CN116117174A - 基于激光的粉末床熔合的设备和方法 - Google Patents

基于激光的粉末床熔合的设备和方法 Download PDF

Info

Publication number
CN116117174A
CN116117174A CN202310219806.9A CN202310219806A CN116117174A CN 116117174 A CN116117174 A CN 116117174A CN 202310219806 A CN202310219806 A CN 202310219806A CN 116117174 A CN116117174 A CN 116117174A
Authority
CN
China
Prior art keywords
laser beam
geometry
powder material
laser
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310219806.9A
Other languages
English (en)
Inventor
叶佐元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Divergent Technologies Inc
Original Assignee
Divergent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Divergent Technologies Inc filed Critical Divergent Technologies Inc
Publication of CN116117174A publication Critical patent/CN116117174A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Abstract

提供了基于激光的粉末床熔合的设备和方法。该设备包括沉积多层粉末材料的沉积器、生成具有可变光束几何形状的激光束的激光束源、以及光束定形部件,所述光束定形部件将激光束定形为多种光束几何形状中的一种,以熔合粉末材料。

Description

基于激光的粉末床熔合的设备和方法
本申请是申请日为2019年3月5日、申请号为201980029955.0(国际申请号为PCT/US2019/020789)、发明名称为“基于可变光束几何形状的激光的粉末床熔合”的申请的分案申请。
相关申请的交叉引用
本申请要求2019年3月7日提交的题为“VARIABLE BEAM GEOMETRY LASER-BASEDPOWDER BED FUSION”的美国专利申请No.15/914,874的权益,其内容通过引用整体清楚地并入本文。
技术领域
本公开总体上涉及增材制造,并且更具体地,涉及基于可变光束几何形状的激光的粉末床熔合。
背景技术
粉末床熔合(PBF)系统可以生产具有几何上复杂形状的金属结构(称为构建件),所述复杂形状包括一些用传统制造工艺难以产生或不可能产生的形状。PBF系统包括用于逐层地产生构建件的增材制造(AM)技术。每个层或切片可以通过以下过程来形成:沉积一层金属粉末,并接着熔合(例如,熔化并冷却)金属粉末层的与构建件在该层中的截面相一致的区域。可以重复该过程以形成构建件的下一切片,并以此类推,直到构建件完成。因为每个层都沉积在前一层的顶部上,所以PBF可以被比作从底部逐切片地形成结构。
基于激光的PBF可以用于制造复杂的几何形状,并降低了定制成本。遗憾的是,与大规模生产可能需要的过程相比,利用基于激光的PBF系统进行制造可能是一个缓慢的过程。在当前的PBF系统中应用高功率激光系统可能导致在打印过程期间的材料蒸发,从而增加制造成本。
发明内容
下文将更全面地描述基于可变光束几何形状的激光的PBF以及用其进行制造的系统与方法的几个方面。
在本公开的一方面,提出了一种用于基于激光的粉末床熔合的设备。该设备包括沉积多层粉末材料的沉积器。该设备还包括生成具有可变光束几何形状的激光束的激光束源。该设备进一步包括激光施加部件(例如,偏转器),其以多种光束几何形状中的一种来施加激光束,以熔合粉末材料。
在本公开的另一方面,提出了一种基于激光的粉末床熔合的方法。该方法包括调整激光束几何形状,以形成包括线或二维形状的经调整的激光束。该方法进一步包括将经调整的激光束施加至粉末材料的至少一部分,以扫描所限定构建件的至少一部分。
对于本领域技术人员来说,其它方面将从下面的详细描述中变得显而易见,其中,通过图示仅示出和描述了几个示例性实施例。如本领域技术人员将意识到的,本文描述的概念能够具有其它的和不同的实施例,并且能够在各种其它方面修改多个细节,这些都不背离本公开。因此,附图和详细描述本质上被认为是说明性的而不是限制性的。
附图说明
在附图中,本文描述的概念的各个方面现在将通过示例而非限制的方式呈现在详细描述中,其中:
图1A-图1D示出了示例性PBF系统在不同操作阶段期间的相应侧视图。
图2A和图2B是示出根据本公开的各方面的示例性光束定形部件的示图,该光束定形部件被操作以改变激光束的几何形状。
图3是示出根据本公开的各方面的用于扫描构建件的示例性L-PBF系统的示图。
图4示出了根据本公开的各方面的在扫描期间的激光束的示例性调整。
图5是示出根据本公开的各方面的被调整成用于2-D扫描的激光束的示例性能量通量水平配置的示图。
图6是在L-PBF设备中配置激光束以扫描构建件的示例性方法的流程图。
具体实施方式
以下结合附图阐述的详细描述旨在提供对本文公开的概念的各种示例性实施例的描述,而不旨在表示可以实践本公开的仅有实施例。本公开中使用的术语“示例性”意为“用作示例、实例或说明”,并且不应该必须被解释为比本公开中提出的其它实施例优选或有利。出于提供向本领域技术人员充分传达概念的范围的彻底且完整的公开的目的,详细描述包括具体细节。然而,可以在没有这些具体细节的情况下实践本公开。在一些情况下,众所周知的结构和部件可以以框图形式示出,或者完全省略,以便避免模糊贯穿本公开所给出的各种概念。
虽然本公开总体上针对基于激光的PBF(L-PBF)系统,但是应当理解,这种L-PBF系统可以涵盖各种AM技术。因此,L-PBF工艺可以包括尤其是下列打印技术:直接金属激光烧结(DMLS)、选择性激光熔化(SLM)和选择性激光烧结(SLS)。与本公开的原理相关的其他PBF工艺包括那些目前正在构思或正在商业开发中的工艺。虽然省略了每个这样的工艺的具体细节以避免不适当地模糊本公开的关键概念,但是应当理解,权利要求旨在涵盖这样的技术和相关结构。
L-PBF系统可以生产具有几何上复杂形状的金属和聚合物结构(称为构建件),所述复杂形状包括一些利用传统制造工艺难以产生或不可能产生的形状。L-PBF系统逐层地(即逐切片地)产生构建件。每个切片可以通过以下过程来形成:沉积一层金属粉末,并熔合(例如,熔化并冷却)金属粉末层的与构建件在该切片中的截面相一致的区域。可以重复该过程以形成构建件的下一切片,并以此类推,直到所有层都被沉积并且构建件完成。
本公开的各方面针对基于激光的PBF(L-PBF)系统的激光光斑几何形状,其可以提高构建速率并提供制造过程的灵活性和额外控制。激光光斑是表面的由激光照射的区域。不同于使用被配置为终止于微小的、几乎点状光斑(该光斑具有随时间保持恒定的小直径)的激光束,激光束反而可以被配置为使用可变光束或光斑几何形状。例如,光束几何形状(即,打印材料的表面的被激光照射的区域)可以是线、正方形、矩形、三角形、不对称形状或任何其他二维形状。然后,可以利用二维扫描将所识别的光束几何形状施加至打印材料的表面。在这样做时,激光束可以在PBF打印操作中施加,使得可以在任何给定时间处理粉末床的更大连续区域。在一实施例中,光束几何形状可以在3-D打印操作期间动态地更改。因此,例如,L-PBF 3-D打印机可以利用对应的大光束几何形状来熔合较大的区域,并且随后或周期性地,3-D打印机可以将光束几何形状更改为较小的线或普通的点状形状,以扫描物体的拐角部分和/或在更小的尺度上熔合构建件的细节。
根据本公开的各方面,可以基于待生产的物体(构建件)的几何形状来调整激光束几何形状。激光束几何形状可以在扫描开始时、在逐切片的基础上、在切片内的指定时间或者联机地(on the fly)动态地进行调整。此外,激光束几何形状也可以随着激光扫描经过粉末床而连续地变化,例如,其变化与在计算机辅助设计(CAD)轮廓中所识别的物体的构思结构一致。
采用可变光束几何形状可以有利地提高L-PBF工艺的产量。此外,如本文所述调整光束几何形状可以允许在更大面积上向粉末床施加激光功率,这意味着能量通量可以保持较小以减少材料蒸发。此外,考虑到经调整的激光光斑几何形状的二维性质,光斑几何形状的能量分布可以根据扫描向量(扫描的方向)来调节,以提供加热和冷却速率控制。在固化过程期间控制冷却速率可以允许降低热应力并改变最终部件的微观结构,从而实现期望的材料性能。
图1A-图1D示出了示例性的基于激光的PBF(L-PBF)系统100在不同操作阶段期间的相应侧视图。如上所述,图1A-图1D中示出的特定实施例是采用本公开的原理的L-PBF系统的众多适用示例中的一种。还应注意的是,图1A-图1D以及本公开中的其它附图的元件未必按比例绘制,而是可以出于更好地示出本文所述概念的目的而绘制得更大或更小。L-PBF系统100可以包括:沉积器101,其可以沉积每层粉末材料;激光束源103,其可以生成激光束;光束定形部件104,其可以根据所选光束几何形状来使激光束定形;偏转器105,其可以施加所选光束几何形状的形式的激光束以熔合粉末材料;以及构建板107,其可以支撑一个或更多个构建件,比如构建件109。
L-PBF系统100还可以包括定位在粉末床容器内的构建底板111。粉末床容器的壁112通常可以限定粉末床容器的边界,该粉末床容器限定在侧部的壁112和下方的构建底板112的一部分之间。构建底板111可以逐渐地降低构建板107,使得沉积器101可以沉积下一层粉末材料。L-PBF系统100可以另外包括室113,该室可以装入L-PBF系统100的其他部件(例如,激光束源103、光束定形部件104和偏转器105),从而保护这些其他部件,实现环境和温度调控并减轻污染风险。此外,PBF系统100可以包括温度传感器122,以监测环境温度、粉末材料117的温度和/或L-PBF系统100的部件的温度。例如,沉积器101可以包括容纳粉末117(比如金属粉末)的进料器115。沉积器101还可以包括整平器119,该整平器可以通过将预定层高度(例如,对应于图1B的粉末层厚度123)上方的沉积粉末117移位来整平每层沉积粉末的顶部(参见例如图1C的粉末层125)。
具体参照图1A,该图示出了在构建件109的切片熔合之后但在下一层粉末117沉积之前的L-PBF系统100。事实上,图1A示出了这样的时间,此时L-PBF系统100已经在多个层(例如150层)中沉积并熔合了切片,从而形成构建件109的目前状态(例如,由150个切片形成)。已经沉积的多个层产生了包括沉积但未熔合的粉末的粉末床121。
图1B示出了处于一个阶段的L-PBF系统100,在该阶段,构建底板111可以降低一粉末层厚度123。构建底板111的降低导致建造件109和粉末床121下降粉末层厚度123,使得构建件和粉末床的顶部比粉末床容器壁112的顶部低等于粉末层厚度的量。例如,以这种方式,可以在构建件109和粉末床121的顶部上产生具有等于粉末层厚度123的恒定厚度的空间。
图1C示出了处于一个阶段的L-PBF系统100,在该阶段,沉积器101定位成将粉末117沉积在形成于构建件109和粉末床121的顶部表面上并以粉末床容器壁112为边界的空间中。在该示例中,沉积器101在限定的空间上逐渐移动,同时从进料器115中释放粉末117。整平器119可以整平所释放的粉末以形成具有的厚度大致等于粉末层厚度123(参见图1B)的粉末层125。因此,L-PBF系统100中的粉末117可以由粉末材料支撑结构支撑,该支撑结构可以包括例如构建板107、构建底板111、构建件109、壁112等。应该注意的是,所示出的粉末层125的厚度(例如,图1B的粉末层厚度123)可以大于上文参考图1A所述的示例性地包含150个先前沉积层所使用的实际厚度。
图1D示出了在沉积粉末层125(图1C)之后在构建件109中生成下一切片的L-PBF系统100。参考图1D,激光束源103可以生成激光束。光束定形部件104可以用于将激光束的几何形状改变为线、正方形、矩形或其他二维形状的形式。在一些方面,光束定形部件104可以通过相位板和自由空间传播来使激光束定形。光束定形部件104可以包括多个衍射、反射和折射设备,比如衍射分束器、衍射扩散器、相位板、透镜、反射镜或其他光学元件。激光束127的尺寸和几何形状的改变可以例如通过光束定形部件104的光学元件的机动移位来实现,如下面参考图2A-图2B进一步讨论的。在一些方面,可以根据构建件109来设定光束形状的几何形状。可以基于构建件的几何形状在逐切片的基础上更改光束形状的几何形状,以减少特定层的扫描时间。在一些方面,光束形状的几何形状也可以在中间层修改,或者甚至在构建件109的整个扫描中连续地更改。
偏转器105可以施加选定几何形状的激光束127,以熔合构建件109中的下一切片。在各种实施例中,偏转器105可以包括一个或更多个万向节和致动器,所述万向节和致动器可以旋转和/或平移激光束源103和/或光束定形部件104以定位激光束127。在各种实施例中,激光束源103、光束定形部件104和/或偏转器105可以调制激光束,例如,在偏转器扫描时打开和关闭激光束,使得激光束仅施加在粉末层的适当区域。例如,在各种实施例中,激光束可以由数字信号处理器(DSP)调制。
如图1D所示,粉末层125的大部分熔合发生在粉末层的在前一切片(即,先前熔合的粉末)的顶部上的区域中。这种区域的示例是构建件109的表面。图1D中的粉末层的熔合发生在表征构建件109的实体的先前熔合层上。
图2A和图2B是示出根据本公开的各方面的示例性光束定形部件的示图,该光束定形部件在两个示例性的点处实时地操作以改变激光束的几何形状。参考图2A-图2B,光束定形部件200可以包括固定光学元件202A、202B以及一个或更多个机动光学元件204A、204B。光学元件202A、202B可以具有固定的位置,使得光学元件202A、202B可以不移位。机动光学元件204A、204B可以各自包括光学元件(例如,透镜),其中马达部件(未示出)按照时间来调节机动光学元件(例如,204A)的光学元件的位置。尽管该示例性光束定形部件200包括两个机动光学元件和两个固定光学元件,但是可以使用任何数量的这种光学元件来生成期望的光束形状。此外,尽管出于方便和清楚,光学元件202A、202B和204A、204B以圆形符号示出,但是这些元件可以采取任何必要或合适的物理形式。光束定形可以通过相位板和自由空间传播来实现。这样,光束定形部件200可以包括多个衍射、反射和折射设备,比如衍射分束器、衍射扩散器、相位板、透镜和反射镜。当然,还可以附加地或替代地使用其他机构来实现期望的光束几何形状。为了附图2A-图2B的目的,从激光源传播的光通常由线表示,所述线源自左侧的激光束源210,在一个或两个方向上移动穿过各种光学元件(例如,取决于光或其部分是否被反射),并终止于图右侧的打印物体表面上的期望图案(为了清楚起见省略)。
如图2A所示,来自激光束源210的光线可以施加到固定光学元件202A。当激光束最初施加到光学元件202A时,激光束此后可以经由固定光学元件(例如,202A、202B)和当前静止的机动光学元件(204A、204B)交替地反射和折射,从而产生第一激光光斑206。在图2B中,机动光学元件204A、204B此后可以重新定位,使得所产生的激光束的几何形状可以改变成线208。激光束的尺寸和几何形状可以通过机动光学元件的移位来调节。也就是说,可以包括在每个机动光学元件204A、204B中的机动或另外的自动机构可以用来控制光学元件之间的传播空间,使得最终的光束尺寸和形状可以更改为期望的形式。
图3是示出根据本公开的各方面的用于扫描构建件的示例性L-BPF系统的示图。参考图3,激光束源302可以向光束定形部件304提供激光束。在该示例中,光束定形部件304可以类似于光束定形部件200(图2A)来配置。然而,可以附加地或替代地使用其他机构来调整激光束的几何形状。光束定形部件304可以更改由激光束源302提供的激光束,以生成线306形式的激光光斑。更改的激光束源302可以指向偏转器305,该偏转器将更改的激光束306施加到粉末表面。仅举例来说明,更改的激光束306可以被配置成长度为10mm宽度为0.2mm的线的形式。激光束306可以施加到由基质板310支撑的粉末床308。例如,激光束306可以在垂直于线306的方向上扫描经过粉末床的区域,以熔合粉末床308中的粉末材料,从而根据设计轮廓形成构建件的切片或层。这里,通过将激光束306的几何形状调整为线的形式而不是点的形式,可以提高构建速率并且可以减少生产时间。例如,利用示例性激光束,垂直于其长度以1200m/s的速度移动,L-BPF工艺可以在0.05mm的层厚度上具有2000cm3/h的构建速率。
在一些方面,激光束的形状可以基于期望的待构建零件的几何形状来调整。参考图4,激光束的形状可以调整成使得最终的激光光斑为线。激光光斑线(例如,402A、402B和402C)的长度可以基于待构建零件(例如,构建件)的几何边界来连续地更改(例如,在光束定形部件104的控制下)。在第一部分处,激光光斑线402A的长度可以为最大Lmax。基于由零件的指定几何边界给出的构建件的几何形状,可以调整激光光斑的长度,使得几何边界之外的粉末不被处理。因此,如图4所示,随着激光束在垂直于其长度的方向上继续扫描粉末材料,激光束的长度可以被连续地更改(例如,逐渐减小),以遵循零件的几何边界,直到到达第二部分。在第二部分处,激光束402B可以为小于Lmax的长度L1。随着扫描继续,激光束的长度可以进一步调整(例如,逐渐增大),直到达到构建件的第三部分。在第三部分处,激光束402C的长度可以增大至长度L2。在一些方面,还可以调节激光的功率(P),使得激光功率与长度的比率可以维持,从而总能量通量在扫描期间保持恒定。
图5是示出被调整成用于2-D扫描的激光束的示例性能量通量水平配置的示图。如上所述,激光束可以被转换成具有基本上一维(1-D)的形状(通过线来近似)或二维(2-D)的形状。2-D扫描中的光束形状可以采用任何2-D形状,包括但不限于矩形、三角形或其他多边形或几何形状。较低的能量水平可以施加至1-D或2-D形状的部分。在一个示例中,对2-D形状的不同部分施加具有不同能量水平的激光束可以用来基于激光束相对于峰值能量通量分区的相对方向来提供粉末材料的预热和/或提供冷却速率控制。
参考图5,针对三个示例性矩形激光束形状502A、502B和502C提供了能量通量水平配置。矩形激光束502A被分成四个分区。每个分区可以被配置成具有带有不同能量通量水平的不同尺寸。仅作为示例,矩形激光光斑可以被配置为长度为10mm和宽度为5mm,且在其宽度上具有不同的能量水平。当然,分区的数量和尺寸仅是示例性的,并且任何数量和尺寸的分区都可以包括在激光束形状中。类似地,尽管图5的示例中的光束形状是矩形的,但是可以使用任何多维形状。在其他实施例中,每个部分504A、504B等都可以表示施加有特定功率的被分立调整的几何光束形状。
在对激光束进行定形时,能量分布可以被配置成使得可以沿着矩形的宽度来调节能量水平。在分区504A中,能量通量水平可以提高到足以熔化粉末材料的水平(例如,峰值能量通量)。此后,在分区504B、504C和504D中,能量通量水平在每个分区中连续地降低。因此,当在扫描中施加时,矩形光束形状502A可以提供粉末材料的局部预热。也就是说,当矩形光束形状502A扫描粉末床中的粉末材料(在从左到右的方向上水平地进行)时,2-D扫描可以逐渐加热粉末床的首先以最低能量通量水平施加504D的区域中的粉末。当每个连续分区被施加到粉末材料的同一区域时,能量通量水平(例如,激光束强度)可以提高,并且粉末材料的温度继而可以提高。通过配置激光束的能量分布以在将粉末加热至熔化之前预热粉末材料,可以减少热波动和最终的热应力。
在矩形激光束形状502B中,示出了具有不同能量通量水平的四个分区。随着激光束形状502B扫描粉末床的分区中的粉末材料,施加到粉末的能量通量水平可以逐渐降低。例如,分区506D可以被施加至粉末床510的分区以熔化该区域中的粉末材料。当激光束从左到右在垂直于激光束502B的宽度的方向上继续时,随着分区506C、506B和506A被施加以顺序地扫描该区域中的材料,可以施加逐渐降低的能量通量水平。通过这样配置用于激光束形状502B的能量分布,利用激光束502B的2-D扫描可以提供对固化材料的冷却速率的控制。控制冷却速率可以降低热应力,并进一步能够将构建件部件的最终微结构产生为期望的性能。
在一些方面,激光束可以配置有一定的能量分布,以在粉末材料熔化之后提供粉末材料的局部加热和冷却速率控制。如图5所示,矩形激光束502C包括七个分区。当施加至粉末床510的区域中的粉末材料时,分区508G、508F、508E在分区508D扫描该区域时在熔化之前逐渐地加热该区域中的粉末材料。在分区508D扫描粉末床510的指定区域之后,分区508C、508B和508A可以顺序地施加,以逐渐地降低所施加的能量通量水平,从而控制熔化材料的冷却速率。因此,激光束(例如,502A、502B或502C)的能量通量水平可以根据正在处理的材料来调节,以降低通常在通过L-PBF工艺制造的零件中观察到的热应力。
图6是在L-PBF设备中配置激光束以扫描构建件的示例性方法的流程图。L-PBF设备可以可选地确定所限定构建件的几何形状(602)。L-PBF设备可以调整激光束的几何形状,以形成包括线或2-D形状的经调整的激光束(604)。例如,参考图2A-图2B,光束定形部件200可以接收来自激光束源的激光束。光束定形部件200可以配置有固定光学元件(202A、202B)和机动光学元件(204A、204B)。机动光学元件(204A、204B)可以相对于固定光学元件(202A、202B)移动或重新定位,以控制光学元件(例如,机动光学元件和固定光学元件)之间的传播空间,使得可以更改最终的激光束尺寸和形状。用于调整期望的激光束形状的替代技术也可以是可行的。
在一些方面,激光束的几何形状可以在激光束的施加期间变化。例如,如图4所示,当激光束扫描粉末材料以生成构建件时,可以连续地更改被调整成线(例如,402A、402B和402C)形式的激光束。在图4的示例中,随着扫描在粉末床上进行,激光光斑线的长度被更改。然而,本公开不限于此,并且可以设想其他更改。例如,光束的形状也可以随着扫描的进行而调整。也就是说,激光束可以在扫描的一部分期间形成为矩形,并且稍后可以在扫描的另一部分被改变为三角形。在一些方面,可以基于所限定构建件的几何形状来调整激光束(610)。例如,可以分析期望构建件的几何形状,以确定可以最有效地(例如,使得完成时间可以减少或优化)用于扫描期望构建件的几何形状。在另一示例中,如图4所示,激光光斑线的长度基于为正在构建的零件指定的边界来调节。
在一些方面,可以基于与正在构建的零件相关联的能量分布来调整激光束几何形状(608)。例如,可以基于用于期望构建件的粉末材料的类型(例如,不同的金属)来改变熔化点。经调整的激光束几何形状可以被分成分区。能量分布可以指定不同的能量通量水平,从而经由经调整的激光束的每个不同分区来施加。例如,如图5所示,矩形激光束502A可以配置有四个分区。在每个分区504B、504C和504D中,施加的能量通量水平连续地降低。因此,当施加到粉末时(以相反的顺序),矩形光束502A逐渐地加热粉末。当每个连续分区(例如,504D→504C→504B→504A)被施加到粉末材料的同一区域时,能量通量水平(例如,激光束强度)可以提高,并且粉末材料的温度继而可以提高。通过基于能量分布来调整具有分区的激光束,激光束可以被配置为在将粉末加热至熔化之前预热粉末材料(经由分区504A)。因此,可以减少最终构建件中的热波动和最终热应力。
此外,能量分布可以用来调整激光束,以便在粉末材料熔化之后提供冷却控制。例如,如图5所示,矩形激光束502B可以被调整和配置成包括具有不同能量通量水平的四个分区。在矩形激光束502B扫描粉末床的分区中的粉末材料时,在激光束的每个分区中施加至粉末的能量通量水平可以逐渐地降低。通过控制冷却速率,可以进一步降低最终构建件中的热应力。
L-PBF设备可以将经调整的激光束施加至粉末材料的至少一部分,以扫描所限定构建件的至少一部分(606)。例如,如图3所示,被调整成线(306)形式的激光束被施加到粉末床308中的粉末材料,从而熔化粉末材料以限定构建件的一部分。可以在垂直于其长度(例如,线)或其宽度的方向上施加经调整的激光束。以这种方式,可以在扫描期间将经调整的激光束施加到更大的区域,从而减少生产时间。
在一些方面,可以基于温度分布来调整激光束的几何形状(612)。例如,温度分布可以包括用于构建件的粉末材料熔化的温度以及其他阈值(例如,粉末材料蒸发的温度)。温度传感器(比如图1A的温度传感器122A)可以监测粉末床中的粉末材料的温度。当温度达到临界点时,可以调整激光束(例如,减少激光束的能量通量)。
在其他实施例中,2-D形状可以是无定形的、不对称的,并且不需要为已知形状的形式。在一些实施例中,CAD软件或与CAD软件结合工作的应用程序可以根据3-D打印作业中所用的时间来确定变化形状的最佳序列。除了其他变量,软件还可以考虑上述的一些或所有因素,包括温度分布、预热和/或预冷有利的区域、构建物体的几何形状、使蒸发效应最小的预期等。光束定形部件104(图1)可以利用本文提到的各种硬件元件来构建,并在3-D打印机中实现,以调整光束的几何形状。光束定形部件104可以被配置为随时间改变光束形状,比如连续地改变线形式的光束形状的长度。配合固定元件连续地移动机动透镜和其他光学元件可以帮助提供随着时间的推移改变光束形状的能力。CAD软件和/或与之相关的应用软件可以用作数据模型,用于向3-D打印机提供指令,以对给定的构建件赋予期望结果的方式操作光束定形部件104和激光束源103的功率分布。
虽然激光束源103和光束定形部件104通常被识别为独立的部件,但是在一些示例性实施例中,两个部件的功能可以被包括为单个集成结构的一部分,而不脱离本公开的范围。
本文公开的各种示例性实施例针对L-PBF系统中的具有可变光束几何形状的激光的新颖配置。
提供先前的描述是为了使本领域技术人员能够实践本文中所描述的各方面。对于本领域技术人员来说,对贯穿本公开呈现的这些示例性实施例的各种修改将是显而易见的,并且本文公开的概念可以应用于其他支撑结构以及用于移除支撑结构的系统和方法。因此,权利要求不旨在限于贯穿本公开内容给出的示例性实施例,而是与符合语言权利要求的全部范围相一致。贯穿本公开内容所描述的示例性实施例的元件的所有结构和功能等同物都是本领域普通技术人员已知的或以后将为本领域普通技术人员所公知的,这些等同物旨在由权利要求涵盖。此外,本文所公开的内容都不旨在贡献给公众,无论在权利要求中是否明确地叙述了这样的公开内容。不得根据35U.S.C§112(f)的条款或适用司法管辖权内的类似法律来解释权利要求的要素,除非使用短语“用于……的装置”来清楚地叙述该要素,或者在方法权利要求的情况中,使用短语“用于……的步骤”来叙述该要素。

Claims (28)

1.一种用于基于激光的粉末床熔合的设备,包括:
沉积器,所述沉积器沉积多层粉末材料;
激光束源,所述激光束源生成激光束;以及
光束定形部件,所述光束定形部件将激光束定形为多种光束几何形状中的一种,以熔合所述粉末材料。
2.根据权利要求1所述的设备,其中,所述光束定形部件被配置成在激光束的施加期间改变来自所述激光束源的激光束的光束几何形状。
3.根据权利要求1所述的设备,其中,激光束几何形状基于待生产物体的设计轮廓而改变。
4.根据权利要求1所述的设备,其中,激光束几何形状基于待生产物体的能量分布而改变。
5.根据权利要求1所述的设备,其中,所述激光束的光束几何形状包括二维形状。
6.根据权利要求1所述的设备,其中,所述激光束的光束几何形状包括线。
7.根据权利要求6所述的设备,其中,所述线的长度能够基于激光束的能量分布而改变。
8.根据权利要求1所述的设备,其中,光束几何形状至少包括第一部分和第二部分,并且所述第一部分的能量分布不同于所述第二部分的能量分布。
9.根据权利要求8所述的设备,其中,所述第一部分的能量分布和所述第二部分的能量分布至少部分地基于温度分布来配置。
10.根据权利要求8所述的设备,其中,所述激光束源被配置成在所述第一部分与所述第二部分之间提供恒定的能量通量。
11.根据权利要求8所述的设备,其中,所述第一部分被配置为预热粉末材料,并且所述第二部分被配置为熔合粉末材料。
12.根据权利要求8所述的设备,其中,所述第一部分被配置成熔合粉末材料,并且所述第二部分被配置成降低能量通量以控制熔合后的粉末材料的冷却。
13.根据权利要求1所述的设备,进一步包括控制器,所述控制器联接到所述激光束源并被配置成控制从所述激光束源发射的激光束的功率密度。
14.根据权利要求1所述的设备,其中,激光束几何形状基于待生产物体的温度分布而改变。
15.根据权利要求1所述的设备,其中,所述光束定形部件包括被对准以包围所述激光束的固定光学元件和可移动光学元件的每一种中的至少一个。
16.根据权利要求15所述的设备,其中,所述光学元件中的至少一个包括透镜。
17.一种基于激光的粉末床熔合的方法,包括:
调整激光束的几何形状以形成经调整的激光束,所述经调整的激光束在接触一层粉末材料的表面时包括线或二维形状;以及
将经调整的激光束施加到该层粉末材料的至少一部分上,以熔合所限定构建件的至少一部分。
18.根据权利要求17所述的方法,进一步包括在激光束的施加期间随时间改变所述激光束的几何形状。
19.根据权利要求17所述的方法,进一步包括基于待生产物体的能量分布来改变所述激光束的几何形状。
20.根据权利要求17所述的方法,其中,经调整的激光束的激光束几何形状包括二维形状。
21.根据权利要求17所述的方法,其中,经调整的激光束的激光束几何形状包括线,所述方法进一步包括在垂直于所述线的长度的方向上施加经调整的激光束。
22.根据权利要求21所述的方法,进一步包括基于经调整的激光束的能量分布来改变所述线的长度。
23.根据权利要求17所述的方法,其中,经调整的激光束的激光束几何形状至少包括第一部分和第二部分,并且所述第一部分的能量分布不同于所述第二部分的能量分布。
24.根据权利要求23所述的方法,其中,所述第一部分的能量分布和所述第二部分的能量分布至少部分地基于温度分布来配置。
25.根据权利要求23所述的方法,其中,所述第一部分的能量分布和所述第二部分的能量分布被配置成在所述第一部分与所述第二部分之间提供恒定的能量通量。
26.根据权利要求23所述的方法,其中,所述第一部分被配置为预热粉末材料,并且所述第二部分被配置为熔合粉末材料。
27.根据权利要求23所述的方法,其中,所述第一部分被配置成熔合粉末材料,并且所述第二部分被配置成减少能量通量以控制熔合后的粉末材料的冷却。
28.根据权利要求17所述的方法,进一步包括确定所限定构建件的几何形状,并且其中,所述激光束的几何形状基于所限定构建件的几何形状来调整。
CN202310219806.9A 2018-03-07 2019-03-05 基于激光的粉末床熔合的设备和方法 Pending CN116117174A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/914,874 2018-03-07
US15/914,874 US11224943B2 (en) 2018-03-07 2018-03-07 Variable beam geometry laser-based powder bed fusion
PCT/US2019/020789 WO2019173363A1 (en) 2018-03-07 2019-03-05 Variable beam geometry laser-based powder bed fusion
CN201980029955.0A CN112118926B (zh) 2018-03-07 2019-03-05 基于可变光束几何形状的激光的粉末床熔合

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980029955.0A Division CN112118926B (zh) 2018-03-07 2019-03-05 基于可变光束几何形状的激光的粉末床熔合

Publications (1)

Publication Number Publication Date
CN116117174A true CN116117174A (zh) 2023-05-16

Family

ID=67842895

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980029955.0A Active CN112118926B (zh) 2018-03-07 2019-03-05 基于可变光束几何形状的激光的粉末床熔合
CN202310219806.9A Pending CN116117174A (zh) 2018-03-07 2019-03-05 基于激光的粉末床熔合的设备和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201980029955.0A Active CN112118926B (zh) 2018-03-07 2019-03-05 基于可变光束几何形状的激光的粉末床熔合

Country Status (4)

Country Link
US (2) US11224943B2 (zh)
EP (1) EP3762167A4 (zh)
CN (2) CN112118926B (zh)
WO (1) WO2019173363A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018110294A1 (de) * 2018-04-27 2019-10-31 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Generierung von Steuerdaten für eine Vorrichtung zur additiven Fertigung
US11691218B2 (en) * 2019-03-26 2023-07-04 The Boeing Company Additive-manufacturing methods

Family Cites Families (309)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203226A (en) 1990-04-17 1993-04-20 Toyoda Gosei Co., Ltd. Steering wheel provided with luminous display device
DE29507827U1 (de) 1995-05-16 1995-07-20 Edag Eng & Design Ag Zum Zuführen von Schweißbolzen zu einer Schweißpistole bestimmte Zuführvorrichtung
DE19518175A1 (de) 1995-05-19 1996-11-21 Edag Eng & Design Ag Verfahren zum automatischen Einbau eines Bauteils einer Kraftfahrzeugkarosserie
DE19519643B4 (de) 1995-05-30 2005-09-22 Edag Engineering + Design Ag Behälter-Wechselvorrichtung
US5990444A (en) 1995-10-30 1999-11-23 Costin; Darryl J. Laser method and system of scribing graphics
US6252196B1 (en) 1996-10-11 2001-06-26 Technolines Llc Laser method of scribing graphics
US5742385A (en) 1996-07-16 1998-04-21 The Boeing Company Method of airplane interiors assembly using automated rotating laser technology
CA2244731C (en) 1996-12-05 2005-06-07 Teijin Limited Fiber aggregate molding method
US6010155A (en) 1996-12-31 2000-01-04 Dana Corporation Vehicle frame assembly and method for manufacturing same
US6140602A (en) 1997-04-29 2000-10-31 Technolines Llc Marking of fabrics and other materials using a laser
SE9703859L (sv) 1997-10-23 1998-11-30 Ssab Hardtech Ab Krockskyddsbalk för fordon
DE19907015A1 (de) 1999-02-18 2000-08-24 Edag Eng & Design Ag In Fertigungslinien für Kraftfahrzeuge einsetzbare Spannvorrichtung und Fertigungslinie mit einer solchen Spannvorrichtung
US6811744B2 (en) 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
US6391251B1 (en) 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US6409930B1 (en) 1999-11-01 2002-06-25 Bmc Industries, Inc. Lamination of circuit sub-elements while assuring registration
US6468439B1 (en) 1999-11-01 2002-10-22 Bmc Industries, Inc. Etching of metallic composite articles
US6365057B1 (en) 1999-11-01 2002-04-02 Bmc Industries, Inc. Circuit manufacturing using etched tri-metal media
US6318642B1 (en) 1999-12-22 2001-11-20 Visteon Global Tech., Inc Nozzle assembly
US6585151B1 (en) 2000-05-23 2003-07-01 The Regents Of The University Of Michigan Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects
US6919035B1 (en) 2001-05-18 2005-07-19 Ensci Inc. Metal oxide coated polymer substrates
JP3889940B2 (ja) 2001-06-13 2007-03-07 株式会社東海理化電機製作所 金型装置、金型装置の使用方法、及び金型装置の共用方法
ATE328682T1 (de) 2001-08-31 2006-06-15 Edag Eng & Design Ag Rollfalzkopf und verfahren zum falzen eines flansches
KR100718574B1 (ko) 2001-11-02 2007-05-15 더 보잉 컴파니 압축 잔류 응력 패턴을 가진 용접 조인트를 형성하는 장치및 방법
US6644721B1 (en) 2002-08-30 2003-11-11 Ford Global Technologies, Llc Vehicle bed assembly
DE10325906B4 (de) 2003-06-05 2007-03-15 Erwin Martin Heberer Vorrichtung zur Abschirmung von kohärenter elektromagnetischer Strahlung sowie Laserkabine mit einer solchen Vorrichtung
DE102004014662A1 (de) 2004-03-25 2005-10-13 Audi Ag Anordnung mit einer Fahrzeug-Sicherung und einem Analog/Digital-Wandler
US7745293B2 (en) 2004-06-14 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing a thin film transistor including forming impurity regions by diagonal doping
ATE375830T1 (de) 2004-09-24 2007-11-15 Edag Eng & Design Ag Bördelvorrichtung und bördelverfahren mit bauteilschutz
US20060108783A1 (en) 2004-11-24 2006-05-25 Chi-Mou Ni Structural assembly for vehicles and method of making same
DE102005004474B3 (de) 2005-01-31 2006-08-31 Edag Engineering + Design Ag Bördelvorrichtung und Bördelverfahren zum Umlegen eines Bördelstegs eines Bauteils um eine Bördelkante
DE102005030944B4 (de) 2005-06-30 2007-08-02 Edag Engineering + Design Ag Verfahren und Vorrichtung zum Fügen von Fügestrukturen, insbesondere in der Montage von Fahrzeugbauteilen
ES2384269T3 (es) 2005-09-28 2012-07-03 Dip Tech. Ltd. Tintas con un efecto comparable al del grabado para imprimir sobre superficies cerámicas
US7716802B2 (en) 2006-01-03 2010-05-18 The Boeing Company Method for machining using sacrificial supports
DE102006014279A1 (de) 2006-03-28 2007-10-04 Edag Engineering + Design Ag Spannvorrichtung zum Aufnehmen und Spannen von Bauteilen
DE102006014282A1 (de) 2006-03-28 2007-10-04 Edag Engineering + Design Ag Spannvorrichtung zum Aufnehmen und Spannen von Bauteilen
JP2007292048A (ja) 2006-03-29 2007-11-08 Yamaha Motor Co Ltd 鞍乗型車両用排気装置および鞍乗型車両
WO2008020899A2 (en) 2006-04-17 2008-02-21 Cdm Optics, Inc. Arrayed imaging systems and associated methods
DE102006021755A1 (de) 2006-05-10 2007-11-15 Edag Engineering + Design Ag Energiestrahl-Löten oder -Schweißen von Bauteilen
JP2007317750A (ja) 2006-05-23 2007-12-06 Matsushita Electric Ind Co Ltd 撮像装置
DE102006038795A1 (de) 2006-08-18 2008-03-20 Fft Edag Produktionssysteme Gmbh & Co. Kg Überwachungsvorrichtung für eine Laserbearbeitungsvorrichtung
EP1900709B1 (en) 2006-09-14 2010-06-09 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body and material composition for honeycomb fired body
DE202006018552U1 (de) 2006-12-08 2007-02-22 Edag Engineering + Design Ag Bördelhandgerät
US7344186B1 (en) 2007-01-08 2008-03-18 Ford Global Technologies, Llc A-pillar structure for an automotive vehicle
DE102007002856B4 (de) 2007-01-15 2012-02-09 Edag Gmbh & Co. Kgaa Vorrichtung zum Bördeln und Schweißen oder Löten von Bauteilen
EP1949981B1 (en) 2007-01-18 2015-04-29 Toyota Motor Corporation Composite of sheet metal parts
DE202007003110U1 (de) 2007-03-02 2007-08-02 Edag Engineering + Design Ag Automobil mit erleichtertem Fahrgastausstieg
US7710347B2 (en) 2007-03-13 2010-05-04 Raytheon Company Methods and apparatus for high performance structures
DE102007022102B4 (de) 2007-05-11 2014-04-10 Fft Edag Produktionssysteme Gmbh & Co. Kg Bördeln von Bauteilen in Serienfertigungen mit kurzen Taktzeiten
DE202007007838U1 (de) 2007-06-01 2007-09-13 Edag Engineering + Design Ag Rollbördelwerkzeug
EP2190933B1 (en) 2007-07-13 2019-09-18 Advanced Ceramics Manufacturing, LLC Aggregate-based mandrels for composite part production and composite part production methods
JP4478200B2 (ja) 2007-07-20 2010-06-09 新日本製鐵株式会社 ハイドロフォーム加工方法及びハイドロフォーム加工部品
US9071436B2 (en) 2007-12-21 2015-06-30 The Invention Science Fund I, Llc Security-activated robotic system
US9818071B2 (en) 2007-12-21 2017-11-14 Invention Science Fund I, Llc Authorization rights for operational components
US8752166B2 (en) 2007-12-21 2014-06-10 The Invention Science Fund I, Llc Security-activated operational components
US8286236B2 (en) 2007-12-21 2012-10-09 The Invention Science Fund I, Llc Manufacturing control system
US9626487B2 (en) 2007-12-21 2017-04-18 Invention Science Fund I, Llc Security-activated production device
US9128476B2 (en) 2007-12-21 2015-09-08 The Invention Science Fund I, Llc Secure robotic operational system
US8429754B2 (en) 2007-12-21 2013-04-23 The Invention Science Fund I, Llc Control technique for object production rights
DE102008003067B4 (de) 2008-01-03 2013-05-29 Edag Gmbh & Co. Kgaa Verfahren und Biegewerkzeug zum Biegen eines Werkstücks
US7908922B2 (en) 2008-01-24 2011-03-22 Delphi Technologies, Inc. Silicon integrated angular rate sensor
DE102008008306A1 (de) 2008-02-07 2009-08-13 Edag Gmbh & Co. Kgaa Drehtisch
DE102008013591B4 (de) 2008-03-11 2010-02-18 Edag Gmbh & Co. Kgaa Werkzeug, Anlage und Verfahren zur Herstellung eines Kabelbaums
DE102008047800B4 (de) 2008-05-09 2021-11-18 Fft Produktionssysteme Gmbh & Co. Kg Verfahren und Werkzeug zur Herstellung einer Fixierverbindung an formschlüssig gefügten Bauteilen
EP2279061B1 (de) 2008-05-21 2014-07-16 FFT EDAG Produktionssysteme GmbH & Co. KG Spannrahmenloses fügen von bauteilen
WO2009154484A2 (en) 2008-06-20 2009-12-23 Business Intelligence Solutions Safe B.V. Methods, apparatus and systems for data visualization and related applications
US8383028B2 (en) 2008-11-13 2013-02-26 The Boeing Company Method of manufacturing co-molded inserts
US8452073B2 (en) 2009-04-08 2013-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Closed-loop process control for electron beam freeform fabrication and deposition processes
DE102009018619B4 (de) 2009-04-27 2014-07-17 Fft Edag Produktionssysteme Gmbh & Co. Kg Roboterabstützung
DE102009018618B4 (de) 2009-04-27 2018-09-06 Fft Produktionssysteme Gmbh & Co. Kg Spannvorrichtung, Anlage und Verfahren zur Bearbeitung wechselnder Bauteiltypen
DE102009024344B4 (de) 2009-06-09 2011-02-24 Edag Gmbh & Co. Kgaa Verfahren und Werkzeug zum Bördeln eines Werkstücks
DE202009012432U1 (de) 2009-09-15 2010-01-28 Edag Gmbh & Co. Kgaa Karosseriebauteil
US8354170B1 (en) 2009-10-06 2013-01-15 Hrl Laboratories, Llc Elastomeric matrix composites
US8610761B2 (en) 2009-11-09 2013-12-17 Prohectionworks, Inc. Systems and methods for optically projecting three-dimensional text, images and/or symbols onto three-dimensional objects
US8606540B2 (en) 2009-11-10 2013-12-10 Projectionworks, Inc. Hole measurement apparatuses
US8755923B2 (en) 2009-12-07 2014-06-17 Engineering Technology Associates, Inc. Optimization system
US8686997B2 (en) 2009-12-18 2014-04-01 Sassault Systemes Method and system for composing an assembly
EP2383669B1 (en) 2010-04-02 2018-07-11 Dassault Systèmes Design of a part modeled by parallel geodesic curves
JP5914470B2 (ja) 2010-06-21 2016-05-11 ゲニキャップ ビヘール ビー.ヴィー. コンピュータ実装ツールボックスシステム及び方法
US8289352B2 (en) 2010-07-15 2012-10-16 HJ Laboratories, LLC Providing erasable printing with nanoparticles
WO2013028150A2 (en) 2010-08-11 2013-02-28 Massachusetts Institute Of Technology Articulating protective system for resisting mechanical loads
EP2799150B1 (en) 2013-05-02 2016-04-27 Hexagon Technology Center GmbH Graphical application system
US9858604B2 (en) 2010-09-24 2018-01-02 Amazon Technologies, Inc. Vendor interface for item delivery via 3D manufacturing on demand
US9672550B2 (en) 2010-09-24 2017-06-06 Amazon Technologies, Inc. Fulfillment of orders for items using 3D manufacturing on demand
US9898776B2 (en) 2010-09-24 2018-02-20 Amazon Technologies, Inc. Providing services related to item delivery via 3D manufacturing on demand
US9684919B2 (en) 2010-09-24 2017-06-20 Amazon Technologies, Inc. Item delivery using 3D manufacturing on demand
US9566758B2 (en) 2010-10-19 2017-02-14 Massachusetts Institute Of Technology Digital flexural materials
US9690286B2 (en) 2012-06-21 2017-06-27 Massachusetts Institute Of Technology Methods and apparatus for digital material skins
CN103338880B (zh) 2011-01-28 2015-04-22 阿卡姆股份有限公司 三维物体生产方法
WO2012109266A2 (en) 2011-02-07 2012-08-16 Ion Geophysical Corporation Method and apparatus for sensing underwater signals
EP2495292B1 (de) 2011-03-04 2013-07-24 FFT EDAG Produktionssysteme GmbH & Co. KG Fügeflächenvorbehandlungsvorrichtung und Fügeflächenvorbehandlungsverfahren
CN103717378B (zh) 2011-06-02 2016-04-27 A·雷蒙德公司 通过三维印刷制造的紧固件
US9246299B2 (en) 2011-08-04 2016-01-26 Martin A. Stuart Slab laser and amplifier
US9101979B2 (en) 2011-10-31 2015-08-11 California Institute Of Technology Methods for fabricating gradient alloy articles with multi-functional properties
US10011089B2 (en) 2011-12-31 2018-07-03 The Boeing Company Method of reinforcement for additive manufacturing
DE102012101939A1 (de) 2012-03-08 2013-09-12 Klaus Schwärzler Verfahren und Vorrichtung zum schichtweisen Aufbau eines Formkörpers
GB201205591D0 (en) * 2012-03-29 2012-05-16 Materials Solutions Apparatus and methods for additive-layer manufacturing of an article
US9566742B2 (en) 2012-04-03 2017-02-14 Massachusetts Institute Of Technology Methods and apparatus for computer-assisted spray foam fabrication
EP2849931B1 (en) 2012-05-18 2018-04-25 3D Systems, Inc. Use of an adhesive for 3d printing
US8873238B2 (en) 2012-06-11 2014-10-28 The Boeing Company Chassis system and method for holding and protecting electronic modules
US9533526B1 (en) 2012-06-15 2017-01-03 Joel Nevins Game object advances for the 3D printing entertainment industry
US9672389B1 (en) 2012-06-26 2017-06-06 The Mathworks, Inc. Generic human machine interface for a graphical model
EP2689865B1 (de) 2012-07-27 2016-09-14 FFT Produktionssysteme GmbH & Co. KG Bördelpresse
EP2880638A1 (en) 2012-07-30 2015-06-10 Materialise N.V. Systems and methods for forming and utilizing bending maps for object design
US8437513B1 (en) 2012-08-10 2013-05-07 EyeVerify LLC Spoof detection for biometric authentication
US10029415B2 (en) 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
CN104969029B (zh) 2012-12-19 2018-11-02 巴斯夫欧洲公司 用于光学检测至少一种物体的检测器
US9329020B1 (en) 2013-01-02 2016-05-03 Lockheed Martin Corporation System, method, and computer program product to provide wireless sensing based on an aggregate magnetic field reading
US9244986B2 (en) 2013-01-11 2016-01-26 Buckyball Mobile, Inc. Method and system for interactive geometric representations, configuration and control of data
US9609755B2 (en) 2013-01-17 2017-03-28 Hewlett-Packard Development Company, L.P. Nanosized particles deposited on shaped surface geometries
US9626489B2 (en) 2013-03-13 2017-04-18 Intertrust Technologies Corporation Object rendering systems and methods
WO2014144255A2 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Laser sintering apparatus and methods
US20140277669A1 (en) 2013-03-15 2014-09-18 Sikorsky Aircraft Corporation Additive topology optimized manufacturing for multi-functional components
US9764415B2 (en) 2013-03-15 2017-09-19 The United States Of America As Represented By The Administrator Of Nasa Height control and deposition measurement for the electron beam free form fabrication (EBF3) process
US9555580B1 (en) 2013-03-21 2017-01-31 Temper Ip, Llc. Friction stir welding fastener
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US20140291886A1 (en) 2013-03-22 2014-10-02 Gregory Thomas Mark Three dimensional printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
WO2014169238A1 (en) 2013-04-11 2014-10-16 Digimarc Corporation Methods for object recognition and related arrangements
DK2989140T3 (en) 2013-04-26 2017-09-04 Dsm Ip Assets Bv VINYL FUNCTIONALIZED URETHAN RANCHES FOR POWDER-TREATED COATING COMPOSITIONS
ES2556564T3 (es) 2013-05-22 2016-01-18 Fft Produktionssysteme Gmbh & Co. Kg Ensamblaje de una pieza de trabajo con una soldadura de ensamblaje escondida
ES2541428T3 (es) 2013-06-07 2015-07-20 Fft Produktionssysteme Gmbh & Co. Kg Dispositivo para su uso en la manipulación de una carga y procedimiento para fabricar un dispositivo de este tipo
JP6571638B2 (ja) * 2013-06-10 2019-09-04 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 選択的レーザ固化装置および方法
WO2014198623A1 (en) 2013-06-13 2014-12-18 Basf Se Detector for optically detecting at least one object
EP2813432B1 (en) 2013-06-13 2017-12-20 Airbus Operations GmbH Method of installing a fixture
AU2014280334B2 (en) 2013-06-13 2018-02-01 Basf Se Optical detector and method for manufacturing the same
US9724877B2 (en) 2013-06-23 2017-08-08 Robert A. Flitsch Methods and apparatus for mobile additive manufacturing of advanced structures and roadways
US9688032B2 (en) 2013-07-01 2017-06-27 GM Global Technology Operations LLC Thermoplastic component repair
GB201313840D0 (en) 2013-08-02 2013-09-18 Rolls Royce Plc Method of Manufacturing a Component
GB201313839D0 (en) 2013-08-02 2013-09-18 Rolls Royce Plc Method of Manufacturing a Component
GB201313841D0 (en) 2013-08-02 2013-09-18 Rolls Royce Plc Method of Manufacturing a Component
KR102191139B1 (ko) 2013-08-19 2020-12-15 바스프 에스이 광학 검출기
EP3036558B1 (en) 2013-08-19 2020-12-16 Basf Se Detector for determining a position of at least one object
US10197338B2 (en) 2013-08-22 2019-02-05 Kevin Hans Melsheimer Building system for cascading flows of matter and energy
US10052820B2 (en) 2013-09-13 2018-08-21 Made In Space, Inc. Additive manufacturing of extended structures
EP3055604B1 (en) 2013-10-07 2021-03-31 Raytheon Technologies Corporation Additively grown enhanced impact resistance features for improved structure and joint protection
US9248611B2 (en) 2013-10-07 2016-02-02 David A. Divine 3-D printed packaging
US10725451B2 (en) 2013-10-21 2020-07-28 Made In Space, Inc. Terrestrial and space-based manufacturing systems
US10086568B2 (en) 2013-10-21 2018-10-02 Made In Space, Inc. Seamless scanning and production devices and methods
EP3071393A1 (en) 2013-11-21 2016-09-28 SABIC Global Technologies B.V. Reduced density article
RU2580145C2 (ru) * 2013-11-21 2016-04-10 Юрий Александрович Чивель Способ получения объемных изделий с градиентом свойств из порошков и устройство для его осуществления
US10196539B2 (en) 2013-11-21 2019-02-05 Dsm Ip Assets B.V. Thermosetting powder coating compositions comprising methyl-substituted benzoyl peroxide
US10013777B2 (en) 2013-11-25 2018-07-03 7D Surgical Inc. System and method for generating partial surface from volumetric data for registration to surface topology image data
US9555315B2 (en) 2013-12-05 2017-01-31 Aaron Benjamin Aders Technologies for transportation
US9604124B2 (en) 2013-12-05 2017-03-28 Aaron Benjamin Aders Technologies for transportation
EP2886448B1 (en) 2013-12-20 2017-03-08 Airbus Operations GmbH A load bearing element and a method for manufacturing a load bearing element
TW201527070A (zh) 2014-01-06 2015-07-16 Prior Company Ltd 裝飾薄膜及其製造方法以及加飾成型品的製造方法
WO2015105024A1 (ja) 2014-01-10 2015-07-16 勝義 近藤 チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法
BR112016016577B1 (pt) 2014-01-24 2021-05-04 Hi-Lex Corporation método para a produção de pó de titânio que contém um nitrogênio solubilizado sólido
US20170008126A1 (en) * 2014-02-06 2017-01-12 United Technologies Corporation An additive manufacturing system with a multi-energy beam gun and method of operation
US9424503B2 (en) 2014-08-11 2016-08-23 Brian Kieser Structurally encoded component and method of manufacturing structurally encoded component
US10204216B2 (en) 2014-02-24 2019-02-12 Singapore University Of Technology And Design Verification methods and verification devices
US9817922B2 (en) 2014-03-01 2017-11-14 Anguleris Technologies, Llc Method and system for creating 3D models from 2D data for building information modeling (BIM)
US9782936B2 (en) 2014-03-01 2017-10-10 Anguleris Technologies, Llc Method and system for creating composite 3D models for building information modeling (BIM)
US9703896B2 (en) 2014-03-11 2017-07-11 Microsoft Technology Licensing, Llc Generation of custom modular objects
US10006156B2 (en) 2014-03-21 2018-06-26 Goodrich Corporation Systems and methods for calculated tow fiber angle
US9765226B2 (en) 2014-03-27 2017-09-19 Disney Enterprises, Inc. Ultraviolet printing with luminosity control
US10294982B2 (en) 2014-03-28 2019-05-21 The Boeing Company Systems, methods, and apparatus for supported shafts
KR101588762B1 (ko) 2014-04-09 2016-01-26 현대자동차 주식회사 차체 전방 구조물
US10018576B2 (en) 2014-04-09 2018-07-10 Texas Instruments Incorporated Material detection and analysis using a dielectric waveguide
US9597843B2 (en) 2014-05-15 2017-03-21 The Boeing Company Method and apparatus for layup tooling
CA2955969A1 (en) 2014-05-16 2015-11-19 Divergent Technologies, Inc. Modular formed nodes for vehicle chassis and their methods of use
US9643361B2 (en) 2014-05-27 2017-05-09 Jian Liu Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser
US10074128B2 (en) 2014-06-08 2018-09-11 Shay C. Colson Pre-purchase mechanism for autonomous vehicles
DE202014102800U1 (de) 2014-06-17 2014-06-27 Fft Produktionssysteme Gmbh & Co. Kg Segmentierte Bauteilauflage
US20150367418A1 (en) 2014-06-20 2015-12-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
CN111746446B (zh) 2014-07-25 2023-10-10 沙特基础工业全球技术有限公司 可压碎聚合物纵梁延伸件、系统及其制作和使用方法
CA2957274C (en) 2014-08-04 2021-05-25 Washington State University Vapor cooled shielding liner for cryogenic storage in composite pressure vessels
US9783324B2 (en) 2014-08-26 2017-10-10 The Boeing Company Vessel insulation assembly
WO2016038692A1 (ja) 2014-09-09 2016-03-17 グラフェンプラットフォーム株式会社 グラフェン前駆体として用いられる黒鉛系炭素素材、これを含有するグラフェン分散液及びグラフェン複合体並びにこれを製造する方法
US9696238B2 (en) 2014-09-16 2017-07-04 The Boeing Company Systems and methods for icing flight tests
CA2961026C (en) 2014-09-24 2022-11-08 Holland Lp Grating connector and spacer apparatus, system, and methods of using the same
US10285219B2 (en) 2014-09-25 2019-05-07 Aurora Flight Sciences Corporation Electrical curing of composite structures
US9854828B2 (en) 2014-09-29 2018-01-02 William Langeland Method, system and apparatus for creating 3D-printed edible objects
US10081140B2 (en) 2014-10-29 2018-09-25 The Boeing Company Apparatus for and method of compaction of a prepreg
US10108766B2 (en) 2014-11-05 2018-10-23 The Boeing Company Methods and apparatus for analyzing fatigue of a structure and optimizing a characteristic of the structure based on the fatigue analysis
EP3018051A1 (en) 2014-11-06 2016-05-11 Airbus Operations GmbH Structural component and method for producing a structural component
EP3218248B1 (en) 2014-11-13 2019-01-09 SABIC Global Technologies B.V. Drag reducing aerodynamic vehicle components and methods of making the same
US10016852B2 (en) 2014-11-13 2018-07-10 The Boeing Company Apparatuses and methods for additive manufacturing
US10022792B2 (en) 2014-11-13 2018-07-17 The Indian Institute of Technology Process of dough forming of polymer-metal blend suitable for shape forming
KR102549649B1 (ko) 2014-11-14 2023-06-29 가부시키가이샤 니콘 조형 장치 및 조형 방법
US9915527B2 (en) 2014-11-17 2018-03-13 The Boeing Company Detachable protective coverings and protection methods
DE102014116938A1 (de) 2014-11-19 2016-05-19 Airbus Operations Gmbh Herstellung von Komponenten eines Fahrzeugs unter Anwendung von Additive Layer Manufacturing
US9600929B1 (en) 2014-12-01 2017-03-21 Ngrain (Canada) Corporation System, computer-readable medium and method for 3D-differencing of 3D voxel models
US9595795B2 (en) 2014-12-09 2017-03-14 Te Connectivity Corporation Header assembly
DE102014225488A1 (de) 2014-12-10 2016-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polymerzusammensetzung mit verzögertem Kristallisationsverhalten, das Kristallisationsverhalten beeinflussende Additivzusammensetzung, Verfahren zur Herabsetzung des Kristallisationspunktes sowie Verwendung einer Additivzusammensetzung
US10160278B2 (en) 2014-12-16 2018-12-25 Aktv8 LLC System and method for vehicle stabilization
US9789922B2 (en) 2014-12-18 2017-10-17 The Braun Corporation Modified door opening of a motorized vehicle for accommodating a ramp system and method thereof
US9821339B2 (en) 2014-12-19 2017-11-21 Palo Alto Research Center Incorporated System and method for digital fabrication of graded, hierarchical material structures
US9486960B2 (en) 2014-12-19 2016-11-08 Palo Alto Research Center Incorporated System for digital fabrication of graded, hierarchical material structures
TWI564099B (zh) 2014-12-24 2017-01-01 財團法人工業技術研究院 複合光束產生裝置及其用於粉體熔融或燒結的方法
US9854227B2 (en) 2015-01-08 2017-12-26 David G Grossman Depth sensor
DE102015100659B4 (de) 2015-01-19 2023-01-05 Fft Produktionssysteme Gmbh & Co. Kg Bördelsystem, Bördeleinheit und Bördelverfahren für ein autarkes Bördeln
US9718434B2 (en) 2015-01-21 2017-08-01 GM Global Technology Operations LLC Tunable energy absorbers
GB2534582A (en) 2015-01-28 2016-08-03 Jaguar Land Rover Ltd An impact energy absorbing device for a vehicle
DE102015202347A1 (de) 2015-02-10 2016-08-11 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungseinrichtung, Bearbeitungsmaschine und Verfahren zum Herstellen einer Schicht eines dreidimensionalen Bauteils
US10449737B2 (en) 2015-03-04 2019-10-22 Ebert Composites Corporation 3D thermoplastic composite pultrusion system and method
US9616623B2 (en) 2015-03-04 2017-04-11 Ebert Composites Corporation 3D thermoplastic composite pultrusion system and method
US10124546B2 (en) 2015-03-04 2018-11-13 Ebert Composites Corporation 3D thermoplastic composite pultrusion system and method
US9731773B2 (en) 2015-03-11 2017-08-15 Caterpillar Inc. Node for a space frame
CN107406635A (zh) 2015-03-16 2017-11-28 沙特基础工业全球技术公司 原纤化聚合物组合物及其制造方法
US10065367B2 (en) 2015-03-20 2018-09-04 Chevron Phillips Chemical Company Lp Phonon generation in bulk material for manufacturing
US10040239B2 (en) 2015-03-20 2018-08-07 Chevron Phillips Chemical Company Lp System and method for writing an article of manufacture into bulk material
US9611667B2 (en) 2015-05-05 2017-04-04 West Virginia University Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members
WO2016179441A1 (en) 2015-05-07 2016-11-10 Massachusetts Institute Of Technology Digital material assembly by passive means and modular isotropic lattice extruder system (miles)
CA2929340A1 (en) 2015-05-08 2016-11-08 Raymond R. M. Wang Airflow modification apparatus and method
US9481402B1 (en) 2015-05-26 2016-11-01 Honda Motor Co., Ltd. Methods and apparatus for supporting vehicle components
US9796137B2 (en) 2015-06-08 2017-10-24 The Boeing Company Additive manufacturing methods
US9963978B2 (en) 2015-06-09 2018-05-08 Ebert Composites Corporation 3D thermoplastic composite pultrusion system and method
US10399183B2 (en) 2015-06-10 2019-09-03 Ipg Photonics Corporation Multiple beam additive manufacturing
WO2017015241A1 (en) 2015-07-18 2017-01-26 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion
US10201941B2 (en) 2015-07-31 2019-02-12 The Boeing Company Systems for additively manufacturing composite parts
US10343355B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10166752B2 (en) 2015-07-31 2019-01-01 The Boeing Company Methods for additively manufacturing composite parts
US10343330B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
WO2017023586A1 (en) 2015-07-31 2017-02-09 Portland State University Embedding data on objects using surface modulation
US10232550B2 (en) 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
CN107922014B (zh) 2015-08-14 2020-11-27 斯克拉佩阿莫尔股份有限公司 运载工具保护设备
EP3135442B1 (en) 2015-08-26 2018-12-19 Airbus Operations GmbH Robot system and method of operating a robot system
EP3135566B1 (de) 2015-08-28 2020-11-25 EDAG Engineering GmbH Fahrzeugleichtbaustruktur in flexibler fertigung
US9789548B2 (en) 2015-08-31 2017-10-17 The Boeing Company Geodesic structure forming systems and methods
US9957031B2 (en) 2015-08-31 2018-05-01 The Boeing Company Systems and methods for manufacturing a tubular structure
DE202015104709U1 (de) 2015-09-04 2015-10-13 Edag Engineering Gmbh Mobile Kommunikationseinrichtung und Softwarecode sowie Verkehrsentität
US9590699B1 (en) 2015-09-11 2017-03-07 Texas Instuments Incorporated Guided near field communication for short range data communication
WO2017046121A1 (en) 2015-09-14 2017-03-23 Trinamix Gmbh 3d camera
US9718302B2 (en) 2015-09-22 2017-08-01 The Boeing Company Decorative laminate with non-visible light activated material and system and method for using the same
JP2018535376A (ja) 2015-10-07 2018-11-29 ディー ベレス、マイケル ガス流警報器
EP3359639A4 (en) 2015-10-07 2018-11-14 The Regents of the University of California Graphene-based multi-modal sensors
DE202015105595U1 (de) 2015-10-21 2016-01-14 Fft Produktionssysteme Gmbh & Co. Kg Absolutes robotergestütztes Positionsverfahren
IL287642B (en) 2015-10-30 2022-07-01 Seurat Tech Inc Add-on and device creation system
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10022912B2 (en) 2015-11-13 2018-07-17 GM Global Technology Operations LLC Additive manufacturing of a unibody vehicle
US9846933B2 (en) 2015-11-16 2017-12-19 General Electric Company Systems and methods for monitoring components
US10048769B2 (en) 2015-11-18 2018-08-14 Ted Selker Three-dimensional computer-aided-design system user interface
US9783977B2 (en) 2015-11-20 2017-10-10 University Of South Florida Shape-morphing space frame apparatus using unit cell bistable elements
CA3005884A1 (en) 2015-11-21 2017-05-26 Ats Mer, Llc Systems and methods for forming a layer onto a surface of a solid substrate and products formed thereby
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US10436038B2 (en) 2015-12-07 2019-10-08 General Electric Company Turbine engine with an airfoil having a tip shelf outlet
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US10343331B2 (en) 2015-12-22 2019-07-09 Carbon, Inc. Wash liquids for use in additive manufacturing with dual cure resins
WO2017112653A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
US10289263B2 (en) 2016-01-08 2019-05-14 The Boeing Company Data acquisition and encoding process linking physical objects with virtual data for manufacturing, inspection, maintenance and repair
US10294552B2 (en) 2016-01-27 2019-05-21 GM Global Technology Operations LLC Rapidly solidified high-temperature aluminum iron silicon alloys
WO2017142953A1 (en) 2016-02-16 2017-08-24 Board Of Regents, University Of Texas System Mechanisms for constructing spline surfaces to provide inter-surface continuity
JP6979963B2 (ja) 2016-02-18 2021-12-15 ヴェロ・スリー・ディー・インコーポレイテッド 正確な3次元印刷
US10336050B2 (en) 2016-03-07 2019-07-02 Thermwood Corporation Apparatus and methods for fabricating components
US9976063B2 (en) 2016-03-11 2018-05-22 The Boeing Company Polyarylether ketone imide sulfone adhesives
US10011685B2 (en) 2016-03-11 2018-07-03 The Boeing Company Polyarylether ketone imide adhesives
JP6439734B2 (ja) * 2016-04-04 2018-12-19 トヨタ自動車株式会社 レーザ肉盛方法
US10234342B2 (en) 2016-04-04 2019-03-19 Xerox Corporation 3D printed conductive compositions anticipating or indicating structural compromise
CN109072347A (zh) 2016-04-20 2018-12-21 奥科宁克有限公司 铝、钴、铁和镍的fcc材料及由其制成的产物
WO2017184778A1 (en) 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt and nickel, and products made therefrom
US10393315B2 (en) 2016-04-26 2019-08-27 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
EP3248758B1 (en) 2016-05-24 2021-02-17 Airbus Operations GmbH System and method for handling a component
CN109478053B (zh) 2016-05-24 2021-04-02 戴弗根特技术有限公司 用于运输结构的增材制造的系统和方法
US10384393B2 (en) 2016-05-27 2019-08-20 Florida State University Research Foundation, Inc. Polymeric ceramic precursors, apparatuses, systems, and methods
US10173255B2 (en) 2016-06-09 2019-01-08 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
US10275564B2 (en) 2016-06-17 2019-04-30 The Boeing Company System for analysis of a repair for a structure
EP3492244A1 (en) 2016-06-29 2019-06-05 VELO3D, Inc. Three-dimensional printing system and method for three-dimensional printing
WO2018027166A2 (en) 2016-08-04 2018-02-08 The Regents Of The University Of Michigan Fiber-reinforced 3d printing
US10254499B1 (en) 2016-08-05 2019-04-09 Southern Methodist University Additive manufacturing of active devices using dielectric, conductive and magnetic materials
US9933092B2 (en) 2016-08-18 2018-04-03 Deflecto, LLC Tubular structures and knurling systems and methods of manufacture and use thereof
US10359756B2 (en) 2016-08-23 2019-07-23 Echostar Technologies Llc Dynamic 3D object recognition and printing
US10179640B2 (en) 2016-08-24 2019-01-15 The Boeing Company Wing and method of manufacturing
US10392131B2 (en) 2016-08-26 2019-08-27 The Boeing Company Additive manufactured tool assembly
US10220881B2 (en) 2016-08-26 2019-03-05 Ford Global Technologies, Llc Cellular structures with fourteen-cornered cells
US10291193B2 (en) 2016-09-02 2019-05-14 Texas Instruments Incorporated Combining power amplifiers at millimeter wave frequencies
US10429006B2 (en) 2016-10-12 2019-10-01 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10214248B2 (en) 2016-11-14 2019-02-26 Hall Labs Llc Tripartite support mechanism for frame-mounted vehicle components
US9879981B1 (en) 2016-12-02 2018-01-30 General Electric Company Systems and methods for evaluating component strain
US10015908B2 (en) 2016-12-07 2018-07-03 The Boeing Company System and method for cryogenic cooling of electromagnetic induction filter
US10210662B2 (en) 2016-12-09 2019-02-19 Fyusion, Inc. Live augmented reality using tracking
US9996945B1 (en) 2016-12-12 2018-06-12 Fyusion, Inc. Live augmented reality guides
US10017384B1 (en) 2017-01-06 2018-07-10 Nanoclear Technologies Inc. Property control of multifunctional surfaces
DE102017200191A1 (de) 2017-01-09 2018-07-12 Ford Global Technologies, Llc Glätten einer aus einem Kunststoff gebildeten Oberfläche eines Artikels
US10071525B2 (en) 2017-02-07 2018-09-11 Thermwood Corporation Apparatus and method for printing long composite thermoplastic parts on a dual gantry machine during additive manufacturing
US10392097B2 (en) 2017-02-16 2019-08-27 The Boeing Company Efficient sub-structures
US20180240565A1 (en) 2017-02-17 2018-08-23 Polydrop, Llc Conductive polymer-matrix compositions and uses thereof
US10337542B2 (en) 2017-02-28 2019-07-02 The Boeing Company Curtain retention bracket
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10068316B1 (en) 2017-03-03 2018-09-04 Fyusion, Inc. Tilts as a measure of user engagement for multiview digital media representations
US10356395B2 (en) 2017-03-03 2019-07-16 Fyusion, Inc. Tilts as a measure of user engagement for multiview digital media representations
US10343725B2 (en) 2017-03-03 2019-07-09 GM Global Technology Operations LLC Automotive structural component and method of manufacture
US10440351B2 (en) 2017-03-03 2019-10-08 Fyusion, Inc. Tilts as a measure of user engagement for multiview interactive digital media representations
US20180281282A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US10178800B2 (en) 2017-03-30 2019-01-08 Honeywell International Inc. Support structure for electronics having fluid passageway for convective heat transfer
US10438407B2 (en) 2017-04-05 2019-10-08 Aerion Intellectual Property Management Corporation Solid modeler that provides spatial gradients of 3D CAD models of solid objects
US10313651B2 (en) 2017-05-22 2019-06-04 Fyusion, Inc. Snapshots at predefined intervals or angles
US10200677B2 (en) 2017-05-22 2019-02-05 Fyusion, Inc. Inertial measurement unit progress estimation
US10237477B2 (en) 2017-05-22 2019-03-19 Fyusion, Inc. Loop closure
US10343724B2 (en) 2017-06-02 2019-07-09 Gm Global Technology Operations Llc. System and method for fabricating structures
US10221530B2 (en) 2017-06-12 2019-03-05 Driskell Holdings, LLC Directional surface marking safety and guidance devices and systems
US10391710B2 (en) 2017-06-27 2019-08-27 Arevo, Inc. Deposition of non-uniform non-overlapping curvilinear segments of anisotropic filament to form non-uniform layers
US10425793B2 (en) 2017-06-29 2019-09-24 Texas Instruments Incorporated Staggered back-to-back launch topology with diagonal waveguides for field confined near field communication system
US10171578B1 (en) 2017-06-29 2019-01-01 Texas Instruments Incorporated Tapered coax launch structure for a near field communication system
US10461810B2 (en) 2017-06-29 2019-10-29 Texas Instruments Incorporated Launch topology for field confined near field communication system
US10389410B2 (en) 2017-06-29 2019-08-20 Texas Instruments Incorporated Integrated artificial magnetic launch surface for near field communication system
US10572963B1 (en) 2017-07-14 2020-02-25 Synapse Technology Corporation Detection of items
DE202017104785U1 (de) 2017-08-09 2017-09-07 Edag Engineering Gmbh Lager für Fahrerhaus eines Fahrzeugs
DE202017105281U1 (de) 2017-09-01 2017-09-11 Fft Produktionssysteme Gmbh & Co. Kg Fahrwagen zum Befördern und Positionieren eines Flugzeugbauteils
DE102017120422B4 (de) 2017-09-05 2020-07-23 Edag Engineering Gmbh Schwenkgelenk mit zusätzlichem Freiheitsgrad
DE102017120384B4 (de) 2017-09-05 2023-03-16 Fft Produktionssysteme Gmbh & Co. Kg Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2
DE202017105475U1 (de) 2017-09-08 2018-12-12 Edag Engineering Gmbh Generativ gefertigte Batteriehalterung
DE202017105474U1 (de) 2017-09-08 2018-12-14 Edag Engineering Gmbh Materialoptimierter Verbindungsknoten
US10421496B2 (en) 2017-09-15 2019-09-24 Honda Motor Co., Ltd. Panoramic roof stiffener reinforcement
US10356341B2 (en) 2017-10-13 2019-07-16 Fyusion, Inc. Skeleton-based effects and background replacement
US10382739B1 (en) 2018-04-26 2019-08-13 Fyusion, Inc. Visual annotation using tagging sessions
US10310197B1 (en) 2018-09-17 2019-06-04 Waymo Llc Transmitter devices having bridge structures

Also Published As

Publication number Publication date
EP3762167A1 (en) 2021-01-13
CN112118926B (zh) 2023-03-28
US11224943B2 (en) 2022-01-18
US20190275612A1 (en) 2019-09-12
CN112118926A (zh) 2020-12-22
US20220097174A1 (en) 2022-03-31
WO2019173363A1 (en) 2019-09-12
EP3762167A4 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US11097349B2 (en) Method and system for additive manufacturing using a light beam
US11027536B2 (en) Diode laser fiber array for powder bed fabrication or repair
US11135680B2 (en) Irradiation devices, machines, and methods for producing three-dimensional components
JP7085840B2 (ja) 複数ビーム付加的製造
CN109996644B (zh) 通过在线激光扫描器控制粉末床的熔化池的冷却速率的方法及直接金属激光熔化制造系统
EP3700699B1 (en) Diode laser fiber array for contour of powder bed fabrication or repair
JP2006511710A (ja) 三次元製品の製造装置及び製造方法
US20220097174A1 (en) Variable beam geometry laser-based powder bed fusion
US20220297233A1 (en) Variable beam geometry energy beam-based powder bed fusion
US20220212259A1 (en) Apparatus and Method for Producing an Object by Means of Additive Manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination