CN115947973B - 一种高性能无机纤维阻燃隔热气凝胶的制备方法 - Google Patents

一种高性能无机纤维阻燃隔热气凝胶的制备方法 Download PDF

Info

Publication number
CN115947973B
CN115947973B CN202211717264.XA CN202211717264A CN115947973B CN 115947973 B CN115947973 B CN 115947973B CN 202211717264 A CN202211717264 A CN 202211717264A CN 115947973 B CN115947973 B CN 115947973B
Authority
CN
China
Prior art keywords
heat
retardant
fiber
gel
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211717264.XA
Other languages
English (en)
Other versions
CN115947973A (zh
Inventor
宋顺喜
王倩玉
张美云
刘俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202211717264.XA priority Critical patent/CN115947973B/zh
Publication of CN115947973A publication Critical patent/CN115947973A/zh
Application granted granted Critical
Publication of CN115947973B publication Critical patent/CN115947973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明涉及一种高性能无机纤维阻燃隔热气凝胶的制备方法,包括:制备芳纶纳米纤维/二甲基亚砜溶液,将经过预处理的玄武岩纤维分散在其中,并经质子化还原,得到分散均一的悬浮液,对悬浮液抽滤得到复合纤维凝胶,加入聚乙烯醇溶液,搅拌得到混合聚乙烯醇的复合纤维凝胶;将混合聚乙烯醇的复合纤维凝胶置于液氮中冷冻,得到冰冻的凝胶,再进行冷冻干燥与热处理,得到玄武岩纤维阻燃隔热气凝胶。本发明不仅实现了无机纤维的高添加量,赋予材料优异的阻燃性能和隔热性,而且具有良好的回弹性,解决了高掺比无机纤维气凝胶脆性大的问题;同时,该材料符合生态环保的要求,并且在建筑、管道隔热材料及电子热管理等领域具备良好的应用前景。

Description

一种高性能无机纤维阻燃隔热气凝胶的制备方法
技术领域
本发明属于无机纳米材料领域,特别涉及一种可变形低收缩的高性能无机纤维阻燃隔热气凝胶的制备方法。
背景技术
随着化石能源的大量消耗,利用保温隔热材料被认为是一种最有效降低能耗的方法。为了实现能源的可持续发展,研究人员对新型的保温隔热材料进行了研究,常见的保温隔热材料主要为多孔材料,其中气凝胶具有高孔隙率和低热导率的优点,被广泛应用于保温隔热领域。
在现有技术中,芳纶纳米纤维是一种高性能有机纤维,拥有高度取向的分子结构和分子骨架,具有高强度、优异的绝缘性、化学稳定性等优点,可以作为高性能气凝胶的构建体,在未来的隔热材料中有巨大潜力,但是纯芳纶纳米纤维有机气凝胶存在收缩率交大,耐温性较差的缺点。玄武岩纤维是一种新型环保高性能无机纤维,具有高强度、优良的热稳定性、良好的介电性能及化学稳定性等优点,但是玄武岩纤维作为气凝胶的保温隔热材料往往存在脆性大、强度低的问题,而且玄武岩纤维表面的静电作用使玄武岩在水相中絮聚成团,无法形成分散均匀的悬浮液。
发明内容
为了克服上述现有技术的缺点,解决有机纤维气凝胶耐温性低、收缩率大,以及无机纤维气凝胶脆性大的问题,本发明的目的在于提供一种可变形低收缩的高性能无机纤维阻燃隔热气凝胶的制备方法。
为了达到上述目的,本发明采用以下技术方案予以实现:
一种高性能无机纤维阻燃隔热气凝胶的制备方法,包括以下步骤:
步骤一:将对位芳酰胺纤维、氢氧化钾、去离子水和二甲基亚砜进行混合,得到芳纶纳米纤维/二甲基亚砜溶液;
步骤二:对玄武岩纤维进行热处理,将热处理后的玄武岩纤维加入到步骤一所述的芳纶纳米纤维/二甲基亚砜溶液中,进行超声处理,同时进行机械搅拌,然后在磁力搅拌作用下向芳纶纳米纤维/二甲基亚砜溶液中加入去离子水进行质子化还原,得到分散均一的悬浮液;
步骤三:将步骤二中获得的悬浮液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得芳纶纳米纤维包覆玄武岩纤维的复合纤维凝胶,在所得复合纤维凝胶中加入聚乙烯醇溶液,并进行搅拌,得到混合聚乙烯醇的复合纤维凝胶;
步骤四:将步骤三所述的混合聚乙烯醇的复合纤维凝胶置于液氮中冷冻,得到冰冻凝胶,将冰冻凝胶进行冷冻干燥后再进行热处理,得到玄武岩纤维阻燃隔热气凝胶。
进一步地,步骤一中混合采用磁力搅拌,所述磁力搅拌的时间为4h。
进一步地,步骤一中对位芳酰胺纤维、氢氧化钾、去离子水和二甲基亚砜之间比例为1g:1.5g:20mL:500mL。
进一步地,步骤二中,热处理温度为300~500℃并保温3小时。
进一步地,步骤二中所述的超声处理时间为10min。
进一步地,步骤四中,所述混合聚乙烯醇的复合纤维凝胶置于液氮中冷冻的时间为3~10min;所述的冷冻干燥时间为36h。
进一步地,步骤四中,所述热处理的温度为80~120℃,热处理时间为2h。
进一步地,所述玄武岩纤维的质量占玄武岩阻燃隔热气凝胶质量的20~60wt%。
进一步地,所述芳纶纳米纤维和聚乙烯醇溶液的质量比为1:1-5:1;所述聚乙烯醇溶液的浓度为10wt%。
进一步地,步骤三中,搅拌时间为1h,搅拌温度为25℃。
与现有技术相比,本发明具有以下有益的技术效果:
(1)本发明采用热处理与超声协同处理,提高玄武岩纤维的分散性的同时增加玄武岩纤维的表面活性,提高界面结合能力。在此基础上,加入聚乙烯醇溶液使玄武岩纤维、芳纶纳米纤维、聚乙烯醇三者形成氢键网络。在冷冻干燥的过程中形成三维网络孔隙结构,提高气凝胶耐温性与隔热性能的同时提高气凝胶的力学性能、尺寸稳定性和可挤压变形恢复能力。该材料在电子电池、石油化工、轨道交通、建材及国防科技等领域有较好的应用前景。
(2)本发明通过将玄武岩纤维进行热处理后暴露出表面羟基等活性基团,从而有利于提高玄武岩纤维与有机组分的界面结合能力;将玄武岩纤维加入芳纶纳米纤维/二甲基亚砜溶液中进行超声处理,不仅可增强玄武岩纤维的分散效果,同时在有机溶剂体系下实现了对表面化学性质的进一步调控,为其与纳米纤维原位析出形成包覆结构、调控气凝胶孔结构提供了有利条件。
(3)本发明采用高性能的芳纶纳米纤维为原料,利用环保的玄武岩纤维和聚乙烯醇与纳米纤维发生纤维/纤维、纤维-聚合物多重交联,通过无机纤维较强力学性能与聚乙烯醇较强的内部相互作用来调控气凝胶的结构。玄武岩纤维可作为增强体,既提高气凝胶的力学性能,又可降低复合材料的热导率,从而制备出高掺量的高性能无机纤维阻燃隔热气凝胶,解决纯芳纶纳米纤维有机气凝胶易于收缩、纯无机纤维气凝胶材料脆性大的问题。
(4)本发明所制备的高性能无机纤维阻燃隔热气凝胶的热导率为0.028W/(m·k),介于大部分现有报道的纤维增强气凝胶的热导率范围(0.020~0.033W/(m·k),且具有低成本、绿色环保和优异的回弹性等特点。在建筑、管道、电子的隔热材料等领域具有良好的应用前景。
附图说明
图1为实施例1中,步骤2对玄武岩纤维进行高温及超声协同处理前后的红外吸收光谱图;
图2为实施例1中制备的玄武岩纤维阻燃隔热气凝胶(3BF/PVA/ANFs)的数码电子照片;
图3为实施例1制备的3BF/PVA/ANFs中玄武岩纤维穿插在三维网络结构中的扫描电镜图;
图4为实施例1制备的3BF/PVA/ANFs放置在150℃热板上10min后的红外热成像图;
图5为实施例1制备的3BF/PVA/ANFs明火实验后的回弹性测试的数码电子照片。
具体实施方式
下面对本发明的做进一步详细描述:
一种可变形低收缩的高性能无机纤维气凝胶,参见图2,通过采用对位芳酰胺纤维作为原料,引入玄武岩纤维和聚乙烯醇的制备方法,得到的高性能的玄武岩纤维阻燃隔热气凝胶。
具体包括如下步骤:
(1)将1g对位芳酰胺纤维(PPTA)、1.5g KOH、20mL去离子水和500mL二甲基亚砜(DMSO)置于锥形瓶中进行磁力搅拌4h至锥形瓶中的混合溶液由最初的宏观PPTA纤维变至均一透明的暗红色溶液,即制得芳纶纳米纤维(ANFs)/二甲基亚砜(DMSO)溶液;
(2)对玄武岩纤维在300~500℃下进行热处理,去除表面浸润剂,取热处理后的玄武岩纤维,将其加入ANFs/DMSO溶液中,超声处理10min并进行机械搅拌,使玄武岩纤维得到良好的分散性,随后在ANFs/DMSO溶液中注入去离子水进行质子化还原,并在磁力搅拌下得到分散均一的悬浮液;
(3)将所得的悬浮液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得芳纶纳米纤维包覆玄武岩纤维的复合纤维凝胶,然后在其中加入浓度为10wt%的聚乙烯醇(PVA)溶液,并在25℃下搅拌1h;所述芳纶纳米纤维和聚乙烯醇溶液的质量比为1:1-5:1;
(4)将步骤(3)所得的混合聚乙烯醇的复合纤维凝胶置于液氮中冷冻3~10min,得到具有各向异性的冰冻凝胶,将冰冻凝胶进行冷冻干燥36h后将其放置在80~120℃的真空干燥箱中进行热处理2h,得到玄武岩纤维阻燃隔热气凝胶,命名为BF/PVA/ANFs。玄武岩纤维用量占玄武岩纤维阻燃隔热气凝胶BF/PVA/ANFs质量的20~60wt%。
下面将结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是实施例的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
实施例1
(1)将1gPPTA纤维、1.5gKOH、20mL去离子水和500mL二甲基亚砜置于锥形瓶中,密封后利用磁力搅拌器在1000rpm的转速下搅拌4h,直至锥形瓶中的混合溶液由最初的宏观PPTA纤维变至均一透明的暗红色溶液,即制得质量分数为0.2%的ANFs/DMSO溶液。
(2)将玄武岩纤维在500℃条件下进行热处理并保温3h,去除表面浸润剂。随后,取0.3g玄武岩纤维加到75mLANFs/DMSO溶液中,超声并搅拌10min。随后在ANFs/DMSO溶液中注入150mL去离子水进行质子化还原。在磁力搅拌下得到分散均一的悬浮液。
(3)将步骤2所获得的混合溶液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得玄武岩纤维混合芳纶纳米纤维的凝胶。在凝胶中加入0.55gPVA溶液(浓度10wt%)与之混合,在25℃下搅拌1h。
(4)将步骤3所获得的凝胶置于液氮中冷冻8min,得到具有各向异性的冰冻凝胶,冷冻结束后将冰冻的凝胶放置到冷冻干燥机进行干燥(约36h)后再将其放置于120℃真空干燥箱中干燥2h进行热交联,得到玄武岩纤维阻燃隔热气凝胶3BF/PVA/ANFs。3BF/PVA/ANFs气凝胶中玄武岩纤维的质量占3BF/PVA/ANFs气凝胶质量的30%。
如图1所示,实施例1所制备的经高温与超声处理后的玄武岩纤维红外光谱图,从结果可以看出经高温与超声处理后的玄武岩纤维吸收峰的强度增大,可说明玄武岩纤维表面活性增强,从而有利于提高玄武岩纤维与有机组分的界面结合能力。
如图2所示,实施例1所制备的3BF/PVA/ANFs的电子照片。
如图3和所示,实施例1所制备的3BF/PVA/ANFs具有孔结构,玄武岩纤维穿插在三维的网络结构中,可提高气凝胶的力学性能与回弹性。
如图4所示,实例1所制备的3BF/PVA/ANFs放置在150℃热台上10min后的红外热成像图,从结果可看出样品表现出优异的隔热性能。
如图5所示,实例1所制备的3BF/PVA/ANFs经燃烧后火焰可自熄,不产生明火。经高温燃烧后,气凝胶仍可表现出良好的回弹性能。
实施例2
(1)将1gPPTA纤维、1.5gKOH、20mL去离子水和500mL二甲基亚砜置于锥形瓶中,密封后利用磁力搅拌器在1000rpm的转速下搅拌4h,直至锥形瓶中的混合溶液由最初的宏观PPTA纤维变至均一透明的暗红色溶液,即制得质量分数为0.2%的ANFs/DMSO溶液。
(2)将玄武岩纤维在450℃条件下进行热处理并保温3h,去除表面浸润剂。随后,取0.2g玄武岩纤维加到300mLANFs/DMSO溶液中,超声并搅拌10min。随后在ANFs/DMSO溶液中注入600mL去离子水进行质子化还原。在磁力搅拌下得到分散均一的悬浮液。
(3)将步骤2所获得的混合溶液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得玄武岩纤维混合芳纶纳米纤维的凝胶。在凝胶中加入0.2gPVA溶液(浓度10wt%)与之混合,在25℃下搅拌1h。
(4)将步骤3所获得的凝胶置于液氮中冷冻10min,得到具有各向异性的冰冻凝胶,冷冻结束后将冰冻的凝胶放置到冷冻干燥机进行干燥(约36h)后再将其放置于110℃真空干燥箱中干燥2h进行热交联,得到玄武岩纤维阻燃隔热气凝胶2BF/PVA/ANFs。2BF/PVA/ANFs气凝胶中玄武岩纤维的质量占2BF/PVA/ANFs气凝胶质量的20%。
实施例3
(1)将1gPPTA纤维、1.5gKOH、20mL去离子水和500mL二甲基亚砜置于锥形瓶中,密封后利用磁力搅拌器在1000rpm的转速下搅拌4h,直至锥形瓶中的混合溶液由最初的宏观PPTA纤维变至均一透明的暗红色溶液,即制得质量分数为0.2%的ANFs/DMSO溶液。
(2)将玄武岩纤维在400℃条件下进行热处理并保温3h,去除表面浸润剂。随后,取0.5g玄武岩纤维加到200mLANFs/DMSO溶液中,超声并搅拌10min。随后在ANFs/DMSO溶液中注入400mL去离子水进行质子化还原。在磁力搅拌下得到分散均一的悬浮液。
(3)将步骤2所获得的混合溶液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得玄武岩纤维混合芳纶纳米纤维的凝胶。在凝胶中加入0.1gPVA溶液(浓度10wt%)与之混合,在25℃下搅拌1h。
(4)将步骤3所获得的凝胶置于液氮中冷冻6min,得到具有各向异性的冰冻凝胶,冷冻结束后将冰冻的凝胶放置到冷冻干燥机进行干燥(约36h)后再将其放置于100℃真空干燥箱中干燥2h进行热交联,得到玄武岩纤维阻燃隔热气凝胶5BF/PVA/ANFs。5BF/PVA/ANFs气凝胶中玄武岩纤维的质量占3BF/PVA/ANFs气凝胶质量的50%。
实施例4
(1)将1gPPTA纤维、1.5gKOH、20mL去离子水和500mL二甲基亚砜置于锥形瓶中,密封后利用磁力搅拌器在1000rpm的转速下搅拌4h,直至锥形瓶中的混合溶液由最初的宏观PPTA纤维变至均一透明的暗红色溶液,即制得0.2%的ANFs/DMSO溶液。
(2)将玄武岩纤维在350℃条件下进行热处理并保温3h,去除表面浸润剂。随后,取0.4g玄武岩纤维加到250mLANFs/DMSO溶液中,超声并搅拌10min。随后在ANFs/DMSO溶液中注入500mL去离子水进行质子化还原。在磁力搅拌下得到分散均一的悬浮液。
(3)将步骤2所获得的混合溶液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得玄武岩纤维混合芳纶纳米纤维的凝胶。在凝胶中加入0.1gPVA溶液(浓度10wt%)与之混合,在25℃下搅拌1h。
(4)将步骤3所获得的凝胶置于液氮中冷冻5min,得到具有各向异性的冰冻凝胶,冷冻结束后将冰冻的凝胶放置到冷冻干燥机进行干燥(约36h)后再将其放置于90℃真空干燥箱中干燥2h进行热交联,得到玄武岩纤维阻燃隔热气凝胶4BF/PVA/ANFs。4BF/PVA/ANFs气凝胶中玄武岩纤维的质量占4BF/PVA/ANFs气凝胶质量的40%。
实施例5
(1)将1gPPTA纤维、1.5gKOH、20mL去离子水和500mL二甲基亚砜置于锥形瓶中,密封后利用磁力搅拌器在1000rpm的转速下搅拌4h,直至锥形瓶中的混合溶液由最初的宏观PPTA纤维变至均一透明的暗红色溶液,即制得0.2%的ANFs/DMSO溶液。
(2)将玄武岩纤维在300℃条件下进行热处理并保温3h,将0.6g玄武岩纤维加到150mLANFs/DMSO溶液中,超声并搅拌10min。随后在ANFs/DMSO溶液中注入300mL去离子水进行质子化还原。在磁力搅拌下得到分散均一的悬浮液。
(3)将步骤2所获得的混合溶液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得玄武岩纤维混合芳纶纳米纤维的凝胶。在凝胶中加入0.1gPVA溶液(10%)与之混合,在25℃下搅拌1h。
(4)将步骤3所获得的凝胶置于液氮中冷冻3min,得到具有各向异性的冰冻凝胶,冷冻结束后将冰冻的凝胶放置到冷冻干燥机进行干燥(约36h)后再将其放置到80℃真空干燥箱中干燥2h进行热交联,得到玄武岩纤维阻燃隔热气凝胶6BF/PVA/ANFs。6BF/PVA/ANFs气凝胶中玄武岩纤维的质量占6BF/PVA/ANFs气凝胶质量的60%。
由技术常识可知,本发明可以通过其他的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (8)

1.一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,包括以下步骤:
步骤一:将对位芳酰胺纤维、氢氧化钾、去离子水和二甲基亚砜进行混合,得到芳纶纳米纤维/二甲基亚砜溶液;
步骤二:对玄武岩纤维进行热处理,将热处理后的玄武岩纤维加入到步骤一所述的芳纶纳米纤维/二甲基亚砜溶液中,进行超声处理,同时进行机械搅拌,然后在磁力搅拌作用下向芳纶纳米纤维/二甲基亚砜溶液中加入去离子水进行质子化还原,得到分散均一的悬浮液;
步骤三:将步骤二中获得的悬浮液在真空抽滤作用下,用去离子水反复多次洗涤后进行抽滤,获得芳纶纳米纤维包覆玄武岩纤维的复合纤维凝胶,在所得复合纤维凝胶中加入聚乙烯醇溶液,并进行搅拌,得到混合聚乙烯醇的复合纤维凝胶,所述芳纶纳米纤维和聚乙烯醇溶液的质量比为1:1-5:1;所述聚乙烯醇溶液的浓度为10wt%;
步骤四:将步骤三所述的混合聚乙烯醇的复合纤维凝胶置于液氮中冷冻,得到冰冻凝胶,将冰冻凝胶进行冷冻干燥后再进行热处理,得到玄武岩纤维阻燃隔热气凝胶,所述玄武岩纤维的质量占玄武岩阻燃隔热气凝胶质量的20~60wt%。
2.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤一中混合采用磁力搅拌,所述磁力搅拌的时间为4h。
3.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤一中对位芳酰胺纤维、氢氧化钾、去离子水和二甲基亚砜之间比例为1g:1.5g:20mL:500mL。
4.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤二中,热处理温度为300~500℃并保温3小时。
5.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤二中所述的超声处理时间为10min。
6.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤四中,所述混合聚乙烯醇的复合纤维凝胶置于液氮中冷冻的时间为3~10min;所述的冷冻干燥时间为36h。
7.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤四中,所述热处理的温度为80~120℃,热处理时间为2h。
8.根据权利要求1所述的一种高性能无机纤维阻燃隔热气凝胶的制备方法,其特征在于,步骤三中,搅拌时间为1h,搅拌温度为25℃。
CN202211717264.XA 2022-12-29 2022-12-29 一种高性能无机纤维阻燃隔热气凝胶的制备方法 Active CN115947973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211717264.XA CN115947973B (zh) 2022-12-29 2022-12-29 一种高性能无机纤维阻燃隔热气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211717264.XA CN115947973B (zh) 2022-12-29 2022-12-29 一种高性能无机纤维阻燃隔热气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN115947973A CN115947973A (zh) 2023-04-11
CN115947973B true CN115947973B (zh) 2024-05-17

Family

ID=87282232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211717264.XA Active CN115947973B (zh) 2022-12-29 2022-12-29 一种高性能无机纤维阻燃隔热气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN115947973B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039539A1 (fr) * 2015-07-30 2017-02-03 Enersens Aerogel monolithique renforce par des fibres dispersees
CN109486120A (zh) * 2018-10-22 2019-03-19 哈尔滨工业大学 一种乙烯基树脂用玄武岩短切纤维的分散方法及其应用
CN113278191A (zh) * 2021-05-28 2021-08-20 陕西科技大学 一种芳纶纳米纤维基复合气凝胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039539A1 (fr) * 2015-07-30 2017-02-03 Enersens Aerogel monolithique renforce par des fibres dispersees
CN109486120A (zh) * 2018-10-22 2019-03-19 哈尔滨工业大学 一种乙烯基树脂用玄武岩短切纤维的分散方法及其应用
CN113278191A (zh) * 2021-05-28 2021-08-20 陕西科技大学 一种芳纶纳米纤维基复合气凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于守武等. 高分子材料改性 原理及技术.知识产权出版社,2015,第197-198页. *

Also Published As

Publication number Publication date
CN115947973A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN109607509B (zh) 一种高电磁屏蔽效能全生物质基碳气凝胶的制备方法
CN112911920B (zh) 一种MXene-碳气凝胶/TPU复合材料的制备方法
CN111732746B (zh) 一种芳纶纳米纤维基层状复合薄膜及其制备方法、循环利用的方法
CN106750550B (zh) 一种阻燃弹性纳米纤维素气凝胶及其制备方法
CN105819426A (zh) 一种碱木质素碳纳米微球及其制备方法与应用
CN114171847B (zh) 一种高阻燃、高浸润性锂离子电池隔膜及其制备方法
CN112919445A (zh) 一种木质素/还原氧化石墨烯碳气凝胶电磁屏蔽材料及其制备方法与应用
CN113548895B (zh) 一种具有皮芯结构芳纶纳米纤维衍生的碳气凝胶薄膜及制备方法
CN105885313A (zh) 树脂交联聚乙烯醇气凝胶及其制备方法和应用
CN115947973B (zh) 一种高性能无机纤维阻燃隔热气凝胶的制备方法
Yue et al. Fabrication of flame retarded cellulose aerogel with hydrophobicity via MF/MTMS double cross-linking
Guo et al. Biomass-based electromagnetic wave absorption materials with unique structures: a critical review
CN113061287B (zh) 一种阻燃木基复合气凝胶的制备方法
CN108539149A (zh) 一种石墨烯复合氮、氧共掺杂生物质碳材料及其制备方法
Tang et al. Lightweight zirconium modified carbon–carbon composites with excellent microwave absorption and mechanical properties
CN108910861B (zh) 一种芳杂环纤维基纳米碳纤维气凝胶材料的制备方法
CN112940457B (zh) 一种阻燃型环氧基电磁屏蔽材料及制备方法
CN116041774A (zh) 一种耐高温酞腈树脂气凝胶及其制备方法和应用
CN113861454A (zh) 一种聚酰亚胺/二氧化硅微球及其制备方法
CN112659697B (zh) 一种珍珠母状酚醛包覆的MXene/聚乙烯醇仿生结构复合材料及其制备方法和应用
CN115284713B (zh) 一种高分子复合导热异质纤维膜及其制备方法
CN115411452B (zh) 氮化硼/细菌纤维素复合气凝胶阻燃隔膜及其制备和应用
CN115584632B (zh) 具有高热电压的离子液体凝胶复合纤维及其制备方法
CN116654899B (zh) 一种基于多级孔道碳的阻燃型结构吸波材料及其制备方法
CN117023558B (zh) 一种高强度生物质糖基碳气凝胶材料的可控制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant