CN116082035B - 一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法 - Google Patents

一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法 Download PDF

Info

Publication number
CN116082035B
CN116082035B CN202310048884.7A CN202310048884A CN116082035B CN 116082035 B CN116082035 B CN 116082035B CN 202310048884 A CN202310048884 A CN 202310048884A CN 116082035 B CN116082035 B CN 116082035B
Authority
CN
China
Prior art keywords
crucible
zirconia
wall
porous ceramic
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310048884.7A
Other languages
English (en)
Other versions
CN116082035A (zh
Inventor
王来稳
王刚
李红霞
袁波
王文武
杜鹏辉
王曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority to CN202310048884.7A priority Critical patent/CN116082035B/zh
Publication of CN116082035A publication Critical patent/CN116082035A/zh
Application granted granted Critical
Publication of CN116082035B publication Critical patent/CN116082035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Abstract

本发明属于耐火材料领域,涉及一种高抗热震性薄壁氧化锆坩埚的制备方法。所采用制备方法首先制备多孔陶瓷条,即以氧化钇全稳定氧化锆细粉、核桃壳粉和羟丙基甲基纤维素为原料挤出成型的泥条坯体经干燥、热处理后切成一定长径比的多孔陶瓷条。然后称取氧化钇全稳定氧化锆细粉和多孔陶瓷条加入含有石蜡、蜂蜡和油酸的搅拌锅内搅拌均匀后得到石蜡料。石蜡料经困料后倒入真空热压铸机料桶内,真空状态下搅拌均匀后注入坩埚模具内,然后迅速将0℃冰水或液氮注入模具外套的空腔内使注入模具内的浆料迅速冷却凝固成坩埚坯体以防止多孔陶瓷条沉降;坩埚坯体经脱脂后在燃气窑内高温烧成,即得到高光洁度、高抗热震性薄壁氧化锆坩埚。

Description

一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法
技术领域
本发明属于耐火材料领域,具体涉及一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法。
背景技术
高端高温合金精密铸造如航空航天领域所需的发动机部件、涡轮叶片等的工作环境是高温、高真空环境,要求坩埚材质具有高的使用温度、高的热力学稳定性和高的化学稳定性,以及和合金接触部位高的光洁度,以降低与高温合金的润湿性。氧化锆材质坩埚是高温合金精密铸造用理想材料。由于氧化锆马氏体相变产生较大的体积变化,抗热震性能差,使用寿命低。一般引入氧化镁、氧化钙或氧化钇稳定单斜氧化锆控制其相变量,减少体积变化,同时采取不同颗粒级配等方法提高其抗热震性能。如专利号[CN201510174092.X]中提到的一种利用注浆成型制备氧化镁稳定氧化锆坩埚的方法。采用注浆方法,坩埚内表面光洁度较低,而且由于氧化锆比重大,浆料中大颗粒氧化锆很容易沉降。因此该专利使用最大颗粒为120目,难以调节优化氧化锆抗热震性能。同时选择的稳定剂氧化镁在高温、真空环境下极易挥发导致坩埚结构破坏和污染合金;专利号[CN 109516802 B]中提到一种精密铸造用氧化锆坩埚及其热处理方法;该方法采用单斜氧化锆、稳定氧化锆、氧化镁稳定氧化锆和氧化钇稳定氧化锆为主要原料,同时添加氧化镁为单斜氧化锆的稳定剂;采用分步热处理的方法得到的氧化锆坩埚材料在常温下具有更多的单斜相含量;该专利未提及制备成型方法,而成型方法对坩埚性能的影响很大。常温下有更多的单斜相存在,坩埚在升降温时因相变产生的体积变化就不可避免,特别是在降温时四方相氧化锆相变为单斜氧化锆时会有8%左右的体积膨胀。这是氧化锆坩埚开裂主要集中在降温过程的原因,从而导致氧化锆坩埚无法重复再使用。
由于全稳定氧化锆热膨胀系数大(11×10-6/k),通常认为所制备的氧化锆坩埚抗热震性能差;但全稳定氧化锆的优势在于其在升降温时没有相变所带来的体积变化所造成的破坏。也就是说,全稳定氧化锆坩埚尽管热膨胀系数大,但是稳定的。只要采取合适的制备方法提高其抗热震性能,就可以适合频繁升降温工况环境的再使用。
因此,急需开发一种新的氧化锆坩埚制备方法,以解决抗热震性能差的技术难题。
发明内容
本发明要解决的技术问题是提供一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法,以克服现有技术制备的氧化锆坩埚抗热震性能差的技术难题。
本发明为完成上述目的采用以下技术方案:
一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法,其特征在于:薄壁氧化锆坩埚以氧化钇全稳定氧化锆为主要原料,采用热压铸制备工艺,引入预制的长径比为2~3的多孔氧化锆陶瓷条进行补强增韧,然后称取氧化钇全稳定氧化锆细粉和多孔陶瓷条加入含有石蜡、蜂蜡和油酸的搅拌锅内搅拌均匀后得到石蜡料;石蜡料经困料后倒入真空热压铸机料桶内,真空状态下搅拌均匀后注入坩埚模具内,然后迅速将0℃冰水或液氮注入模具外套的空腔内使注入模具内的浆料迅速冷却凝固成坩埚坯体以防止多孔陶瓷条沉降,采用坩埚壁超薄化降低坩埚的热应力;多孔陶瓷条的孔隙率55~80%,材质是氧化钇含量13~17%的氧化锆。
所述多孔氧化锆陶瓷条的制备为:氧化钇稳定氧化锆细粉、核桃壳粉和水溶性羟丙基甲基纤维素粉混合并在混料机内混合均匀;将混均匀的原料倒入捏合机内,加入一定量的水捏合混练25~30分钟;将混合好的物料困料24~36小时;将困好的泥料加入挤出机,挤出成型φ0.5~1.0mm的细泥条在80~150℃温度下干燥6~10小时;将干燥好的泥条坯体在900~1200℃保温10~25小时热处理后切成长径比2~3的多孔陶瓷条。
称取石蜡、蜂蜡和油酸,放入带加热系统的搅拌锅内,在80~100℃熔化并搅拌均匀,然后称取氧化钇稳定氧化锆细粉和预制好的陶瓷条,依次加入搅拌锅内搅拌均匀。将搅拌均匀的石蜡料倒入不锈钢盘内困料36~48小时;将困料后的石蜡料放入热压铸机料桶内,料桶和注浆管的温度设置为65~80℃;预先加工好的薄壁坩埚成型用模具材质为不锈钢,模具工作面表面粗糙度0.8μm,由外套和内芯组成,外套壁内有宽度3~6毫米的空腔,用于注入0℃冰水或液氮冷却剂,以使浆料快速凝固防止陶瓷条沉降;注浆完毕后迅速往模具壁空腔内注入0℃冰水或液氮,使注进模具内浆料在极端的时间内冷却;用氧化铝细粉填埋坩埚坯体并放入脱脂炉内于300~500℃保温20~48小时脱脂;脱脂后的坯体在燃气窑内1750~1850℃烧成,即可得到氧化锆坩埚;坩埚壁厚3~5毫米,表面粗糙度0.8μm。
薄壁氧化锆坩埚原料中氧化钇全稳定氧化锆维70%-90%,多孔陶瓷条为10~30%。
本发明的一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法,以氧化钇全稳定氧化锆为主要原料,采用热压铸制备工艺,引入预制的一定长径比的多孔氧化锆陶瓷条,石蜡浆料由于良好的流动性能够进入多孔陶瓷条的孔隙内,从而实现经高温烧成后的坩埚结构为多孔陶瓷条分布坩埚基体内,而坩埚基体材料穿插在多孔陶瓷条孔隙内。同时由于组成基体与多孔陶瓷条的物料相同,又保证了基体和陶瓷体之间的烧结强度,从而对坩埚起到很好的补强增韧作用,抗热震性能大大提高,实现了循环再使用;同时采取坩埚壁厚超薄化使坩埚内外表面的温度能在极短的时间内达到一致,降低了坩埚的热应力,使氧化锆坩埚的抗热震性能进一步提高。
实施方式
结合具体实施例对本发明进行详细说明:
实施例1:一种高光洁度、高抗热震性薄壁氧化锆坩埚,所用氧化钇稳定氧化锆的纯度为99.5%,其中氧化钇含量13%;包括以下重量份的组分:(1)、预制多孔陶瓷条物料:粒度≤325目氧化钇稳定氧化锆粉30%,粒度≤1000目氧化钇稳定氧化锆粉40%,粒度≤3000目氧化钇稳定氧化锆粉30%,外加20%、粒度50目核桃壳粉,1.5%的水溶性HPMC粉;(2)、热压铸物料:预制多孔陶瓷条10%,粒度≤325目氧化钇稳定氧化锆粉27%,粒度≤1000目氧化钇稳定氧化锆粉36%,粒度≤3000目氧化钇稳定氧化锆粉27%;上述热压铸物料视为100%,外加以10%的58号全精炼石蜡,1.5%的蜂蜡和1%的油酸。
制备方法包括以下步骤:
步骤1 多孔陶瓷条的制备
1) 按照配比称取预制多孔陶瓷条物料并在混料机内混合300分钟;
2) 将混均匀的原料倒入捏合机内,加入7%的水捏合混练25分钟;将混合好的物料困料24小时;
3)将困好的泥料加入挤出机内(挤出机出泥端安装横截面布满φ1.0㎜孔的模具),挤出成型φ1.0mm细泥条并在80℃温度下干燥10小时;
4)将干燥好的泥条坯体在电阻炉内900℃保温25小时热处理,然后利用切成2.0㎜的陶瓷条待用;陶瓷条的长径比为2,孔隙率为55%;
5) 按照热压铸物料配比分别称取物料,先将石蜡、蜂蜡和油酸放入带加热系统的搅拌锅内,在70℃熔化并搅拌均匀,然后依次将氧化锆细粉和预制好的陶瓷条加入搅拌锅内搅拌均匀。然后将搅拌均匀的石蜡料倒入不锈钢盘内困料24小时;
6)将困料后的石蜡料放入热压铸机料桶内,边搅拌边抽真空度至-0.8MP以下并保持30分钟,热压铸料捅温度和注浆管的温度设置为70℃;将坩埚模具置于注浆板上方,注浆完毕后迅速往模具壁空腔内注入0℃冰水;
7) 用氧化铝细粉填埋坩埚坯体(壁厚3.0毫米)并放入脱脂炉内与300℃保温48小时脱脂;
8) 脱脂后的坯体在燃气窑内1750℃烧成保温8小时,即可得到薄壁氧化锆坩埚;
所制备的薄壁氧化锆坩埚陶纯度高,ZrO2+HfO2+Y2O3≥99.5%,表面粗糙度0.8μm,常温耐压强度1760MPa,断裂韧性9.6MPa.m1/2,最高使用温度1700℃,抗热震性能优异。
实施例2:一种高光洁度、高抗热震薄壁氧化锆坩埚,所用氧化钇稳定氧化锆的纯度均为99.5%,其中氧化钇含量15%。包括以下重量份的组分:(1)、预制多孔陶瓷条物料:粒度≤325目氧化钇稳定氧化锆粉30%,粒度≤1000目氧化钇稳定氧化锆粉40%,粒度≤3000目氧化钇稳定氧化锆粉30%,外加25%、粒度50目核桃粉,1.5%的水溶性HPMC粉。(2)、热压铸物料:预制多孔陶瓷条20%,粒度≤325目氧化钇稳定氧化锆粉24%,粒度≤1000目氧化钇稳定氧化锆粉32%,粒度≤3000目氧化钇稳定氧化锆粉24%。上述热压铸物料视为100%,外加以10.5%的58号全精炼石蜡,1.7%的蜂蜡和1.2%的油酸。
制备方法包括以下步骤:
步骤1多孔陶瓷条的制备与实施例1基本相同,不同之处在于:挤出的泥条为φ0.8mm,1000℃保温20小时热处理后切长度为2.4㎜。陶瓷条的长径比为3,孔隙率为65%。
步骤2坩埚的制备与实施例1中基本相同,不同之处在于:脱脂温度350℃下保温40小时。烧成温度为1800℃下保温6小时。
所制备的薄壁氧化锆坩埚陶纯度高,ZrO2+HfO2+Y2O3≥99.5%,表面粗糙度0.8μm,常温耐压强度1846 MPa,断裂韧性10.3 MPa.m1/2;最高使用温度1750℃;抗热震性能优异。
实施例3:一种高光洁度、高抗热震薄壁氧化锆坩埚,所用氧化钇稳定氧化锆的纯度均为99.5%,其中氧化钇含量15%。包括以下重量份的组分:(1)、预制多孔陶瓷条物料:粒度≤325目氧化钇稳定氧化锆粉30%,粒度≤1000目氧化钇稳定氧化锆粉30%,粒度≤3000目氧化钇稳定氧化锆粉40%,外加30%、粒度100目核桃粉,1.7%的水溶性HPMC粉。(2)、热压铸物料:预制多孔陶瓷条25%,粒度≤325目氧化钇稳定氧化锆粉22.5%,粒度≤1000目氧化钇稳定氧化锆粉22.5%,粒度≤3000目氧化钇稳定氧化锆粉30%。上述热压铸物料视为100%,外加以10.5%的58号全精炼石蜡,1.7%的蜂蜡和1.2%的油酸。
制备方法包括以下步骤:
步骤1多孔陶瓷条的制备与实施例1基本相同,不同之处在于:挤出的泥条为φ0.5mm,100℃保温15小时热处理后切长度为1.5㎜。陶瓷条的长径比为3,孔隙率为75%。
步骤2坩埚的制备与实施例2中基本相同,不同之处在于:以液氮为冷却剂,坩埚的壁厚为4mm,脱脂温度400℃下保温32小时。烧成温度为1800℃下保温6小时。
所制备的薄壁氧化锆坩埚陶纯度高,ZrO2+HfO2+Y2O3≥99.5%,表面粗糙度0.8μm,常温耐压强度1907 MPa,断裂韧性11.5 MPa.m1/2;最高使用温度1750℃,抗热震性能优异。
实施例4:一种高光洁度、高抗热震薄壁氧化锆坩埚,所用氧化
钇稳定氧化锆的纯度均为99.5%,其中氧化钇含量17%。包括以下重量份的组分:(1)、预制多孔陶瓷条物料:粒度≤325目氧化钇稳定氧化锆粉30%,粒度≤1000目氧化钇稳定氧化锆粉30%,粒度≤3000目氧化钇稳定氧化锆粉40%,外加35%、粒度100目核桃粉,1.7%的水溶性HPMC粉;(2)、热压铸物料:预制多孔陶瓷条30%,粒度≤325目氧化钇稳定氧化锆粉21%,粒度≤1000目氧化钇稳定氧化锆粉21%,粒度≤3000目氧化钇稳定氧化锆粉28%;上述热压铸物料视为100%,外加以10.5%的58号全精炼石蜡,1.7%的蜂蜡和1.2%的油酸。
制备方法包括以下步骤:
步骤1多孔陶瓷条的制备与实施例3基本相同,不同之处在于:挤出的泥条为φ1.0mm,1200℃保温10小时热处理后切长度为3.0㎜;陶瓷条的长径比为3,孔隙率为80%。
步骤2坩埚的制备与实施例1中基本相同。不同之处在于:坩埚的壁厚为5mm,脱脂温度500℃下保温20小时;烧成温度为1850℃下保温4小时。
所制备的薄壁氧化锆坩埚陶纯度高,ZrO2+HfO2+Y2O3≥99.5%,表面粗糙度0.8μm,常温耐压强度1975MPa,断裂韧性12.7 MPa.m1/2;最高使用温度1800℃,抗热震性能优异。
以上描述了本制备方法的四个实施例,上述说明仅是示例性的,在不偏离所说明实施例的思路和范围情况下,对于本技术领域的技术人员来说许多修改和变更都是显而易见的。

Claims (2)

1.一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法,其特征在于:薄壁氧化锆坩埚以氧化钇全稳定氧化锆细粉为主要原料,采用热压铸制备工艺,引入预制的长径比为2~3的多孔氧化锆陶瓷条进行补强增韧,然后称取氧化钇全稳定氧化锆细粉和多孔陶瓷条加入含有石蜡、蜂蜡和油酸的搅拌锅内搅拌均匀后得到石蜡料;石蜡料经困料后倒入真空热压铸机料桶内,真空状态下搅拌均匀后注入坩埚模具内,然后迅速将0℃冰水或液氮注入模具外套的空腔内使注入模具内的浆料迅速冷却凝固成坩埚坯体以防止多孔陶瓷条沉降,采用坩埚壁超薄化降低坩埚的热应力;模具工作面表面粗糙度0.8,多孔陶瓷条的孔隙率55~80%,材质是氧化钇含量13~17%的氧化锆;所述多孔氧化锆陶瓷条的制备为:氧化钇稳定氧化锆细粉、核桃壳粉和水溶性羟丙基甲基纤维素粉混合并在混料机内混合均匀;将混均匀的原料倒入捏合机内,加入一定量的水捏合混练25~30分钟;将混合好的物料困料24~36小时;将困好的泥料加入挤出机,挤出成型φ0.5~1.0mm的细泥条在80~150℃温度下干燥6~10小时;将干燥好的泥条坯体在900~1200℃保温10~25小时热处理后切成长径比2~3的多孔陶瓷条;薄壁氧化锆坩埚原料中氧化钇全稳定氧化锆为70%-90%,多孔陶瓷条为10~30%。
2.如权利要求1所述的一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法,其特征在于:薄壁坩埚的制备: 称取石蜡、蜂蜡和油酸,放入带加热系统的搅拌锅内,在80~100℃熔化并搅拌均匀,然后称取氧化钇全稳定氧化锆细粉和预制好的多孔陶瓷条,依次加入搅拌锅内搅拌均匀;将搅拌均匀的石蜡料倒入不锈钢盘内困料36~48小时;将困料后的石蜡料放入热压铸机料桶内,料桶和注浆管的温度设置为65~80℃;预先加工好的薄壁坩埚成型用模具材质为不锈钢,由外套和内芯组成,外套壁内有宽度3~6毫米的空腔,用于注入0℃冰水或液氮冷却剂,以使浆料快速凝固防止陶瓷条沉降;注浆完毕后迅速往模具壁空腔内注入0℃冰水或液氮,使注入模具内浆料在极短的时间内冷却; 用氧化铝细粉填埋坩埚坯体并放入脱脂炉内于300~500℃保温20~48小时脱脂;脱脂后的坯体在燃气窑内1750~1850℃烧成,即可得到氧化锆坩埚;坩埚壁厚3~5毫米,表面粗糙度0.8μm。
CN202310048884.7A 2023-02-01 2023-02-01 一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法 Active CN116082035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310048884.7A CN116082035B (zh) 2023-02-01 2023-02-01 一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310048884.7A CN116082035B (zh) 2023-02-01 2023-02-01 一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法

Publications (2)

Publication Number Publication Date
CN116082035A CN116082035A (zh) 2023-05-09
CN116082035B true CN116082035B (zh) 2023-10-24

Family

ID=86213556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310048884.7A Active CN116082035B (zh) 2023-02-01 2023-02-01 一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法

Country Status (1)

Country Link
CN (1) CN116082035B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124073A (ja) * 1990-09-12 1992-04-24 Shinagawa Refract Co Ltd ジルコニア質複合耐火断熱材
CN101503304A (zh) * 2009-03-26 2009-08-12 中钢集团洛阳耐火材料研究院有限公司 一种高热震超高温氧化锆制品的低温制造方法
CN102381882A (zh) * 2011-07-27 2012-03-21 浙江自立股份有限公司 一种均质微晶化结构氧化锆耐火材料及其制备方法
KR20170014115A (ko) * 2015-07-29 2017-02-08 주식회사 크리스탈피플 단일 용융공정을 이용한 지르코니아 코팅된 석영도가니 제조방법
CN109133955A (zh) * 2017-06-19 2019-01-04 济南瑰宝新材料有限公司 一种氧化锆纤维增韧氧化锆陶瓷材料及其制备方法
CN109516802A (zh) * 2018-12-10 2019-03-26 江苏省陶瓷研究所有限公司 一种精密铸造用氧化锆坩埚及其热处理方法
CN113698202A (zh) * 2021-08-30 2021-11-26 中科南京绿色制造产业创新研究院 一种水口及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124073A (ja) * 1990-09-12 1992-04-24 Shinagawa Refract Co Ltd ジルコニア質複合耐火断熱材
CN101503304A (zh) * 2009-03-26 2009-08-12 中钢集团洛阳耐火材料研究院有限公司 一种高热震超高温氧化锆制品的低温制造方法
CN102381882A (zh) * 2011-07-27 2012-03-21 浙江自立股份有限公司 一种均质微晶化结构氧化锆耐火材料及其制备方法
KR20170014115A (ko) * 2015-07-29 2017-02-08 주식회사 크리스탈피플 단일 용융공정을 이용한 지르코니아 코팅된 석영도가니 제조방법
CN109133955A (zh) * 2017-06-19 2019-01-04 济南瑰宝新材料有限公司 一种氧化锆纤维增韧氧化锆陶瓷材料及其制备方法
CN109516802A (zh) * 2018-12-10 2019-03-26 江苏省陶瓷研究所有限公司 一种精密铸造用氧化锆坩埚及其热处理方法
CN113698202A (zh) * 2021-08-30 2021-11-26 中科南京绿色制造产业创新研究院 一种水口及其制备方法与应用

Also Published As

Publication number Publication date
CN116082035A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US8992824B2 (en) Crucible and extrinsic facecoat compositions
CN107034378B (zh) 一种空心氧化铝球/碳化硅协同增强铝基复合材料的制备方法
CN101973777B (zh) 一种金属增韧碳化硅基复合陶瓷及制备方法
CN101429023A (zh) 采用无机纤维复合的氧化锆陶瓷型芯材料
CN108424124B (zh) 一种氧化镁晶须原位合成尖晶石增强氧化镁基坩埚及其制备方法
CN101947648B (zh) 锆及锆合金大型铸件的生产方法
CN111574208B (zh) 一种高抗热震性刚玉-锆莫来石质透气砖的制备方法
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN101429045B (zh) 醋酸锆粘结氧化钇模壳及其制备方法
CN116082035B (zh) 一种高光洁度、高抗热震性薄壁氧化锆坩埚的制备方法
US20140030138A1 (en) Crucible and facecoat compositions and methods for melting titanium and titanium aluminide alloys
JP2013071169A (ja) 精密鋳造用セラミック中子と、その製造方法
KR101763122B1 (ko) 세라믹 코어의 제조방법, 이에 의해 제조된 세라믹 코어, 정밀주조 방법 및 이에 따라 제조된 정밀주조 제품
CN108503342B (zh) 一种无碳耐火材料及其制备方法和应用
Liu et al. Properties of alumina-based ceramic cores
Zhang Preparation of porous ceramic building decoration materials by foaming method and research on nanomechanical properties
CN1026028C (zh) 金属陶瓷复合坩埚及其制备方法
CN107282857B (zh) MgO-SrZrO3复合型壳、应用及其制备方法
CN101429024A (zh) 采用纳米氧化锆复合的陶瓷型芯材料
CN107243591A (zh) MgO‑CaZrO3复合型壳及其制备方法
CN107216156A (zh) MgAl2O4‑SrZrO3复合型壳、应用及其制备方法
CN112047726A (zh) 定向凝固用莫来石晶须增强铝基陶瓷型芯制备方法
CN101486572A (zh) 一种ZrO2-Al2TiO5复合材料的制备方法
CN101081741A (zh) 一种Al-AlN-ZrO2陶瓷材料的制备方法
CN113620704A (zh) 一种用于特种玻璃熔池的高锆陶瓷的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant