CN116031487A - 一种用于硅负极电池的电解液与锂离子电池 - Google Patents

一种用于硅负极电池的电解液与锂离子电池 Download PDF

Info

Publication number
CN116031487A
CN116031487A CN202310070314.8A CN202310070314A CN116031487A CN 116031487 A CN116031487 A CN 116031487A CN 202310070314 A CN202310070314 A CN 202310070314A CN 116031487 A CN116031487 A CN 116031487A
Authority
CN
China
Prior art keywords
electrolyte
silicon
mass percentage
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310070314.8A
Other languages
English (en)
Inventor
崔屹
刘婵
侯敏
曹辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ruipu Energy Co Ltd
Rept Battero Energy Co Ltd
Original Assignee
Shanghai Ruipu Energy Co Ltd
Rept Battero Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ruipu Energy Co Ltd, Rept Battero Energy Co Ltd filed Critical Shanghai Ruipu Energy Co Ltd
Priority to CN202310070314.8A priority Critical patent/CN116031487A/zh
Publication of CN116031487A publication Critical patent/CN116031487A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明涉及一种用于硅负极电池的电解液与锂离子电池,所述电解液中包括锂盐、添加剂和溶剂;所述锂盐包括LiFSI,所述LiFSI在电解液中的质量百分含量为a%;所述添加剂包括氟代碳酸乙烯酯,所述氟代碳酸乙烯酯的质量百分含量为b%;a和b的质量满足关系式:0.67≤b/a≤4。本发明电解液的配方中采用LiFSI作为锂盐,氟代碳酸乙烯酯作为添加剂,并设置二者质量比为0.67~4之间,由此制备得到的电解液显著的改善了电池的常温循环、高温循环及高温存储性能,实现了电池续航能力的提升,并提高了电池的安全性。

Description

一种用于硅负极电池的电解液与锂离子电池
技术领域
本发明属于锂离子电池技术领域,涉及一种用于硅负极电池的电解液与锂离子电池。
背景技术
硅负极在充放电过程中会发生巨大的体积变化并且自身电导率低,导致电池容量快速衰减,并且硅负极材料本身结构不稳定,容易与电解质发生化学和电化学反应,硅负极在常规的LiPF6电解液中难以形成稳定的SEI膜,伴随着电极结构的破坏,在暴露出的硅表面不断形成新的SEI膜,加剧了硅的腐蚀和容量衰减,使得电极材料结构崩塌以及电解质分解,导致电池性能衰减。
CN 106848399A公开了一种适用于硅碳负极且耐高电压的锂离子电池电解液,属于锂离子电池电解液领域。所述锂离子电池电解液包含有机溶剂、锂盐和添加剂,所述添加剂包括负极成膜添加剂、HF酸吸附剂和高电压添加剂,功能性锂盐、成膜添加剂和1,3丙二醇环硫酸酯产生协同效应,共同参与形成SEI膜,由于SEI膜组成和结构发生改变,生成更加稳定的成分防止了负极材料膨胀、剥离,从而提高了电池的循环寿命。
以上技术方案在一定程度上稳定了SEI膜,但是并不能改善电池的高温性能,遇到高温情况下的锂离子电池循环和储存问题依旧严峻。因此,如何改善电池的高温循环和存储问题,同时保证电池的常温循环性能,是锂离子电池制造技术领域亟需解决的技术问题。
发明内容
为解决上述技术问题,本发明提供了一种用于硅负极电池的电解液与锂离子电池,本发明电解液的配方中采用双氟磺酸亚胺锂(LiFSI)作为锂盐,氟代碳酸乙烯酯(FEC)作为添加剂,并设置二者质量比为0.67~4之间,由此制备得到的电解液显著的改善了电池的常温循环、高温循环及高温存储性能,实现了电池续航能力的提升,并提高了电池的安全性。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种电解液,所述电解液中包括锂盐、添加剂和溶剂;所述锂盐包括LiFSI,所述LiFSI在电解液中的质量百分含量为a%;所述添加剂包括氟代碳酸乙烯酯,所述氟代碳酸乙烯酯在电解液中的质量百分含量为b%;
a和b的质量满足关系式:0.67≤b/a≤4,例如可以是0.67、1、2、3或4,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
本发明电解液的配方中采用LiFSI作为锂盐,氟代碳酸乙烯酯(FEC)作为添加剂,并设置二者质量比为0.67~4之间,由此制备得到的电解液显著的改善了电池的常温循环、高温循环及高温存储性能,实现了电池续航能力的提升,并提高了电池的安全性。
FEC能够修复负极材料的SEI膜并改善电化学装置的循环性能,且随着硅含量的增加,所需的FEC含量增加。但其黏度较大,加入大量的FEC会导致电解液的导电率下降,需要控制其含量在一定范围内。LiFSI是一种具有高离子电导率和热稳定性的锂盐型添加剂,可改善电化学装置的高温性能及电性能,但过量的LiFSI会腐蚀铝箔集流体。为了在保护负极材料的SEI膜的同时,防止电解液导电率下降和使电化学装置具有好的高温性能,需要限定FEC和LiFSI之间的比例,确保FEC相比于LiFSI不会过多而导致电化学装置的直流阻抗增加和高温性能下降,同时确保氟代碳酸乙烯相比于LiFSI不会过少而导致电化学装置的循环性能降低。
优选地,所述溶剂包括碳酸乙烯酯(EC)和碳酸丙烯酯(PC)。
优选地,所述EC在电解液中的质量百分含量为W1%,所述PC在电解液中的质量百分含量为W2%,所述电解液满足以下关系式:0.2≤W2/(W1+b)≤1,例如可以是0.2、0.4、0.6、0.8或1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
EC和FEC还原电位较高,易参与在负极发生的反应,随其含量增加,反应增加,在存储和循环过程中易分解产气,使得容量保持率下降。当PC:(EC+FEC)在0.2-1之间时,锂离子电池不仅具有较高的解离能力,还能保持较高的容量保持率,保持较好的高温存储能力。
优选地,所述EC在电解液中的质量百分含量W1%满足:0<W1≤30,例如可以是1、5、10、15、20或30,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述PC在电解液中的质量百分含量W2%:0<W2≤30,例如可以是1、5、10、15、20或30,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述锂盐还包括LiPF6
优选地,所述LiPF6在电解液中的质量百分含量为c%,满足以下关系式:0<a+c≤14.5,例如可以是1、5、10、12或14.5,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述LiPF6在电解液中的质量百分含量为c%,满足以下关系式:0<a/c≤1,例如可以是0.1、0.2、0.4、0.6、0.8或1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
本发明电解液中锂盐还包括LiPF6,通过LiFSI和LiPF6在电解液中的质量分配,有利于改善掺硅负极在纯LiPF6为锂盐的电解液中难以形成稳定的SEI膜,伴随着电极结构的破坏的问题,减少了在暴露出的硅表面不断形成新的SEI膜,缓解了硅的腐蚀和容量衰减,使得电极材料结构更加稳定,提高了电池常温循环、高温循环和高温存储性能,实现了电池续航能力的提升和电池安全性能的提升。
第二方面,本发明提供了一种锂离子电池,所述锂离子电池中含有如第一方面所述的电解液。
优选地,所述锂离子电池的负极活性材料包括石墨和含硅材料。
优选地,所述含硅材料包括硅氧化合物、硅碳化合物和硅单质中的任意一种或至少两种的组合。
优选地,所述负极活性材料中含硅材料的质量百分含量为x%,0<x≤35,例如可以是1、5、10、15、20、25、30或35,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述负极活性材料中含硅材料的质量百分含量x%满足关系式:0.56≤x/(a+b)≤1,例如可以是0.56、0.6、0.7、0.8、0.9或1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
本发明所提供的电解液用于硅负极的电池中,当含硅材料在负极活性材料中的质量百分含量x%与锂盐a%和添加剂b%之间满足0.56≤x/(a+b)≤1的关系式时,有利于改善硅负极在常规电解液中难以形成稳定的SEI膜,伴随着电极结构的破坏的问题,明显提升了电池的常温循环,高温循环及高温存储性能。
FEC和LiFSI还原电位较高,均会在负极反应,形成稳定的SEI膜,是很好的负极成膜添加剂。随着硅含量的增加,负极膨胀更加明显,在充放电过程中,需要消耗更多的负极成膜保护添加剂修复不断破裂的SEI膜。同时,电解液中FEC含量过高,容易导致电解液高温不稳定,使得电池高温性能下降。此外,电解液中LiFSI过高,铝箔容易受到腐蚀。为了形成稳定的SEI膜,需要限定硅含量及负极成膜添加剂(氟代碳酸乙烯酯和LiFSI)之间的比例,确保负成膜添加剂相比于不同硅含量负极不会过多而导致界面副反应增多,从而导致电化学装置高温性能下降,同时确保负成膜添加剂相比于不同硅含量负极不会过少而导致电化学装置的循环性能降低。
示例性的,所述锂离子电池中的正极活性材料为锂镍锰钴三元材料、钴酸锂(LiCoO2)、磷酸铁锂(LiFePO4)及其各自掺杂和/或包覆改性化合物中的一种或几种。
与现有技术相比,本发明至少具有以下有益效果:
本发明电解液的配方中采用LiFSI作为锂盐,氟代碳酸乙烯酯作为添加剂,并设置二者质量比为0.67~4之间,由此制备得到的电解液显著的改善了电池的常温循环、高温循环及高温存储性能,实现了电池续航能力的提升,并提高了电池的安全性。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供了一种锂离子电池,根据常规方法制备得到,其中所述锂离子电池中包括正极、负极、隔膜和电解液。
所述正极活性材料为NCM811(LiNi0.8Co0.1Mn0.1O2),负极活性材料为SiO2和石墨,其中SiO2在负极活性材料中的质量百分含量为3%(x%)。
所述电解液包括锂盐、溶剂和添加剂;所述锂盐包括LiFSI和LiPF6,LiFSI的质量百分含量为电解液的1%(a%),LiPF6的质量百分含量为电解液的13.5%(c%);所述添加剂为氟代碳酸乙烯酯,质量百分含量为电解液的2%(b%);所述溶剂为EC和PC,其在电解液中的质量百分含量分别为12%(W1)和12%(W2)。
实施例2
本实施例提供了一种锂离子电池,与实施例1的区别为:电解液中LiFSI的质量百分含量为电解液的3%(a%),LiPF6的质量百分含量为电解液的11.5%(c%)。
实施例3
本实施例提供了一种锂离子电池,与实施例1的区别为:SiO2在负极活性材料中的质量百分含量为5%(x%),电解液中氟代碳酸乙烯酯的质量百分含量为电解液的4%(b%)。
实施例4
本实施例提供了一种锂离子电池,与实施例3的区别为:电解液中LiFSI的质量百分含量为电解液的3%(a%),LiPF6的质量百分含量为电解液的11.5%(c%)。
实施例5
本实施例提供了一种锂离子电池,与实施例3的区别为:电解液中LiFSI的质量百分含量为电解液的5%(a%),LiPF6的质量百分含量为电解液的9.5%(c%)。
实施例6
本实施例提供了一种锂离子电池,与实施例4的区别为:电解液中氟代碳酸乙烯酯的质量百分含量为电解液的2%(b%)。
实施例7
本实施例提供了一种锂离子电池,与实施例4的区别为:电解液中氟代碳酸乙烯酯的质量百分含量为电解液的6%(b%)。
实施例8
本实施例提供了一种锂离子电池,与实施例7的区别为:SiO2在负极中的质量百分含量为8%(x)。
实施例9
本实施例提供了一种锂离子电池,与实施例8的区别为:电解液中LiFSI的质量百分含量为电解液的5%(a%),LiPF6的质量百分含量为电解液的9.5%(c%)。
实施例10
本实施例提供了一种锂离子电池,与实施例9的区别为:电解液中LiFSI的质量百分含量为电解液的7%(a%),LiPF6的质量百分含量为电解液的7.5%(c%)。
实施例11
本实施例提供了一种锂离子电池,与实施例1的区别为:SiO2在负极活性材料中的质量百分含量为12%(x%),LiFSI的质量百分含量为电解液的5%(a%),LiPF6的质量百分含量为电解液的9.5%(c%),氟代碳酸乙烯酯的质量百分含量为电解液的10%(b%)。
实施例12
本实施例提供了一种锂离子电池,与实施例11的区别为:电解液中氟代碳酸乙烯酯的质量百分含量为电解液的6%(b%)。
实施例13
本实施例提供了一种锂离子电池,与实施例11的区别为:电解液中氟代碳酸乙烯酯的质量百分含量为电解液的18%(b%)。
实施例14
本实施例提供了一种锂离子电池,与实施例11的区别为:所述碳酸乙烯酯在电解液中的质量百分含量为31%(W1%),所述碳酸丙烯酯在电解液中的质量百分含量为31%(W2%)。
对比例1
本对比例提供了一种锂离子电池,与实施例11的区别为:LiFSI的质量百分含量为电解液的5%(a%),LiPF6在电解液中的质量百分含量为9.5%(c%),且不添加氟代碳酸乙烯酯。
对比例2
本对比例提供了一种锂离子电池,与实施例11的区别为:电解液中不添加LiFSI,氟代碳酸乙烯酯的质量百分含量为电解液的16%。
对比例3
本对比例提供了一种锂离子电池,与实施例11的区别为:电解液中LiFSI的质量百分含量为电解液的3%,氟代碳酸乙烯酯的质量百分含量为电解液的22%。
对比例4
本对比例提供了一种锂离子电池,与实施例11的区别为:LiFSI在电解液中的质量百分含量为13.5%(a%),LiPF6的质量百分含量为电解液的1%(c%)。
对比例5
本对比例提供了一种锂离子电池,与实施例1的区别为:SiO2在负极活性材料中的质量百分含量为36%(x%),LiFSI的质量百分含量为电解液的7%(a%),氟代碳酸乙烯酯的质量百分含量为电解液的29%(b%)。
将上述各个实施例及对比例所得锂离子电池进行25℃和45℃循环性能测试和60℃储存性能测试。
测试条件:
锂离子电池的25℃循环性能的测试方法如下:
将锂离子电池放至25℃恒温箱中,以恒定电流1C充电至4.2V,在4.2V下恒压充电至0.05C,再1C恒流放电至2.8V,此记为一个充放电循环过程,记录初始放电容量。容量保持率=剩余放电容量/初始放电容量×100%。记录电池容量保持率为80%时电池循环的圈数。
锂离子电池的45℃循环性能的测试方法如下:
将锂离子电池放至45℃恒温箱中,以恒定电流1C充电至4.2V,在4.2V下恒压充电至0.05C,再1C恒流放电至2.8V,此记为一个充放电循环过程,记录初始放电容量。容量保持率=剩余放电容量/初始放电容量×100%。记录电池容量保持率为80%时电池循环的圈数。
锂离子电池的高温存储性能的测试方法如下:
将锂离子电池在25℃下,以恒定电流1C充电至4.2V,在4.2V下恒压充电至0.05C,再1C恒流放电至2.8V,此记为一个充放电循环过程,记录初始放电容量C0,再次满充后将锂离子电池放置到60℃烘箱当中,存储30天结束后,将锂离子电池常温静置2h,以1C放电至2.8V,记录此时电池的剩余放电容量并计算得到最终的电池容量保持率。电池容量保持率=剩余放电容量/初始放电容量×100%。
测试结果如表1所示。
表1
试验编号 25℃循环 45℃循环 60℃储存
实施例1 2214 1625 98.35%
实施例2 2301 1641 98.85%
实施例3 2057 1475 97.02%
实施例4 2125 1550 97.55%
实施例5 2240 1576 97.82%
实施例6 2087 1534 97.36%
实施例7 2154 1511 97.12%
实施例8 1842 1354 95.72%
实施例9 1925 1378 95.93%
实施例10 1816 1312 95.36%
实施例11 1530 1154 92.25%
实施例12 1301 1022 90.41%
实施例13 1434 987 88.68%
实施例14 1032 925 89.34%
对比例1 354 401 50.35%
对比例2 701 585 65.49%
对比例3 782 623 68.51%
对比例4 769 662 72.17%
对比例5 523 447 56.68%
从表1中可以得到如下结论:
(1)由实施例1-11和对比例2可知,调控电池中的配方,使得其满足0.67≤b/a≤4的关系,能够显著改善了电池常温循环、高温循环和高温存储性能,实现了电池续航能力的提升和电池安全性的提升。
(2)由实施例12、13与实施例11的比较可知,当电池中配方含量不满足0.56≤x/(a+b)≤1时,电池的常温循环、高温循环和高温存储性能下降,电解液中的配方不能改善硅材料在循环过程中的变化。
(3)由实施例14与实施例11的比较可知,当电解液中碳酸乙烯酯和碳酸丙烯酯的质量百分含量不满足本发明的优选范围时,电解液中环状碳酸酯过高,形成SEI膜不稳定,且电池粘度增大,不利于锂离子的传输,电池的常温循环、高温循环和高温存储性能下降,电解液中的配方不能改善硅材料在循环过程中的变化。
(4)由对比例4与实施例11的比较可知,当电池中配方含量不满足0<a/c≤1时,且不满足0.56≤x/(a+b)≤1时,高含量LiFSI可能会存在集流体铝箔缓慢腐蚀,导致电池的常温循环、高温循环和高温存储性能下降,因而电解液中的配方不能改善硅材料在循环过程中的变化。
(5)由对比例5与实施例11的比较可知,当含硅材料在负极中的质量百分含量超过35%时,电池的常温循环、高温循环和高温存储性能下降,仅仅靠LiFSI及FEC不足形成稳定的SEI膜,不能完全修复硅材料在循环过程中的变化。
综上所述,本发明电解液的配方中采用LiFSI作为锂盐,氟代碳酸乙烯酯作为添加剂,并设置二者质量比为0.67~4之间,由此制备得到的电解液显著的改善了电池的常温循环、高温循环及高温存储性能,实现了电池续航能力的提升,并提高了电池的安全性。
本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种用于硅负极电池的电解液,其特征在于,所述电解液中包括锂盐、添加剂和溶剂;
所述锂盐包括LiFSI,所述LiFSI在电解液中的质量百分含量为a%;
所述添加剂包括氟代碳酸乙烯酯,所述氟代碳酸乙烯酯在电解液中的质量百分含量为b%;
a和b的质量满足关系式:0.67≤b/a≤4。
2.根据权利要求1所述的用于硅负极电池的电解液,其特征在于,所述溶剂包括碳酸乙烯酯和碳酸丙烯酯。
3.根据权利要求1所述的用于硅负极电池的电解液,其特征在于,所述碳酸乙烯酯在电解液中的质量百分含量为W1%,所述碳酸丙烯酯在电解液中的质量百分含量为W2%,所述电解液满足以下关系式:0.2≤W2/(W1+b)≤1。
4.根据权利要求2或3所述的用于硅负极电池的电解液,其特征在于,所述碳酸乙烯酯在电解液中的质量百分含量W1%满足:0<W1≤30;
优选地,所述碳酸丙烯酯在电解液中的质量百分含量W2%:0<W2≤30。
5.根据权利要求1-4任一项所述的用于硅负极电池的电解液,其特征在于,所述锂盐还包括LiPF6
6.根据权利要求5所述的用于硅负极电池的电解液,其特征在于,所述LiPF6在电解液中的质量百分含量为c%,满足以下关系式:0<a+c≤14.5。
7.根据权利要求5或6所述的用于硅负极电池的电解液,其特征在于,所述LiPF6在电解液中的质量百分含量为c%,满足以下关系式:0<a/c≤1。
8.一种锂离子电池,其特征在于,所述锂离子电池中含有如权利要求1-7任一项所述的用于硅负极电池的电解液。
9.根据权利要求8所述的锂离子电池,其特征在于,所述锂离子电池的负极活性材料包括石墨和含硅材料;
优选地,所述含硅材料包括硅氧化合物、硅碳化合物和硅单质中的任意一种或至少两种的组合。
10.根据权利要求9所述的锂离子电池,其特征在于,所述负极活性材料中含硅材料的质量百分含量为x%,0<x≤35;
优选地,x%满足关系式:0.56≤x/(a+b)≤1。
CN202310070314.8A 2023-01-13 2023-01-13 一种用于硅负极电池的电解液与锂离子电池 Pending CN116031487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310070314.8A CN116031487A (zh) 2023-01-13 2023-01-13 一种用于硅负极电池的电解液与锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310070314.8A CN116031487A (zh) 2023-01-13 2023-01-13 一种用于硅负极电池的电解液与锂离子电池

Publications (1)

Publication Number Publication Date
CN116031487A true CN116031487A (zh) 2023-04-28

Family

ID=86091386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310070314.8A Pending CN116031487A (zh) 2023-01-13 2023-01-13 一种用于硅负极电池的电解液与锂离子电池

Country Status (1)

Country Link
CN (1) CN116031487A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080361A (zh) * 2023-10-13 2023-11-17 瑞浦兰钧能源股份有限公司 一种含硅基负极的二次电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080361A (zh) * 2023-10-13 2023-11-17 瑞浦兰钧能源股份有限公司 一种含硅基负极的二次电池

Similar Documents

Publication Publication Date Title
CN112216870B (zh) 一种高镍锂离子电池的耐高温高电压电解液
CN113809401B (zh) 锂离子电池非水电解液及其应用
WO2023272864A1 (zh) 电解液及其制备方法、锂离子电池
CN111668551B (zh) 一种匹配硅碳负极材料锂离子电池的电解液
CN111200162A (zh) 一种锂离子电池电解液及制备方法
CN110808414A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN110783628A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN114024030B (zh) 一种非水电解液及含有该非水电解液的电池
CN116031487A (zh) 一种用于硅负极电池的电解液与锂离子电池
CN112615056B (zh) 一种用于制备电解液的添加剂组合物、及包含添加剂组合物的电解液、锂离子二次电池
CN113571774A (zh) 锂离子电池
CN111816922A (zh) 三元/石墨体系锂离子电池的高电压电解液及锂离子电池
CN114520371B (zh) 一种非水电解液及包含其的锂离子电池
CN114464889A (zh) 一种高电压锂离子电池用非水电解液及其锂离子电池
CN113078357A (zh) 一种高电压锂离子电池非水电解液及锂离子电池
CN112216869A (zh) 高压电解液添加剂、高压电解液及锂离子电池
CN110808413A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN116154293B (zh) 一种电解液及其制备方法和应用
CN118016865B (zh) 一种负极材料、负极集流体、负极极片以及锂离子电池
CN118017005A (zh) 一种电解液及含有其的电池
CN117080361A (zh) 一种含硅基负极的二次电池
CN117293393A (zh) 一种电解液和电池
CN117613382A (zh) 一种锂离子电池及用电装置
CN116779975A (zh) 一种电解液与锂离子电池
CN115000519A (zh) 锂离子电池电解液及其制备方法和含有其的锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination