CN116121701A - 一种燃料电池金属连接体的改性复合三层涂层及其制备方法 - Google Patents

一种燃料电池金属连接体的改性复合三层涂层及其制备方法 Download PDF

Info

Publication number
CN116121701A
CN116121701A CN202310198819.2A CN202310198819A CN116121701A CN 116121701 A CN116121701 A CN 116121701A CN 202310198819 A CN202310198819 A CN 202310198819A CN 116121701 A CN116121701 A CN 116121701A
Authority
CN
China
Prior art keywords
coating
layer
metal connector
fuel cell
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310198819.2A
Other languages
English (en)
Inventor
郑莉莉
李希超
戴作强
张洪信
何田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202310198819.2A priority Critical patent/CN116121701A/zh
Publication of CN116121701A publication Critical patent/CN116121701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种燃料电池金属连接体的改性涂层,所述涂层为V、Zr在Ti位置掺杂的Ti3SiC2,以及在Si位置掺杂Al,所述涂层相的化学式为:(Ti1‑xNx)3(Si,Al)C2,N为V、Zr中的一种,在沉积涂层前,先进行预氧化,在金属连接体表面生成纳米层氧化物内层涂层,增加沉积涂层与基体的结合力,减小涂层沉积的温度,优化改性涂层整体抗氧化与导电性能,所属涂层的中间过渡层为TiC层,过渡层能调节氧化物内层与外层(Ti1‑xNx)3(Si,Al)C2涂层的热膨胀系数不匹配的问题,同时在氧化后,能调制外层涂层中生成TiO2的含量,进一步提高涂层的导电性能。本发明通过预氧化增加了内层涂层,增加了涂层整体与基体的结合力,优化了改性涂层整体抗氧化与导电性能;提高了材料的抗氧化性能和导电率以及涂层的致密度,有效解决了阴极中毒的问题,同时能降低Cr2O3膜的生长速率,降低连接体的工作电阻,提高不锈钢连接体的综合工作性能,本发明大规模应用能进一步推动固体氧化物燃料电池的商业化进程。

Description

一种燃料电池金属连接体的改性复合三层涂层及其制备方法
技术领域
本发明属于燃料电池材料技术领域,具体涉及一种燃料电池金属连接体的改性复合涂层及其制备方法。
背景技术
固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)由于具有可使用含碳燃料、发电效率高和发电成本低等优点,在分布式电站和动力电源等领域均有广阔的应用前景。虽然世界范围内已有一些示范运行的电池堆,但其大规模商业化应用仍受各部件材料制约。其中连接体材料就是SOFC的发展瓶颈之一。连接体(也叫连接板或双极板)是平板式SOFC电堆组装的关键部件,它一方面电连接相邻的单电池;另一方面隔离阳极的燃气与阴极的空气,其性能直接影响SOFC电堆的输出功率和使用寿命。现有固体氧化物燃料电池的合金连接体Cr存在挥发问题以及质子交换膜燃料电池的金属双极板易腐蚀问题,为解决这些问题,申请号202110692108.1一种燃料电池金属连接体双层涂层中,涂层内层为TiC涂层,外层为Ti3SiC2陶瓷或者掺杂改性固溶体材料(Ti,M)3SiC2,其中M选自Nb、Ta、W和V材料中的一种。该双层涂层,具有均匀、致密、附着力高,能够长期有效地抑制金属连接体中所含的Cr元素向外迁移,解决阴极中毒的问题,同时能降低Cr2O3膜的生长速率,降低连接体的工作电阻,提高不锈钢连接体的综合工作性能;同时还可以用于质子交换膜燃料电池的金属双极板,有效提高质子交换膜燃料电池双极板的耐腐蚀能力和导电性能。另外,申请号2021106920888一种燃料电池的金属连接体涂层中公开了,所述涂层为Ti3SiC2或者掺杂改性固溶体材料(Ti,M)3SiC2,其中M选自Nb、Ta、W和V材料中的一种。
但是,在后续的研究中我们发现,这种技术依然有一些不足之处。比如:沉积涂层与基体的结合力不够,涂层沉积的温度较高,涂层整体抗氧化与导电性能还不够理想;所沉积涂层材料的抗氧化性能不足,氧化速率高,涂层致密度还不够,需要我们继续进行研究突破。
发明内容
为解决上述问题,本发明提供了一种燃料电池金属连接体的改性复合涂层,并公开了其制备方法。
本发明是通过以下技术方案实现的:
一种燃料电池金属连接体的改性复合涂层涂层,所述复合涂层具有三层结构,其中外层为在Ti位置掺杂V、Zr的Ti3SiC2,以及在Si位置掺杂Al,所述涂层相的化学式为:(Ti1-xNx)3(Si,Al)C2,N为V、Zr中的一种,所述复合涂层内层为纳米氧化物层,通过对基体进行预氧化处理,在金属连接体表面生成纳米层氧化物,内层氧化物层能够增加外层沉积涂层与基体的结合力,减小涂层沉积的温度,优化改性涂层整体抗氧化与导电性能,同时能够降低外层涂层/过渡层和基体的元素互扩散,提高涂层使用寿命。所述过渡层为TiC层,过渡层能调节氧化物内层与外层(Ti1-xNx)3(Si,Al)C2涂层的热膨胀系数不匹配的问题,同时在氧化后,能调制外层涂层中生成TiO2的含量。
进一步的,所述复合涂层外层相的化学式中,x为0.01~0.25;Al取代Si的原子百分比为3at.%。沉积涂层(Ti1-xNx)3(Si,Al)C2(N为V、Zr中的一种,x为0.01-0.25;Al取代Si的原子百分比为3at.%),N掺杂Ti可以提高材料的抗氧化性能,降低氧化速率,提高生成氧化物的导电率,Al取代3at.%Si能提高涂层的致密度。
进一步的,所述复合涂层内层主要是纳米氧化物,通过金属连接体的预氧化处理获得,内层涂层可以提高外层涂层与金属基体的结合力,并且可以降低二者元素扩散,防止发生相退化,提高涂层体系使用寿命。
进一步的,所述复合涂层过渡层为TiC层,过渡层能调节氧化物内层与外层(Ti1- xNx)3(Si,Al)C2涂层的热膨胀系数不匹配的问题,同时在氧化后能调制外层涂层中生成TiO2的含量,进一步提高涂层的导电性能。
更进一步的,金属连接体的前处理方法为:首先对金属连接体进行打磨抛光,用400#、600#、800#、1000#、1200#金相砂纸逐级磨光,然后将打磨后的金属连接体经过丙酮、酒精和去离子水分别超声清洗10~30min后,在空气中吹干备用。
更进一步的,纳米氧化物内层涂层的制备方法为:前处理好的金属连接体放置到管式炉中加热预氧化,加热温度为:600~800℃,保温时间为2~20小时,获得50~500nm厚的纳米氧化层。
更进一步的,所述改性复合涂层的外层在金属连接体表面的沉积方法为:对金属连接体进行前处理,然后预氧化处理,使金属连接体表面生成纳米层氧化物内层涂层,然后以TiC和(Ti1-xNx)3(Si,Al)C2为过渡层和外层涂层块体靶材,采用磁控溅射法将靶材沉积到表面含有纳米金属连接体的表面。
更进一步的,利用磁控溅射装置在合金表面沉积涂层,沉积涂层时样品板贴在架板上,加热架板,以此调节镀膜温度。
更进一步的,所述磁控溅射法是指:涂层制备之前,首先预抽真空至5×10-4Pa,以尽量减少溅射过程中残余气体的污染,达到所需真空度后,通入流量为50ml/min的高纯Ar气,并调整工作气压保持在0.20~0.40Pa,沉积开始前,首先利用Ar+清洗靶材,以去除靶材表面的污染物,清洗时间为5~10min;然后将金属连接体加热到50~200℃并保温15min,使得整个金属连接体的温度均匀后,开始溅射制备过渡层和外层涂层,溅射功率为0.08~1.5kw,溅射时间为1~8h,沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
更进一步的,所述金属连接体为铁素体不锈钢:SUS430、Crofer22APU、Fe-10Cr、1.4724、Fe-17Cr-0.2Y、1.4016、Ferrotherm(1.4742)、Fe-18Cr-9W、Fe-20Cr-7W、Fe-20Cr、AL 453、1.4763(446)、FeCrMn(LaTi)、Fe-Cr-Mn、Fe-25Cr-DIN 50049、Fe-25Cr-0.1Y-2.5Ti、Fe-25Cr-0.2Y-1.6Mn、Fe-25Cr-0.4La、Fe-25Cr-0.3Zr、Fe26CrTiY、Fe26CrTiNbY、Fe26CrMoTiY、E-Brite、Al29-4C或Fe-30Cr中的任意一种。
进一步的,所述(Ti1-xNx)3(Si,Al)C2块体靶材的制备方法为:取Ti粉、V或Zr的一种、硅粉、铝粉和石墨粉,采用热压/固液相反应法在热压炉中烧结制备,烧结温度为1400℃~1720℃,保温25~90分钟,热压压力8~90MPa,以流动的氩气作为保护气体。
相对于现有技术,本发明的优点如下:
1、由于通过预氧化增加了涂层和金属连接体之间的纳米氧化层内层,使得沉积涂层与基体的结合力增加了,也能减小涂层沉积的温度(沉积涂层在较低温度的时候就能获得致密、结合力高的涂层),优化改性涂层整体抗氧化与导电性能,降低外层涂层和基体的元素扩散,防止相退化,提高涂层体系寿命;
2、进一步的,所述复合涂层过渡层为TiC层,过渡层能调节氧化物内层与外层(Ti1-xNx)3(Si,Al)C2涂层的热膨胀系数不匹配的问题,同时在氧化后能调制外层涂层中生成TiO2的含量,进一步提高涂层的导电性能。
3、外层涂层为Ti位置与Si位置同时掺杂改性的(Ti1-xNx)3(Si,Al)C2,N为V、Zr中的一种,x为0.01-0.25;Al取代Si的原子百分比为3at.%,N掺杂Ti可以提高材料的抗氧化性能,降低氧化速率,提高生成氧化物的导电率,Al取代3at.%Si能提高涂层的致密度,提高涂层阻挡氧和Cr离子的扩散,提高涂层的抗氧化和导电能力;
4、带改性复合涂层的金属连接体能有效解决Cr元素向外迁移,解决阴极中毒的问题,同时能降低Cr2O3膜的生长速率,降低连接体的工作电阻,提高不锈钢连接体的综合工作性能,该带改性涂层的金属连接体大规模应用能进一步推动固体氧化物燃料电池的商业化进程。
附图说明
图1为实施例1中先预氧化然后采用磁控溅射方法制备的Cr2O3/TiC/(Ti0.93Zr0.07)3(Si,Al)C2涂层的表面形貌;
图2为实施例1中先预氧化然后采用磁控溅射方法制备的Cr2O3/TiC/(Ti0.93Zr0.07)3(Si,Al)C2涂层氧化后的表面形貌;
图3为实施例1中先预氧化然后采用磁控溅射方法制备的Cr2O3/TiC/(Ti0.93Zr0.07)3(Si,Al)C2涂层氧化后的截面形貌;
图4为实施例2中先预氧化然后采用磁控溅射方法制备的Cr2O3/TiC/(Ti0.85V0.15)3(Si,Al)C2涂层氧化后的表面形貌。
具体实施方式
下面结合具体实施例及附图对本发明做进一步详细说明。
以下实施例用的金属连接体材料为铁素体不锈钢合金,来源为市场购买,为SUS430、Crofer22APU、Fe-10Cr、1.4724、Fe-17Cr-0.2Y、1.4016、Ferrotherm(1.4742)、Fe-18Cr-9W、Fe-20Cr-7W、Fe-20Cr、AL 453、1.4763(446)、FeCrMn(LaTi)、Fe-Cr-Mn、Fe-25Cr-DIN 50049、Fe-25Cr-0.1Y-2.5Ti、Fe-25Cr-0.2Y-1.6Mn、Fe-25Cr-0.4La、Fe-25Cr-0.3Zr、Fe26CrTiY、Fe26CrTiNbY、Fe26CrMoTiY、E-Brite、Al29-4C或者Fe-30Cr中的任意一种。
沉积所用(Ti1-xNx)3(Si,Al)C2(N为V、Zr中的一种,x为0.01-0.25;Al取代Si的原子百分比为3at.%)靶材的制备方法如下:
原始粉料包括Ti粉、V或Zr的一种、硅粉、铝粉和石墨粉,采用热压/固液相反应法在热压炉中烧结制备,烧结温度为1400℃~1750℃,保温25~90分钟,热压压力8~90MPa,以流动的氩气作为保护气体。
沉积所用TiC靶材为商业购买靶材,纯度为99%,致密度达到95%。
实施例1
将TiC和(Ti0.93Zr0.07)3(Si,Al)C2涂层沉积在预氧化后的SUS430不锈钢连接体的表面,得到Cr2O3/TiC/(Ti0.9Zr0.2)3(Si,Al)C2复合涂层。
首先制备(Ti0.93Zr0.07)3(Si,Al)C2块体靶材,所用工艺为:首先选用分子式所用元素的化学计量比配置粉料,然后采用10MPa冷压,后放入热压炉中烧结,烧结温度为1520℃,热压压力为70MPa。准备SUS430金属块10*10*2mm3,用400#、600#、800#、1000#金相砂纸对合金基体进行逐级打磨,然后将打磨后的金属连接体样品经过丙酮、酒精和去离子水分别超声清洗15min后,在空气中吹干备用。
将处理好的金属连接体样品放置到管式炉中加热预氧化,加热温度设置为750℃,保温时间为5小时,获得115nm厚的纳米氧化层。
进行磁控溅射沉积涂层。首先预抽真空至5×10-4Pa,以尽量减少溅射过程中残余气体的污染。达到实验所需真空度后通入流量为50ml/min的高纯Ar气,并调整工作气压保持在0.3Pa。沉积开始前首先利用Ar+清洗靶材,以去除靶材表面的污染物,清洗时间为7min。然后将样品加热到150℃并保温30min,使得整个样品的温度均匀后开始溅射制备涂层。打开TiC靶材电源,溅射功率为0.15Kw,溅射时间为2h。然后打开(Ti0.93Zr0.07)3(Si,Al)C2靶材电源,溅射功率为0.1kw,溅射时间为4h。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。溅射后用扫描电镜观察沉积涂层的表面和截面微观形貌,沉积后发现涂层致密、平整,无孔洞,涂层颗粒紧密,与基体结合良好(如图1所示)。后将带有涂层的金属连接体样品在800℃氧化,表面形成了致密连续的氧化膜结构,氧化物致密无孔洞,涂层抑制了Cr的外扩散(如图2和3所示),能有效阻挡Cr的挥发,解决SOFC阴极中毒的问题。同时,与未预氧化生成纳米晶氧化层的相同涂层相比,样品的氧化速率常数降低了18%,面比电阻减小了13%。
实施例2
将TiC/(Ti0.85V0.15)3(Si,Al)C2涂层沉积在Crofer 22APU表面。
首先制备(Ti0.85V0.15)3(Si,Al)C2块体靶材,所用工艺为:首先选用分子式所用元素的化学计量比配置粉料,然后采用10MPa冷压,后放入热压炉中烧结,烧结温度为1530℃,热压压力为60MPa。准备SUS430金属块10*10*2mm3,用400#、600#、800#、1000#金相砂纸对合金基体进行逐级打磨,然后将打磨后的金属连接体样品经过丙酮、酒精和去离子水分别超声清洗10min后,在空气中吹干备用。
将处理好的金属连接体样品放置到管式炉中加热预氧化,加热温度设置为700℃,保温时间为10小时,获得187nm厚的纳米氧化层。
进行磁控溅射沉积涂层。首先预抽真空至5×10-4Pa,以尽量减少溅射过程中残余气体的污染。达到实验所需真空度后通入流量为50ml/min的高纯Ar气,并调整工作气压保持在0.35Pa。沉积开始前首先利用Ar+清洗靶材,以去除靶材表面的污染物,清洗时间为10min。然后将样品加热到50℃并保温30min,使得整个样品的温度均匀后开始溅射制备涂层。打开TiC靶材电源,溅射功率为0.15Kw,溅射时间为3h。然后打开(Ti0.85V0.15)3(Si,Al)C2靶材电源,溅射功率为0.25Kw,溅射时间为5h。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。溅射后用扫描电镜观察沉积涂层的表面和截面微观形貌,沉积后发现涂层致密、平整,无孔洞,涂层颗粒紧密,与基体结合良好。后将带有涂层的金属连接体样品在750℃氧化,表面形成了致密连续的氧化膜结构(如图4所示),氧化物致密无孔洞,涂层抑制了Cr的外扩散,能有效阻挡Cr的挥发,解决SOFC阴极中毒的问题。并且与未预氧化生成纳米晶氧化层的相同涂层相比,样品的氧化速率常数降低了17%,面比电阻减小了13%。
对比例
将(Ti,W)3SiC2涂层沉积在Crofer22APU不锈钢连接体的表面。利用磁控溅射设备在合金表面沉积涂层,然后将样品加热到700℃并保温15min,使得整个样品的温度均匀后开始溅射制备涂层。涂层制备过程中,溅射功率为0.2kw,溅射时间为5h。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。最后用扫描电镜观察沉积涂层的表面和截面微观形貌,沉积后发现(Ti,W)3SiC2涂层致密、平整,无孔洞,并且与基体结合良好,在此条件下涂层的厚度为4.5μm左右。
从对比例子中能够看出,该工艺的沉积温度远高于本发明的实施例。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

1.一种燃料电池金属连接体的改性复合涂层,其特征在于:所述复合涂层外层为V、Zr在Ti位置掺杂的Ti3SiC2,以及在Si位置掺杂Al,所述涂层相的化学式为:(Ti1-xNx)3(Si,Al)C2,N为V、Zr中的一种,所述复合涂层内层为金属连接体预氧化形成的纳米氧化物层,通过进行预氧化,在金属连接体表面生成纳米层氧化物,增加沉积涂层与基体的结合力,减小涂层沉积的温度,优化改性涂层整体抗氧化与导电性能,同时氧化物内层能够抑制外层涂层/过渡层和基体的元素互扩散,提高涂层使用寿命。所属涂层的中间过渡层为TiC层,过渡层能调节氧化物内层与外层(Ti1-xNx)3(Si,Al)C2涂层的热膨胀系数不匹配的问题,同时在氧化后能调制外层涂层中生成TiO2的含量,进一步提高涂层的导电性能。
2.根据权利要求1所述的燃料电池金属连接体的改性复合涂层,其特征在于:所述外层涂层相的化学式中,x为0.01~0.25;Al取代Si的原子百分比为3at.%。
3.根据权利要求2所述的燃料电池金属连接体的改性复合涂层,其特征在于:所述改性涂层在金属连接体表面的沉积方法为:首先对金属连接体进行前处理,然后预氧化处理,使金属连接体表面生成纳米层氧化物,然后以TiC和(Ti1-xNx)3(Si,Al)C2为过渡层和外层涂层靶材块体,采用磁控溅射法以此将TiC和(Ti1-xNx)3(Si,Al)C2靶材沉积到表面含有纳米金属连接体的表面。
4.根据权利要求3所述的燃料电池金属连接体的改性复合涂层,其特征在于:金属连接体的前处理方法为:首先对金属连接体进行打磨抛光,用400#、600#、800#、1000#、1200#金相砂纸逐级磨光,然后将打磨后的金属连接体经过丙酮、酒精和去离子水分别超声清洗10~30min后,在空气中吹干备用。
5.根据权利要求4所述的燃料电池金属连接体的改性复合涂层,其特征在于:前处理好的金属连接体放置到管式炉中加热预氧化,加热温度为:600~800℃,保温时间为2~20小时,获得50~500nm厚的纳米氧化层。
6.根据权利要求2所述的燃料电池金属连接体的改性复合涂层,其特征在于:利用磁控溅射装置在合金表面沉积过渡层和外层涂层,沉积涂层时样品板贴在架板上,加热架板,以此调节镀膜温度。
7.根据权利要求2所述的燃料电池金属连接体的改性复合涂层,其特征在于:所述磁控溅射法是指:涂层制备之前,首先预抽真空至5×10-4Pa,以尽量减少溅射过程中残余气体的污染,达到所需真空度后,通入流量为50ml/min的高纯Ar气,并调整工作气压保持在0.20~0.40Pa,沉积开始前,首先利用Ar+清洗靶材,以去除靶材表面的污染物,清洗时间为5~10min;然后将金属连接体加热到50~200℃并保温15min,使得整个金属连接体的温度均匀后,开始溅射制备过渡层和外层涂层,溅射功率为0.08~2.0kw,溅射时间为1~8h,沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
8.根据权利要求1所述的燃料电池金属连接体的改性复合涂层,其特征在于:所述金属连接体为铁素体不锈钢:SUS430、Crofer22APU、Fe-10Cr、1.4724、Fe-17Cr-0.2Y、1.4016、Ferrotherm(1.4742)、Fe-18Cr-9W、Fe-20Cr-7W、Fe-20Cr、AL 453、1.4763(446)、FeCrMn(LaTi)、Fe-Cr-Mn、Fe-25Cr-DIN 50049、Fe-25Cr-0.1Y-2.5Ti、Fe-25Cr-0.2Y-1.6Mn、Fe-25Cr-0.4La、Fe-25Cr-0.3Zr、Fe26CrTiY、Fe26CrTiNbY、Fe26CrMoTiY、E-Brite、Al29-4C或Fe-30Cr中的任意一种。
9.根据权利要求1所述的燃料电池金属连接体的改性复合涂层的制备方法,其特征在于:外层涂层靶材制备方法如下所述,取Ti粉、V或Zr的一种、硅粉、铝粉和石墨粉,采用热压/固液相反应法在热压炉中烧结制备,烧结温度为1400℃~1750℃,保温25~90分钟,热压压力8~90MPa,以流动的氩气作为保护气体。
CN202310198819.2A 2023-03-03 2023-03-03 一种燃料电池金属连接体的改性复合三层涂层及其制备方法 Pending CN116121701A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310198819.2A CN116121701A (zh) 2023-03-03 2023-03-03 一种燃料电池金属连接体的改性复合三层涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310198819.2A CN116121701A (zh) 2023-03-03 2023-03-03 一种燃料电池金属连接体的改性复合三层涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN116121701A true CN116121701A (zh) 2023-05-16

Family

ID=86311841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310198819.2A Pending CN116121701A (zh) 2023-03-03 2023-03-03 一种燃料电池金属连接体的改性复合三层涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN116121701A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070247A (zh) * 2006-05-12 2007-11-14 中国科学院金属研究所 一种硅铝碳化钛锆固溶体材料及其制备方法
US20090280386A1 (en) * 2008-05-09 2009-11-12 Universitat Duisburg-Essen Metallic bipolar plate for fuel cell
CN102117907A (zh) * 2009-12-31 2011-07-06 中国科学院金属研究所 一类用于燃料电池中的固体氧化物燃料电池连接体材料
CN102370429A (zh) * 2010-08-19 2012-03-14 比亚迪股份有限公司 一种电热炊具内胆及其制造方法
CN104058749A (zh) * 2013-03-21 2014-09-24 中国科学院宁波材料技术与工程研究所 一种无压烧结制备钛硅碳陶瓷块体材料的方法
WO2015173132A1 (en) * 2014-05-14 2015-11-19 Haldor Topsøe A/S Max phase materials for use in solid oxide fuel cells and solid oxide electrolysys cells
CN107275656A (zh) * 2017-06-08 2017-10-20 江苏科技大学 固体氧化物燃料电池用尖晶石/金属连接体复合材料及其制备方法
CN108441822A (zh) * 2018-04-18 2018-08-24 东北大学 一种磁控溅射法制备(Cu,Fe)3O4尖晶石涂层的方法及其应用
CN113549873A (zh) * 2021-06-22 2021-10-26 青岛大学 一种燃料电池金属连接体双层涂层
CN113555576A (zh) * 2021-06-22 2021-10-26 青岛大学 一种燃料电池金属连接体涂层

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070247A (zh) * 2006-05-12 2007-11-14 中国科学院金属研究所 一种硅铝碳化钛锆固溶体材料及其制备方法
US20090280386A1 (en) * 2008-05-09 2009-11-12 Universitat Duisburg-Essen Metallic bipolar plate for fuel cell
CN102117907A (zh) * 2009-12-31 2011-07-06 中国科学院金属研究所 一类用于燃料电池中的固体氧化物燃料电池连接体材料
CN102370429A (zh) * 2010-08-19 2012-03-14 比亚迪股份有限公司 一种电热炊具内胆及其制造方法
CN104058749A (zh) * 2013-03-21 2014-09-24 中国科学院宁波材料技术与工程研究所 一种无压烧结制备钛硅碳陶瓷块体材料的方法
WO2015173132A1 (en) * 2014-05-14 2015-11-19 Haldor Topsøe A/S Max phase materials for use in solid oxide fuel cells and solid oxide electrolysys cells
CN107275656A (zh) * 2017-06-08 2017-10-20 江苏科技大学 固体氧化物燃料电池用尖晶石/金属连接体复合材料及其制备方法
CN108441822A (zh) * 2018-04-18 2018-08-24 东北大学 一种磁控溅射法制备(Cu,Fe)3O4尖晶石涂层的方法及其应用
CN113549873A (zh) * 2021-06-22 2021-10-26 青岛大学 一种燃料电池金属连接体双层涂层
CN113555576A (zh) * 2021-06-22 2021-10-26 青岛大学 一种燃料电池金属连接体涂层

Similar Documents

Publication Publication Date Title
Zakaria et al. A review of solid oxide fuel cell component fabrication methods toward lowering temperature
CN100595951C (zh) 一种燃料电池用双极板及其表面碳铬薄膜制备方法
US5753385A (en) Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
CN101800318B (zh) 一种质子交换膜燃料电池用金属双极板及其制备方法
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
KR100885041B1 (ko) 표면에 금속 질화물층(MNx), 금속 탄화물층(MCy), 금속 붕소화물층(MBz) 중에서 선택되는 코팅층이 형성된 연료전지용 스테인리스 분리판 및 그 제조방법
CN1960047A (zh) 多孔金属支撑的低温固体氧化物燃料电池的制备方法
JP3978603B2 (ja) 固体酸化物形燃料電池用セル板及びその製造方法
CN113555576A (zh) 一种燃料电池金属连接体涂层
US20110159173A1 (en) Conductive coating for solid oxide fuel cells
CN114481048B (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN104878354A (zh) 平板式中温固体氧化物燃料电池金属连接体用涂层
CN109671958B (zh) 一种固体氧化物燃料电池及其制备方法
CN108914060B (zh) 一种燃料电池双极板表面防护涂层的制备方法
JP2016524282A (ja) 固体電解質用多重層配置構成
CN201717318U (zh) 一种质子交换膜燃料电池用金属双极板
CN116121701A (zh) 一种燃料电池金属连接体的改性复合三层涂层及其制备方法
CN116356253A (zh) 一种燃料电池金属连接体的改性复合涂层及其制备方法
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
KR101456982B1 (ko) 고체산화물 연료전지 금속분리판 보호막용 세라믹 분말의 제조방법 및 그 보호막
CN113549873A (zh) 一种燃料电池金属连接体双层涂层
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN111029606B (zh) 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法
JP2002025579A (ja) 高分子電解質型燃料電池
Li et al. Progresses in the Electrodeposition Preparation of Spinel Coatings on SOFC Ferritic Stainless Steel interconnectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination