作用,也可以络合金属离子,氧化石墨烯可负载固定金属纳米粒子,它们使得金属纳米粒子的分散性均匀、不会发生团聚,既提高了催化活性,又使催化剂具有良好的重复使用稳定性。
附图说明
图1为三元金属CuFeCo纳米催化剂催化氨硼烷水解脱氢放出的氢气体积(Vgas)与时间(t)的关系图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明做进一步详细说明。
实施例1
向一个置于超声仪中的25mL两颈烧瓶中加入10mL去离子水和5mg聚乙烯吡咯烷酮,开启超声搅拌,待聚乙烯吡咯烷酮全部溶解后,加入10mg氧化石墨烯,继续超声搅拌1小时,分散均匀后加入由6.8mg(0.04mmol)CuCl2·2H2O、7.9mg(0.04mmol)FeCl2·4H2O与28.5mg(0.12mmol)CoCl2·6H2O溶于5mL去离子水而组成的水溶液,继续超声搅拌1h,充分混合均匀后,加入5mg(0.13mmol)硼氢化钠和51mg(1.65mmol)氨硼烷,在25℃下进行还原反应2h。然后,将所得混合物离心(离心机转速为8000r/min)、去掉上层清液,加10mL去离子水洗涤、再离心,重复3次。最后,将所得混合物在-20℃、-0.1MPa下冷冻干燥12h,即得三元金属CuFeCo纳米催化剂,金属纳米粒子平均粒径8nm,通过电感耦合等离子体质谱(ICP-MS)测得所得催化剂中三种金属的摩尔比为Cu:Fe:Co=0.2:0.2:0.6。
采用排水集气法测定该催化剂催化氨硼烷水解脱氢的性能。结果表明,在25℃下该催化剂对氨硼烷水解脱氢的催化活性(TOF)为30.12molH2mol-1min-1。改变氨硼烷水解反应的温度(20℃、25℃、30℃和35℃),采用排水集气法测定该催化剂催化氨硼烷水解脱氢性能,根据Arrhenius公式,得到该催化反应活化能为26.6kJ/mol。
实施例2
测试实施例1中三元金属CuFeCo纳米催化剂重复使用的稳定性。利用排水法集气法监测氨硼烷水解反应期间释放的氢气体积。测试在带有磁力搅拌的25m双颈烧瓶中进行。双颈烧瓶的一个颈部连接气体滴瓶,便于测量氢气释放量,另一颈部连接恒压漏斗。将20mg氨硼烷和5mg催化剂加入双颈烧瓶中,将5mL去离子水从恒压漏斗迅速注入双颈烧瓶中,记录放出的氢气量。当氢气释放完毕后,再称取20mg氨硼烷溶于1mL去离子水中,注入双颈烧瓶中,进行该催化剂的第二次催化氨硼烷水解释氢,记录放出的氢气量。重复上述步骤直到第10次,结果见图1,在催化剂重复使用10次后催化剂仍保留初始催化活性的90%以上,表明该催化剂具有良好的重复使用稳定性。
实施例3
反应装置和操作方法同实施例1。其不同在于氧化石墨烯的加入量为5mg。结果表明,该催化剂在25℃下对氨硼烷水解脱氢的催化活性(TOF)为28.3molH2mol-1min-1
对比例1
反应装置和操作方法同实施例1。其不同之处在于本例中不添加氧化石墨烯。结果表明,所得催化剂在25℃下对氨硼烷水解脱氢的催化活性(TOF)为23.5molH2mol-1min-1
对比例2
反应装置和操作方法同实施例1。其不同之处在于本例中不添加聚乙烯吡咯烷酮。结果表明,所得催化剂在25℃下对氨硼烷水解脱氢的催化活性(TOF)为19.8molH2mol-1min-1
对比例3
反应装置和操作方法同实施例1。其不同之处在于本例中不添加聚乙烯吡咯烷酮和氧化石墨烯。结果表明,所得催化剂在25℃下对氨硼烷水解脱氢的催化活性(TOF)为9.6molH2mol-1min-1

Claims (7)

1.一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:将聚乙烯吡咯烷酮溶解于去离子水中,加入氧化石墨烯形成分散液,再将二水合氯化铜、四水合氯化亚铁和六水合氯化钴的水溶液加入到该分散液中,混合均匀后加入硼氢化钠和氨硼烷在15℃~35℃下进行还原反应1~5h,然后将所得混合物离心、洗涤、再离心,最后经冷冻干燥得到三元金属CuFeCo纳米催化剂。
2.如权利要求1所述的一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:所述聚乙烯吡咯烷酮的重均分子量为44000~54000。
3.如权利要求1所述的一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:所述聚乙烯吡咯烷酮的用量为二水合氯化铜质量的10%~200%。
4.如权利要求1所述的一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:所述氧化石墨烯的用量为二水合氯化铜质量的50%~200%。
5.如权利要求1所述的一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:所述四水合氯化亚铁、六水合氯化钴和二水合氯化铜的摩尔比为0.5~3.5:0.5~3.5:1。
6.如权利要求1所述的一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:所述硼氢化钠的摩尔数与二水合氯化铜、四水合氯化亚铁和六水合氯化钴的总摩尔数之比为0.2~5:1。
7.如权利要求1所述的一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法,其特征在于:所述氨硼烷的摩尔数与二水合氯化铜、四水合氯化亚铁和六水合氯化钴的总摩尔数之比为5~15:1。
CN202310199944.5A 2023-03-03 2023-03-03 一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法 Pending CN116159561A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310199944.5A CN116159561A (zh) 2023-03-03 2023-03-03 一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310199944.5A CN116159561A (zh) 2023-03-03 2023-03-03 一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN116159561A true CN116159561A (zh) 2023-05-26

Family

ID=86416277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310199944.5A Pending CN116159561A (zh) 2023-03-03 2023-03-03 一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN116159561A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500377A (zh) * 2011-11-01 2012-06-20 南开大学 一种催化氨硼烷水解的二元过渡金属催化剂的制备方法
CN103990465A (zh) * 2014-06-17 2014-08-20 江西师范大学 一种用于氨硼烷水解制氢的Ni-CeO2@graphene复合纳米催化剂及其制备方法
CN104888853A (zh) * 2015-04-17 2015-09-09 郑州大学 一种石墨烯负载PVP稳定纳米Ru催化剂、制备方法及其用途
CN106824211A (zh) * 2017-01-04 2017-06-13 安徽师范大学 石墨烯负载铜镍/氧化铈纳米复合材料、制备方法以及氨硼烷催化分解方法
CN114210343A (zh) * 2022-01-24 2022-03-22 桂林电子科技大学 一种还原氧化石墨烯负载Ru-Ni双金属纳米团簇催化材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500377A (zh) * 2011-11-01 2012-06-20 南开大学 一种催化氨硼烷水解的二元过渡金属催化剂的制备方法
CN103990465A (zh) * 2014-06-17 2014-08-20 江西师范大学 一种用于氨硼烷水解制氢的Ni-CeO2@graphene复合纳米催化剂及其制备方法
CN104888853A (zh) * 2015-04-17 2015-09-09 郑州大学 一种石墨烯负载PVP稳定纳米Ru催化剂、制备方法及其用途
CN106824211A (zh) * 2017-01-04 2017-06-13 安徽师范大学 石墨烯负载铜镍/氧化铈纳米复合材料、制备方法以及氨硼烷催化分解方法
CN114210343A (zh) * 2022-01-24 2022-03-22 桂林电子科技大学 一种还原氧化石墨烯负载Ru-Ni双金属纳米团簇催化材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANGYUAN QIU ET AL.: "Synthesis of rGO supported Cu@FeCo catalyst and catalytic hydrolysis of ammonia borane", 《RSC ADVANCES》, vol. 13, pages 632 *
JUN-MIN YAN ET AL.: "Rapid and energy-efficient synthesis of a graphene–CuCo hybrid as a high performance catalyst", 《JOURNAL OF MATERIALS CHEMISTRY》, vol. 22, no. 22, pages 10990 - 10993 *
YAN LI ET AL.: "Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 45, pages 10433 - 10441, XP086088955, DOI: 10.1016/j.ijhydene.2019.06.075 *

Similar Documents

Publication Publication Date Title
Luo et al. Highly efficient and selective Co@ ZIF‐8 nanocatalyst for hydrogen release from sodium borohydride hydrolysis
Wu et al. Metal-catalyzed hydrolysis of ammonia borane: Mechanism, catalysts, and challenges
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN108126695B (zh) 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
CN107159176B (zh) 一种基于镍纳米颗粒助催化剂的光催化体系的构建方法
CN108160072A (zh) 一种用于氨分解制氢的氧化镁载钌催化剂及其制备和应用
CN113522263B (zh) 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
CN111167495A (zh) 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法
CN112844427A (zh) 一种Co-B-P-O纳米粒子负载还原氧化石墨烯复合材料及其制备方法和应用
Qiu et al. Hydrogen generation from ammonia borane hydrolysis catalyzed by ruthenium nanoparticles supported on Co–Ni layered double oxides
CN113275019A (zh) 磁性镍钴氧化物负载金催化剂及其制备方法和应用、2,5-呋喃二甲酸的制备方法
CN113042086A (zh) 一种氨基功能化碳纳米管负载NiAuPd纳米催化剂的原位制备方法及应用
Duman et al. Innovative hydrogen release from sodium borohydride hydrolysis using biocatalyst-like Fe2O3 nanoparticles impregnated on Bacillus simplex bacteria
US10688474B2 (en) Catalyst for dehydrogenation reaction of formate and hydrogenation reaction of bicarbonate and preparation method thereof
CN114471646A (zh) 一种在碳化钛表面负载单原子铁系金属的制备方法及其应用
Jiang et al. Hierarchically porous CoP@ CNR nanorod derived from metal-organic frameworks as noble-metal-free catalyst for dehydrogenization of ammonia-borane
Karami et al. Cobalt ferrite nanoparticles anchored on reduced graphene oxide nanoribbons (0D/1D CoFe2O4/rGONRs) as an efficient catalyst for hydrogen generation via NaBH4 hydrolysis
CN113000048B (zh) MoS2负载Co纳米颗粒的制备方法及其应用
Han et al. MOF-Directed Construction of Cu–Carbon and Cu@ N-Doped Carbon as Superior Supports of Metal Nanoparticles toward Efficient Hydrogen Generation
CN113130918B (zh) 一种高催化性的m-n-c催化剂及其制备方法和应用
CN117443428A (zh) 一种复合催化剂及其制备方法与应用
CN116159561A (zh) 一种用于催化氨硼烷水解脱氢的三元金属CuFeCo纳米催化剂的制备方法
He et al. Construction of anchoring traps-reinforced ultrafine ruthenium nanoparticles as efficient catalysts for boosting H2 production from ammonia-borane hydrolysis
Zhang et al. Hydrolytic dehydrogenation of NH3BH3 over Cu/CoOx (OH) y nanocomposite for H2 evolution
CN113042068B (zh) 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination