CN116130363A - 锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用 - Google Patents

锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用 Download PDF

Info

Publication number
CN116130363A
CN116130363A CN202210774999.XA CN202210774999A CN116130363A CN 116130363 A CN116130363 A CN 116130363A CN 202210774999 A CN202210774999 A CN 202210774999A CN 116130363 A CN116130363 A CN 116130363A
Authority
CN
China
Prior art keywords
zinc
czts
layer
film
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210774999.XA
Other languages
English (en)
Inventor
郭杰
刘慧敏
吴冬梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202210774999.XA priority Critical patent/CN116130363A/zh
Publication of CN116130363A publication Critical patent/CN116130363A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02584Delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种锌掺杂硫化镉薄膜的制备方法,且将其应用于铜锌锡硫Cu2ZnSnS4(CZTS)太阳能电池;本发明采用CBD法将缓冲层Cd0.6Zn0.4S沉积在CZTS吸收层薄膜上;制备了具有CZTS/Cd0.6Zn0.4S结构的太阳能电池;经对比分析CZTS/Cd0.6Zn0.4S器件的转换效率(Eff)和填充系数(FF)分别由2.31%和31.06提高到4.88%和47.45。通过实验数据,我们得到了CdS/CZTS和CZTS/Cd0.6Zn0.4S异质结的导带偏移量(CBO),CZTS/CdS异质结和CZTS/Cd0.6Zn0.4S异质结的CBO分别为0.51eV和0.22eV。

Description

锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用
技术领域
本发明属于太阳能电池材料技术领域,具体涉及锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池上的应用。
背景技术
太阳能作为一种可再生能源一直受到人们的关注;用于太阳能电池的光伏材料如CdTe、GaAs和Cu(In,Ga)(S,Se)2(CIGS)(CIGS)发展迅速;目前,新型光伏材料铜锌锡硫Cu2ZnSnS4(CZTS)薄膜因其低成本、高吸收系数(>104cm-1)、合适的带隙(1.45-1.6eV)和无毒元素等优良性能而受到关注;铜锌锡硫太阳电池的结构主要是CZTS/CdS异质结,经过二十多年的研究,转换效率已从0.66%提高到目前的12.6%,但仍远低于理论预测的32%。其主要原因是其过高的开路电压赤字(Eg/q-Voc);CZTS/CdS异质结不理想的能带排列和异质结高密度深能级缺陷态是造成电压赤字的主要原因。
发明内容
为了解决上述技术问题,本发明提供了一种锌掺杂硫化镉薄膜及其制备方法,且将其应用于太阳能电池;本发明采用CBD法将缓冲层Cd0.6Zn0.4S沉积在CZTS吸收层薄膜上;制备了具有CZTS/Cd0.6Zn0.4S结构的太阳能电池;
为了达到上述技术目的,本发明是通过以下技术方案实现的:一种锌掺杂CZTS/Cd0.6Zn0.4S薄膜的制备方法,包括以下步骤:
S1:Mo层溅射预准备:Mo层溅射之前,保证磁控溅射仪内部的真空度为5×10-4Pa以下,开启直流电源分依次分别在气压为1.2Pa和0.3Pa的Ar气氛中在衬底上溅射Mo靶材,溅射的功率为200W;
S2:镀Mo层:将清洗钠钙玻璃并且烘干后放入磁控溅射腔室中,之后运用磁控溅射技术溅射Mo层;
S3:前驱体溶液配置:取乙酸铜(0.6摩尔/升)、乙酸锌(0.37摩尔/升)、氯化亚锡(0.33摩尔/升)和二甲基-甲酰胺分别以此加入透明玻璃瓶中,盖紧瓶塞放入事先设定好的恒温水浴锅中进行搅拌,待15分钟它们混合均匀之后,我们加入称好的硫脲(CH4N2S(2.6摩尔/升))继续进行50分钟的搅拌;
S4:将镀完Mo层的样品采用化学旋涂法制备CZTS吸收层前驱体;
S5:取配置好的前驱体溶液滴在沉积过Mo层的衬底上,将匀胶机调转速调至800转/分钟、3000转/分钟,分别甩胶5秒、15秒;将样品放置于300℃加热盘干燥5分钟,重复10次,制得预制层薄膜;
S6:将制备得到的预制层薄膜放入含有硫粉的石墨舟中,在40分钟内从50℃升温到565℃,并且在565℃温度下保温放置30分钟进行硫化工艺;
S7:缓冲层Cd0.6Zn0.4S制备:将经过硫化工艺的样品放入Cd0.6Zn0.4S缓冲层溶液中,在温度83℃条件下水浴约10分钟后,得到厚度约为50nm的Cd0.6Zn0.4S缓冲层;
S8:将具备Cd0.6Zn0.4S缓冲层的样品烘干之后,用射频磁控溅射法制备了厚度为45~55nm的本征氧化锌和厚度为200~250nm的铟锡氧化物作为窗口层(氧化锌/铟锡氧化物);
优选的,所述前驱体溶液配置中水浴锅水浴锅设定温度为50℃,转速500转/分钟;
优选的,所述Cd0.6Zn0.4S缓冲层溶液配方为:氨水、硫酸锌(0.092mol/升);硫酸镉(0.138mol/升);硫脲(1.5mol/升);柠檬酸钠(0.03mol/升);氨水、硫酸锌、硫酸镉、硫脲、柠檬酸钠的体积比为4:1:1:2:1。
本发明的有益效果是:
锌掺杂之后的Cd0.6Zn0.4S薄膜带隙变宽,有效提高可见光波段的透过率和短波光谱响应,提高电池的短路电流;锌掺杂硫化镉的Cd0.6Zn0.4S缓冲层可以降低吸收层/缓冲层异质结的导带偏移(CBO),降低界面复合,提高电池的开路电压。最终提高太阳电池的光电转换效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的制备工艺流程示意图;
图2是本发明的CdS和Cd0.6Zn0.4S缓冲层薄膜的衍射图谱;
图3是本发明的缓冲层CdS(a)和Cd0.6Zn0.4S(b)薄膜表面SEM图像;
图4是本发明的未掺杂CdS和掺杂Cd0.6Zn0.4S薄膜的透射光谱;
图5是本发明的缓冲层CdS和Cd0.6Zn0.4S薄膜的光学带隙;
图6是本发明的CZTS/CdS样品XPS能谱Cd 3d(a)和Cu 2p(b)的峰;
图7是本发明的CZTS/Cd0.6Zn0.4S样品XPS能谱Cd 3d(a)和Cu 2p(b)的峰;
图8是本发明的CdS、Cd0.6Zn0.4S和CZTS材料的价带谱;
图9是本发明的具有CZTS/CdS和CZTS/Cd0.6Zn0.4S结构器件异质结的能带排列;
图10是本发明的CZTS/CdS和CZTS/Cd0.6Zn0.4S太阳能电池的J–V特性图;
图11是本发明的SCAPS理论模拟CZTS/CdS和CZTS/Cd0.6Zn0.4S器件的J–V特性。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
CdS和Cd0.6Zn0.4S晶体结构分析
为了确定Zn掺杂对缓冲层的晶体结构的影响,我们用X射线衍射仪(XRD)对CdS和Cd0.6Zn0.4S缓冲层薄膜进行表征并测的相应的衍射图谱。从图中我们通过衍射峰位置的比对,证明了它们都处于六方型结构。CdS和Cd0.6Zn0.4S薄膜出现了三个衍射峰,它们对应的位置为26.96°、44.48°、52.28°、26.82°、44.34°、52.14°;它们相对应的于六方形结构的(002)、(110)和(112)晶面。有关文献报道,随着Zn掺杂量的增加,薄膜Cd1.xZnxS结构会向由六方型结构转向立方结构转变(x大于0.4)时,但在我们的研究当中并没有出现这种现象,这可能是由于掺杂量不足。从衍射图谱中我们还能发现,CdS和Cd0.6Zn0.4S薄膜均沿晶面(002)方向择优生长并且衍射峰的相对位置有所偏移,这是由于Zn2+离子半径小于Cd2+离子半径通过这个结果我们认为是Zn2+离子成功的被掺入CdS晶格中并且替代了一小部分Cd元素的位置。为了更好的分析Zn掺杂对缓冲层晶体结构的影响,我们通过公式(1)和(2)对相关晶体结构参数进行计算。
其中D为晶粒尺寸,λ为X衍射光波长,β为衍射峰半高宽度,θ为布拉格衍射角δ为位错密度;
表1CdS和Cd0.6Zn0.4S缓冲层薄膜晶体结构参数
表1列出了CdS和Cd0.6Zn0.4S缓冲层薄膜计算得出晶体参数,从表格可以看出,随着Zn的加入,晶格常数减小,因为锌离子半径小于镉离子半径;晶粒尺寸也有所增大,这可能源于晶界尺度的减小,而晶界的减小与位错密度有关;研究发现,CdS的位错密度高于Cd0.6Zn0.4S的位错密度,较低的位错密度会提高薄膜质量和导致薄膜体积一定程度的膨胀。
实施例2
CdS和Cd0.6Zn0.4S形貌和组分分析
图3(a)和(b)显示了在CZTS薄膜上生长的CdS和Cd0.6Zn0.4S薄膜的表面形貌图像。从图3中我们很轻易看出,CdS薄膜表面相对疏松,有许多针孔和孔洞,这些孔洞的存在限制了光生载流子的聚集,减少了太阳能薄膜电池的短路电流;如图3(b)所示,Cd0.6Zn0.4S薄膜表面变得相对致密;有报道称,不规则和不均匀的薄膜会对光有显著散射作用,不利于光线的收集;锌掺杂后,Cd0.6Zn0.4S薄膜的整齐性和均匀性可以观察到有明显的提升,这种现象与相关报道一致。
表2缓冲层CdS和Cd0.6Zn0.4S薄膜样品的元素比例
表2所示为缓冲层CdS和Cd0.6Zn0.4S薄膜样品的元素组成比例,需要注意的是,在锌掺杂的情况下,S元素比例没有太大的变化;我们发现所测的锌的含量低于我们理论计算的,这是由于我们在沉积过程中有一部分锌结合空气中的氧以氧化锌或者氢氧化合物的形式存在,相关文献也有报道。通过表2也进一步证明我们的锌成功的掺杂进去。
实施例3
CdS和Cd0.6Zn0.4S光学性质分析
图4为未掺杂的CdS和掺杂锌的Cd0.6Zn0.4S缓冲层薄膜的透射光谱;我们直观地从图中看出,在可见光区域,即光谱的300至800nm,薄膜的透光率在50~80%之间变化;与CdS薄膜相比,通过锌掺杂之后的Cd0.6Zn0.4S薄膜在300~800nm的可见光区域内,特别是在短波区的透过率有所提高;据报道,不规则和不均匀的薄膜会使光发生明显的散射,在SEM图像中我们也看出了Cd0.6Zn0.4S薄膜的均匀性和规则性是高于CdS的,锌掺杂可以改善薄膜的均匀性,从而减小散射,提高光的透射率;
如图5所示,我们通过计算得出了缓冲层CdS和Cd0.6Zn0.4S薄膜的光学带隙,计算过程如下:在忽略反射率的情况下我们可以利用公式(3)来计算它们各自的吸收系数α;
公式中T为透过率,d为CdS和Cd0.6Zn0.4S薄膜的厚度,通过台阶仪的测量厚度d=50nm,CdS和Cd0.6Zn0.4S薄膜对应的光学带隙(Eg)可根据式(4)计算;
公式(4)中的h为普朗克常数;v为入射光子能量;k为波尔兹曼常数;n值取决于薄膜材料以及自身的跃迁类型;因为由于CdS和ZnS光学带隙都为直接带隙;我们取为1/2;Eg为材料的光学带隙;如图4所示;我们通过计算缓冲层CdS和Cd0.6Zn0.4S薄膜的光学带隙分别为2.59eV、2.88eV随着锌的掺杂,Cd0.6Zn0.4S的带隙明显变宽,可以有效提高器件整体的短波光谱响应。
实施例4
CZTS/CdS和CZTS/Cd0.6Zn0.4S能带偏移计算
为了更好地了解锌掺杂对缓冲层与吸收层异质结处能带排列的影响,我们通过x射线光电子能谱(XPS)测量对样品进行了测量,并且用C1s的XPS线在284.8eV下对测量的XPS峰进行校准。图6和图7为CZTS/CdS和CZTS/Cd0.6Zn0.4S界面处每个元素的的芯能级以及CZTS/CdS和CZTS/Cd0.6Zn0.4S体材料中的芯能级。图6(a)中在CdS体材料和界面处Cd 3d的芯能级峰的位置为405.02eV、405.15eV;在CZTS体材料和界面处Cu 2p的芯能级峰的位置932.05eV、932.15eV,图6(b)中在Cd0.6Zn0.4S体材料和界面处Cd 3d的芯能级峰的位置为404.50eV、404.48eV;在CZTS体材料和界面处Cu 2p的芯能级峰的位置932.03eV;能带弯曲(VBB)和价带偏移(VBO)可由式(5)和式(6)得到。
是为所选CZTS材料的Cu和CdS材料中的Cd两种元素的体材料芯能级能量,表示在界面测量的相同对应元素的核能级能量。表示CdS和CZTS的价带最大值(VBM),也就是价带顶,价带顶的数值是相对材料各自的费米能级获得的。表示吸收层和缓冲层的光学带隙,而导带偏移量(CBO)可由式(7)得到。我们通过联立公式(5)和公式(6)计算得到CZTS/CdS和CZTS/Cd0.6Zn0.4S能带弯曲(VBB)分别为-0.03eV;-0.02eV。
图8是我们通过紫外光电子能谱仪(UPS)测的CdS、Cd0.6Zn0.4S和CZTS材料的价带谱,我们值通过拟合价带起始边缘外推到费米能级以下的背景水平来计算出相对于费米能级的VBM,从图7中我们可以得到CZTS、CdS和Cd0.6Zn0.4S材料它们的VBM分别是;0.51eV、1.49eV,1.69eV。我们在前面通过计算得出CZTS;CdS和Cd0.6Zn0.4S的光学带隙分别为1.45eV、2.59eV,2.88eV,之后由上述公式(6)计算得到CZTS/CdS和CZTS/Cd0.6Zn0.4S异质结它们的价带偏移为0.96eV和0.99eV。随后将得到的VBM/VBO/Eg数据联立以上公式,得到CZTS/CdS和CZTS/Cd0.6Zn0.4S异质结的导带偏移(CBO)分别为0.51eV,0.27eV。通过计算我们可以看出随着锌的掺杂;CZTS/Cd0.6Zn0.4S异质结的导带偏移是减小了。
如图9所示,我们通过上述计算得出价带偏移量、导带偏移量、材料的光学带隙以及能带弯曲,最后得到CZTS/CdS和CZTS/Cd0.6Zn0.4S的能带排列排列图。通过图9我们可以清晰的看出两种异质结界面中吸收层的导带最小值(CBM)均高于缓冲层,我们称这种异质结能带排列方式为“断崖式”排列,它并不是理想的能带排列方式。而另一种理想型能带排列为“尖峰式”的能带排列,缓冲层的导带底位置在吸收层的上面,并且理想情况下的CBO应该在在0-0.3eV范围内。“断崖式”能带排列,在正向偏压下将建立一个阻挡从n-CdS注入到p-czt的电子的势垒,导致了注入电子的积聚,增加了CZTS中大多数空穴与CZTS/CdS界面积聚电子之间的界面载流子复合。载流子复合会导致开电压Voc和填充因子(FF)的降低。在我们的研究当中,在我们的工作中,Zn掺杂缓冲层后,由于Zn(4S)态显著改变CdS中的CBM和VBM,导致了势垒的降低,因此导带偏移量(CBO)从0.51eV降低到0.27eV。因此,适当的Zn掺杂可以降低CBO和“悬崖状”异质结中的势垒,这将有利于降低载流子在接触面的复合和提高器件性能。
实施例5
CZTS/CdS和CZTS/Cd0.6Zn0.4S电学性能分析
如图10、图11所示,CZTS/CdS和CZTS/Cd0.6Zn0.4S太阳能电池性能的实验参数对比数据、J–V特性曲线以及SCAPS理论模拟图。锌掺杂过后的CZTS/Cd0.6Zn0.4S太阳能薄膜电池表现出更好的光伏性能,具有更高的器件性能表现,分别体现在为(Voc)=0.628V、(Jsc)=15.05mA/cm2、(FF)=47.45%,Eff=4.48%。开路电压Voc的提高主要归因于异质结CBO的降低。Jsc的增加归因于Cd0.6Zn0.4S带隙的扩大,它可以收集更多的短波长光子。此外,器件CZTS/Cd0.6Zn0.4S中的并联电阻(Rsh)280.62Ω/cm2也高于器件CZTS/CdS中的165.68Ω/cm2,光伏器件CZTS/Cd0.6Zn0.4S中的串联电阻(Rs)(13.75Ω/cm2)低于器件CZTS/CdS(18.86Ω/cm2)。而Rsh升高、Rs降低也会调高填充因子和转换效率,电池性能的增加与我们理论计算的结果一致。结合J-V测量数据,通过相关的导数和积分公式得到Rs和Rsh参数。详细的理论计算已在文献中报道。

Claims (3)

1.一种锌掺杂CZTS/Cd0.6Zn0.4S薄膜的制备方法,其特征在于,包括以下步骤:
S1:Mo层溅射预准备:Mo层溅射之前,保证磁控溅射仪内部的真空度为5×10-4Pa以下,开启直流电源分依次分别在气压为1.2Pa和0.3Pa的Ar气氛中在衬底上溅射Mo靶材,溅射的功率为200W;
S2:镀Mo层:将清洗钠钙玻璃并且烘干后放入磁控溅射腔室中,之后运用磁控溅射技术溅射Mo层;
S3:前驱体溶液配置:取乙酸铜(0.6摩尔/升)、乙酸锌(0.37摩尔/升)、氯化亚锡(0.33摩尔/升)和二甲基-甲酰胺分别以此加入透明玻璃瓶中,盖紧瓶塞放入事先设定好的恒温水浴锅中进行搅拌,待15分钟它们混合均匀之后,我们加入称好的硫脲(CH4N2S(2.6摩尔/升))继续进行50分钟的搅拌;
S4:将镀完Mo层的样品采用化学旋涂法制备CZTS吸收层前驱体;
S5:取配置好的前驱体溶液滴在沉积过Mo层的衬底上,将匀胶机调转速调至800转/分钟、3000转/分钟,分别甩胶5秒、15秒;将样品放置于300℃加热盘干燥5分钟,重复10次,制得预制层薄膜;
S6:将制备得到的预制层薄膜放入含有硫粉的石墨舟中,在40分钟内从50℃升温到565℃,并且在565℃温度下保温放置30分钟进行硫化工艺;
S7:缓冲层Cd0.6Zn0.4S制备:将经过硫化工艺的样品放入Cd0.6Zn0.4S缓冲层溶液中,在温度83℃条件下水浴约10分钟后,得到厚度约为50nm的Cd0.6Zn0.4S缓冲层;
S8:将具备Cd0.6Zn0.4S缓冲层的样品烘干之后,用射频磁控溅射法制备了厚度为45~55nm的本征氧化锌和厚度为200~250nm的铟锡氧化物作为窗口层(氧化锌/铟锡氧化物)。
2.根据权利要求1所述一种锌掺杂CZTS/Cd0.6Zn0.4S薄膜的制备方法,其特征在于,所述前驱体溶液配置中水浴锅水浴锅设定温度为50℃,转速500转/分钟。
3.根据权利要求1所述一种锌掺杂CZTS/Cd0.6Zn0.4S薄膜的制备方法,其特征在于,所述Cd0.6Zn0.4S缓冲层溶液配方为:氨水、硫酸锌(0.092mol/升);硫酸镉(0.138mol/升);硫脲(1.5mol/升);柠檬酸钠(0.03mol/升);氨水、硫酸锌、硫酸镉、硫脲、柠檬酸钠的体积比为4:1:1:2:1。
CN202210774999.XA 2022-07-01 2022-07-01 锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用 Pending CN116130363A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210774999.XA CN116130363A (zh) 2022-07-01 2022-07-01 锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210774999.XA CN116130363A (zh) 2022-07-01 2022-07-01 锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用

Publications (1)

Publication Number Publication Date
CN116130363A true CN116130363A (zh) 2023-05-16

Family

ID=86306874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210774999.XA Pending CN116130363A (zh) 2022-07-01 2022-07-01 锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用

Country Status (1)

Country Link
CN (1) CN116130363A (zh)

Similar Documents

Publication Publication Date Title
Chu et al. Thin film II–VI photovoltaics
Nakada et al. 18% efficiency Cd-free Cu (In, Ga) Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers
TWI535047B (zh) Photoelectric conversion elements and solar cells
US8283187B2 (en) Photovoltaic device and method for making
KR20140109530A (ko) 박막 태양전지
JP2005228975A (ja) 太陽電池
EP2768030A2 (en) Solar cell and method of manufacturing the same
Su et al. Cation substitution of CZTS solar cell with> 10% efficiency
Sun et al. Influence of Cd0. 6Zn0. 4S buffer layer on the band alignment and the performance of CZTS thin film solar cells
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
KR101415251B1 (ko) 다중 버퍼층 및 이를 포함하는 태양전지 및 그 생산방법
JP6297038B2 (ja) 薄膜太陽電池及び薄膜太陽電池の製造方法
CN109904255B (zh) 一种Cr-Se共掺杂硫化锌太阳能电池缓冲层薄膜材料的制备方法
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
KR102227333B1 (ko) In2S3-CdS 이중버퍼층을 이용한 CIGS 박막의 핀홀 감소 방법
KR101210171B1 (ko) 태양전지 및 이의 제조방법
KR101017141B1 (ko) 3차원 접합형 태양전지 및 그 제조방법
KR101558589B1 (ko) 태양전지의 제조방법
CN116130363A (zh) 锌掺杂硫化镉薄膜的制备及在铜锌锡硫太阳能电池的应用
KR102015985B1 (ko) 태양전지용 cigs 박막의 제조방법
Alkhayat et al. Study of Degradation of Cu (In, Ga) Se 2 Solar Cell Parameters due to Temperature
KR102057234B1 (ko) Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지
KR20120043315A (ko) 화합물 반도체 광 흡수층을 구비한 태양전지
Shafarman et al. Advances in CuInSe2 and CdTe thin film solar cells
US20120080306A1 (en) Photovoltaic device and method for making

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination