CN115928114B - 一种芳烃并吡唑类化合物的合成方法 - Google Patents

一种芳烃并吡唑类化合物的合成方法 Download PDF

Info

Publication number
CN115928114B
CN115928114B CN202211707454.3A CN202211707454A CN115928114B CN 115928114 B CN115928114 B CN 115928114B CN 202211707454 A CN202211707454 A CN 202211707454A CN 115928114 B CN115928114 B CN 115928114B
Authority
CN
China
Prior art keywords
reaction
aromatic hydrocarbon
cdcl
nmr
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211707454.3A
Other languages
English (en)
Other versions
CN115928114A (zh
Inventor
王培龙
高慧
李洪基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Normal University
Original Assignee
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Normal University filed Critical Huaibei Normal University
Priority to CN202211707454.3A priority Critical patent/CN115928114B/zh
Publication of CN115928114A publication Critical patent/CN115928114A/zh
Application granted granted Critical
Publication of CN115928114B publication Critical patent/CN115928114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种芳烃并吡唑类化合物的合成方法,属于有机化学技术领域。以2‑磺酰氨基苯甲醛/酮1和氨2为原料,在碘代物催化剂和碱存在下,有机溶剂中恒电流条件下,N‑N成键环化反应,实现了对芳烃并吡唑类化合物的高效、快速合成。该反应体系中,利用廉价易得小分子氨做N来源,与酮形成亚胺后再进行分子内N‑N成键关环,两步反应一锅法进行,简便、高效。本发明反应无需金属催化剂及氧化剂,且副产物仅为氢气和水,绿色环保;为合成芳烃并吡唑类系列产品提供了新思路。

Description

一种芳烃并吡唑类化合物的合成方法
技术领域
本发明涉及一种芳烃并吡唑类化合物的合成方法,属于有机化学技术领域。
背景技术
芳烃并吡唑类化合物具有重要的生物活性,如目前的很多畅销药物中均以芳烃并吡唑作为骨架结构。如苄达赖氨酸(Bendazac L-ly sine)用于预防和治疗白内障;药物阿西替尼(Axitinib)用于晚期肾癌。鉴于该类化合物具有重要的药理活性及应用价值,发展绿色、快速、高效的合成方法来合成该类化合物具有重要的应用价值和经济价值。
电化学合成方法利用少量的电子转移来实现有机合成反应,无需外加氧化剂、还原剂,甚至很多反应可避免金属催化剂的使用,绿色环保。电化学N-N键生成的例子很少,2019年,文献报道了二芳基胺或芳基烷基胺的电化学自偶联反应,生成肼类化合物,反应以吡啶做碱,四氢呋喃与甲醇做混合溶剂,室温下进行。2020年,文献报道了芳基吡啶基胺的电化学自偶联反应,同样生成肼类化合物,反应以TBAI做电解质,乙腈与甲醇做混合溶剂60℃下进行。除了自偶联反应外,2019年,有文献报道了电化学腙与吡啶分子内偶联构建N-N键,生成[1,2,3]三氮唑[1,5-a]吡啶类化合物。同年,又有文献报道了电化学亚胺与吡啶的分子内N-N键生成,合成[1,2,4]三氮唑[1,5-a]吡啶类化合物。2022年,文献报道了电化学分子内酰胺与胺的N-N成键反应,生成3-吲唑啉酮类化合物,反应条件温和,以四丁基六氟磷酸铵做电解质,以六氟异丙醇做溶剂,反应温度为43℃。以上文献报道的电化学N-N键生成反应均无需过渡金属催化剂及氧化剂,体现出电化学合成的优势。
然而,利用电化学N-N键生成来合成芳烃并吡唑类化合物以及电化学下亚胺与胺直接N-N键生成反应研究尚不充分。
发明内容
为了克服上述技术缺陷,本申请提供了一种芳烃并吡唑类化合物的合成方法。采用醛/酮与NH3原位生成亚胺后与胺分子内N-H/N-H偶联关环,一锅法构建吡唑环。以往利用N-N键生成来合成芳烃并吡唑类化合物的方法是利用邻氨基苯甲腈与格氏试剂为原料,格氏试剂作亲核试剂进攻氰基,生成亚胺后,再用醋酸铜作催化剂,氧气作氧化剂,完成N-N成键关环,得到芳烃并吡唑类化合物,反应温度为85℃。反应中需考虑格氏试剂稳定性及官能团兼容性,以及过渡金属催化剂使用,反应温度较高。本申请电化学合成策略避免了格氏试剂的应用,采用稳定廉价小分子NH3作为反应原料,且无需金属催化剂及氧化剂,反应条件更加温和,室温即可反应。
本发明所述一种芳烃并吡唑类化合物的合成方法,反应方程式如下:
Figure BDA0004025236680000021
其中:R1选自氢、苯基、C1-C4烷基苯基、甲氧基苯基、联苯基、卤代苯基、萘基、2,3-二氢-1,4-苯并二恶烷基;R2选自卤素、甲基、甲氧基;R3选自甲基、苯基、4-甲基苯基、4-甲氧基苯基。
包括如下操作:以2-磺酰氨基苯甲醛/酮1和氨2为原料,在碘代物催化剂和碱存在下,有机溶剂中恒电流条件下,反应得到芳烃并吡唑类化合物3。
进一步地,在上述技术方案中,所述氨2来源为4-7M氨/甲醇溶液。
进一步地,在上述技术方案中,碘代物选自碘化铵、四丁基碘化铵、碘化钾,优选碘化铵。
进一步地,在上述技术方案中,恒电流条件下,电极材料选自Pt(+)/Pt(-)、C(+)/Pt(-)、GF(+)/Pt(-)、GF(+)/GF(-)、Pt(+)/GF(-)、Pt(+)/Ni(-),优选Pt(+)/Pt(-)。
进一步地,在上述技术方案中,所述有机溶剂选自MeOH、DCE、CH3CN、THF、DMF或DMSO,优选MeOH。
进一步地,在上述技术方案中,所述碱选自KOH、DBU或K2CO3
进一步地,在上述技术方案中,反应时间为8-12小时,优选10小时。
进一步地,在上述技术方案中,所述电流强度选自3 -8mA,优选5mA。
为了进一步探索反应原理,做了如下对比性实验,反应结果如下:
1)对比实验,合成出了可能亚胺中间体4,发现将4置于最优反应条件中,可高效得到目标产物3a。因此,反应第一步是2-氨基二苯甲酮1a与NH3结合,脱水生成亚胺4。结果如下:
Figure BDA0004025236680000041
2)对比实验,将反应中间体4在不通电情况下,将碘化铵改为I2,其他条件不变,仍能以优异收率得到产物3a,说明碘化铵在电化学作用下被氧化为I2,进而参与到由中间体4到产物的反应过程中。结果如下:
Figure BDA0004025236680000042
根据上述结果,以1a和2反应生成3a为例,推测反应可能机理如下式所示:
Figure BDA0004025236680000043
在电极上,碘负离子被阳极氧化生成单质碘,水被阴极还原产生氢气及氢氧根负离子。醛/酮底物1a羰基首先与NH3反应并脱水生成亚胺中间体4,接着在碱作用下与Ts相连氨基首先被夺氢,生成N负离子,进而与碘单质发生作用生成中间体II,II继续在碱作用下失去亚胺基团上氢,变为N负离子,进而进攻氨基上N,碘作离去基团,生成N-N键,得到产物3a。
发明有益效果:
本发明创新了芳烃并吡唑类化合物的合成方法,首次以2-氨基二芳基甲酮或2-氨基苯甲醛,以及小分子NH3为原料,在无金属催化剂、无氧化剂,温和条件下,实现了羰基与NH3生成亚胺后进一步N-N成键反应,高效、快速合成出芳烃并吡唑类化合物。反应副产物仅为水和氢气,绿色环保。
本发明采用绿色电化学合成方法,为合成芳烃并吡唑系列产品提供了一种全新的合成策略。使用醛/酮与廉价小分子NH3作原料,脱水原位生成亚胺中间体,然后催化剂碘化铵中的碘负离子被阳极氧化为碘,进而与亚胺中间体作用,N-N成键后关环,得到目标产物。
具体实施方式
实施例1
反应条件的优化
先将化合物1a(0.3mmol)、碘化铵(0.15mmol)、氢氧化钾(0.3mmol)加入10mL无隔膜电解槽中,再加入液体NH3(7M in MeOH,1mL)、有机溶剂(4mL)。在翻口橡胶塞上打两个孔,将电极插入后塞住瓶口。调节好电流强度后通电,在室温下搅拌10小时。反应结束后,蒸干溶剂,经柱色谱分离,得到目标产物。
优化反应结果如下:
在反应条件筛选过程中,考察了催化剂(标号1-4)、电极材料(标号5-9)、溶剂(标号10-14)、碱(15-16)、反应时间(标号17-18)、电流强度(标号19-20)等影响。最终确定了NH4I为最佳催化剂,Pt(+)/Pt(-)为最佳电极材料,MeOH为最佳溶剂,KOH为最佳碱,10小时为最佳反应时间,5mA为最佳电流强度。
Figure BDA0004025236680000061
Figure BDA0004025236680000062
Figure BDA0004025236680000071
实施例2:
先将化合物1a(0.3mmol)、碘化铵(0.15mmol)、氢氧化钾(0.3mmol)加入10mL无隔膜电解槽中,再加入液体NH3(7M in MeOH,1mL)、甲醇(4mL)。在翻口橡胶塞上打两个孔,将两个铂电极(10mm×10mm×0.3mm)插入后塞住瓶口。调节好电流强度后通电,在室温下搅拌10小时。反应结束后,蒸干溶剂,经柱色谱分离(石油醚:乙酸乙酯=20:1),得到89.7mg产物3a,白色固体,产率86%。1H NMR(600MHz,CDCl3)δ8.27(d,J=8.4Hz,1H),7.93-7.90(m,5H),7.58(t,J=7.8Hz,1H),7.52-7.46(m,3H),7.38(t,J=7.8Hz,1H),7.23(d,J=8.4Hz,2H),2.34(s,3H).13C NMR(151MHz,CDCl3)δ151.9,145.4,142.0,134.8,131.6,129.9,129.7,129.2,129.0,128.4,127.8,124.6,124.5,121.8,113.8,21.8.
实施例3:
根据实施例2反应条件,仅改变底物1结构,得到反应产物结果如下:
3-(4-isopropylphenyl)-1-tosyl-1H-indazole(3b):White solid;93.4mg,80%yield;1H NMR(600MHz,CDCl3)δ8.27(d,J=8.4Hz,1H),7.93(d,J=7.8Hz,1H),7.89(d,J=8.4Hz,2H),7.85(d,J=8.4Hz,2H),7.57(t,J=8.4 Hz,1H),7.38-7.35(m,3H),7.21(d,J=8.4 Hz,2H),3.00-2.96(m,1H),2.33(s,3H),1.30(d,J=6.6 Hz,6H).13C NMR(151 MHz,CDCl3)δ151.9,150.7,145.3,142.1,134.8,129.9,129.1,128.4,127.7,127.1,124.6,124.5,121.9,113.8,34.2,24.0,21.7.
3-(4-(tert-butyl)phenyl)-1-tosyl-1H-indazole(3c):Colorless oil;99.6mg,82%yield;1H NMR(600 MHz,CDCl3)δ8.27(d,J=9.0 Hz,1H),7.94(d,J=7.8 Hz,1H),7.89(d,J=8.4 Hz,2H),7.87(d,J=8.4 Hz,2H),7.57(t,J=7.8 Hz,1H),7.53(d,J=8.4 Hz,2H),7.37(t,J=7.2 Hz,1H),7.21(d,J=8.4 Hz,2H),2.33(s,3H),1.37(s,9H).13CNMR(151MHz,CDCl3)δ153.0,151.9,145.3,142.1,134.8,129.9,129.1,128.7,128.1,127.7,125.9,124.6,124.5,121.9,113.8,35.0,31.4,21.7.
3-(4-methoxyphenyl)-1-tosyl-1H-indazole(3d):White solid;99.5 mg,88%yield;1H NMR(600 MHz,CDCl3)δ8.25(d,J=8.4 Hz,1H),7.90-7.88(m,3H),7.86(d,J=9.0Hz,2H),7.56(t,J=8.4 Hz,1H),7.36(t,J=7.8 Hz,1H),7.21(d,J=7.8 Hz,2H),7.02(d,J=8.4 Hz,2H),3.86(s,3H),2.32(s,3H).13C NMR(151 MHz,CDCl3)δ160.9,151.7,145.3,142.0,134.8,129.9,129.7,129.1,127.7,124.5,124.5,124.1,121.8,114.4,113.7,55.5,21.7.
3-([1,1'-biphenyl]-4-yl)-1-tosyl-1H-indazole(3e):White solid;99.7 mg,78%yield;1H NMR(600 MHz,CDCl3)δ8.30(d,J=8.4 Hz,1H),8.02(d,J=8.4 Hz,2H),7.98(d,J=7.8 Hz,1H),7.93(d,J=8.4 Hz,2H),7.74(d,J=8.4 Hz,2H),7.66(dd,J=8.4,1.2Hz,2H),7.60(t,J=7.8 Hz,1H),7.48(t,J=7.8 Hz,2H),7.41-7.38(m,2H),7.24(d,J=8.4 Hz,2H),2.34(s,3H).13C NMR(151 MHz,CDCl3)δ151.4,145.4,142.5,142.0,140.5,134.8,130.5,129.9,129.2,129.0,128.8,127.9,127.7,127.6,127.2,124.6,124.5,121.8,113.8,21.7.
3-(4-chlorophenyl)-1-tosyl-1H-indazole(3f):White solid;86.7 mg,75%yield;1H NMR(600 MHz,CDCl3)δ8.28(d,J=8.4 Hz,1H),7.91(d,J=8.4 Hz,2H),7.87(d,J=7.8 Hz,1H),7.86(d,J=8.4 Hz,2H),7.59(t,J=7.8 Hz,1H),7.47(d,J=8.4 Hz,2H),7.38(t,J=7.8 Hz,1H),7.23(d,J=7.8 Hz,2H),2.33(s,3H).13C NMR(151 MHz,CDCl3)δ150.5,145.5,141.9,135.7,134.7,130.0,129.9,129.5,129.3,129.2,127.7,124.7,124.1,121.5,113.7,21.7.
3-(4-bromophenyl)-1-tosyl-1H-indazole(3g):White solid;93.8 mg,73%yield;1H NMR(600 MHz,CDCl3)δ8.27(d,J=8.4 Hz,1H),7.90(d,J=8.4 Hz,2H),7.87(d,J=7.8 Hz,1H),7.80(d,J=9.0 Hz,2H),7.62(d,J=8.4 Hz,2H),7.59(t,J=8.4 Hz,1H),7.38(t,J=7.8 Hz,1H),7.23(d,J=8.4 Hz,2H),2.33(s,3H).13C NMR(151 MHz,CDCl3)δ150.5,145.5,141.9,134.7,132.1,130.5,130.0,129.8,129.3,127.7,124.7,124.0,121.5,113.8,21.7.
3-(3-methoxyphenyl)-1-tosyl-1H-indazole(3h):Colorless oil;97.6 mg,86%yield;1H NMR(600 MHz,CDCl3)δ8.27(d,J=8.4 Hz,1H),7.92(d,J=7.8 Hz,1H),7.90(d,J=8.4 Hz,2H),7.58(t,J=8.4 Hz,1H),7.49(d,J=7.8 Hz,1H),7.45(s,1H),7.41(t,J=7.8 Hz,1H),7.37(t,J=7.8 Hz,1H),7.22(d,J=8.4 Hz,2H),7.01(dd,J=8.4,2.4Hz,1H),3.88(s,3H),2.33(s,3H).13C NMR(151 MHz,CDCl3)δ160.0,151.7,145.4,142.0,134.7,132.8,130.0,129.9,129.2,127.7,124.6,124.4,121.8,120.8,115.4,113.8,113.7,55.5,21.7.
3-(2-methoxyphenyl)-1-tosyl-1H-indazole(3i):White solid;83.9 mg,74%yield;1H NMR(600 MHz,CDCl3)δ8.23(d,J=8.4 Hz,1H),7.92(d,J=8.4 Hz,2H),7.64(d,J=8.4 Hz,1H),7.54(t,J=9.6 Hz,2H),7.44(t,J=8.4 Hz,2H),7.29(t,J=8.4 Hz,1H),7.22(d,J=7.8 Hz,1H),7.05(t,J=7.8 Hz,1H),7.02(d,J=8.4 Hz,1H),3.76(s,3H),2.32(s,3H).13C NMR(151 MHz,CDCl3)δ157.6,151.1,145.2,141.3,135.0,131.8,131.2,129.8,128.9,127.8,125.9,123.9,123.0,121.0,120.5,113.3,111.4,55.5,21.7.
3-(naphthalen-1-yl)-1-tosyl-1H-indazole(3j):White solid;101.9 mg,85%yield;1H NMR(600 MHz,CDCl3)δ8.34(d,J=8.4 Hz,1H),7.97(d,J=8.4 Hz,3H),7.92(d,J=8.4 Hz,1H),7.83(d,J=8.4 Hz,1H),7.68(d,J=7.2 Hz,1H),7.61(t,J=8.4 Hz,1H),7.58-7.54(m,2H),7.51(t,J=7.8Hz,1H),7.38(t,J=7.8 Hz,1H),7.31(t,J=7.8 Hz,1H),7.28(d,J=8.4Hz,2H),2.39(s,3H).13C NMR(151 MHz,CDCl3)δ152.0,145.5,141.5,134.9,134.0,131.6,130.1,129.9,129.4,128.6,128.5,128.3,127.9,126.7,126.3,126.3,125.8,125.3,124.5,122.0,113.7,21.8.
3-(naphthalen-2-yl)-1-tosyl-1H-indazole(3k):White solid;99.0 mg,83%yield;1H NMR(600 MHz,CDCl3)δ8.41(s,1H),8.32(d,J=8.4 Hz,1H),8.06(t,J=8.4 Hz,2H),7.97-7.93(m,4H),7.89-7.88(m,1H),7.61(t,J=8.1 Hz,1H),7.55-7.53(m,2H),7.42(t,J=7.8 Hz,1H),7.22(d,J=7.8 Hz,2H),2.32(s,3H).13C NMR(151 MHz,CDCl3)δ151.7,145.4,142.0,134.7,133.8,133.3,129.9,129.2,129.0,128.7,128.6,127.9,127.7,127.0,126.7,125.6,124.7,124.6,121.9,113.7,21.7.
3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-tosyl-1H-indazole(3l):White solid;99.4 mg,82%yield;1H NMR(600 MHz,CDCl3)δ8.25(d,J=8.4 Hz,1H),7.89(t,J=8.4 Hz,3H),7.55(t,J=7.8 Hz,1H),7.44(d,J=1.8 Hz,1H),7.41(dd,J=8.4,1.8 Hz,1H),7.35(t,J=7.2 Hz,1H),7.21(d,J=8.4 Hz,2H),6.97(d,J=8.4 Hz,1H),4.31-4.29(m,4H),2.32(s,3H).13C NMR(151 MHz,CDCl3)δ151.4,145.3,145.1,143.9,142.0,134.8,129.9,129.1,127.7,124.9,124.5,124.4,121.8,121.7,117.8,117.3,113.7,64.6,64.4,21.7.
5-bromo-3-phenyl-1-tosyl-1H-indazole(3m):Colorless oil;88.3 mg,69%yield;1H NMR(600 MHz,CDCl3)δ8.21(d,J=9.0 Hz,1H),7.89(d,J=9.0 Hz,3H),7.86(dd,J=8.4,1.8 Hz,2H),7.55-7.47(m,4H),7.25(d,J=8.4 Hz,2H),2.36(s,3H).13C NMR(151MHz,CDCl3)δ151.1,145.7,140.4,134.5,131.0,130.5,130.1,130.0,129.7,129.1,128.3,127.8,125.5,121.2,114.8,21.8.
6-chloro-3-phenyl-1-tosyl-1H-indazole(3n):White solid;82.8 mg,72%yield;1H NMR(600 MHz,CDCl3)δ8.30(s,1H),7.92(d,J=8.4 Hz,2H),7.86(dd,J=8.4,1.8Hz,2H),7.83(d,J=8.4 Hz,1H),7.51-7.47(m,3H),7.34(dd,J=8.4,1.8 Hz,1H),7.26(d,J=8.4 Hz,2H),2.36(s,3H).13C NMR(151 MHz,CDCl3)δ151.5,145.7,142.3,135.8,134.5,131.0,130.1,129.9,129.0,128.3,127.8,125.5,122.9,122.6,113.7,21.8.
6-methyl-3-phenyl-1-tosyl-1H-indazole(3o):White solid;83.4 mg,77%yield;1H NMR(600 MHz,CDCl3)δ8.07(d,J=1.3 Hz,1H),7.91(dd,J=8.4,1.8 Hz,4H),7.78(d,J=7.8 Hz,1H),7.50-7.44(m,3H),7.22(d,J=8.4 Hz,2H),7.19(d,J=9.0 Hz,1H),2.57(s,3H),2.33(s,3H).13C NMR(151 MHz,CDCl3)δ151.7,145.2,142.6,140.0,134.9,131.7,129.9,129.6,128.9,128.3,127.7,126.5,122.5,121.3,113.4,22.2,21.7.5,6-dimethoxy-3-phenyl-1-tosyl-1H-indazole(3p):White solid;92.3mg,75%yield;1H NMR(600 MHz,CDCl3)δ7.87(d,J=8.4 Hz,2H),7.84(d,J=6.6 Hz,2H),7.71(s,1H),7.49(t,J=7.2 Hz,2H),7.45(t,J=7.8 Hz,1H),7.22(d,J=8.4 Hz,2H),7.17(s,1H),4.06(s,3H),3.92(s,3H),2.34(s,3H).13C NMR(151 MHz,CDCl3)δ152.1,151.8,148.4,145.3,137.8,134.7,131.8,129.9,129.5,129.0,128.2,127.6,117.4,101.1,95.6,56.6,56.4,21.7.
3-phenyl-1-(phenylsulfonyl)-1H-indazole(3q):White solid;81.4 mg,81%yield;1H NMR(600 MHz,CDCl3)δ8.29(d,J=8.4 Hz,1H),8.04(d,J=8.4 Hz,2H),7.93(d,J=9.0 Hz,1H),7.91(d,J=7.2 Hz,2H),7.59(t,J=7.8 Hz,1H),7.54(t,J=7.2 Hz,1H),7.51(t,J=7.2 Hz,2H),7.48(d,J=6.6 Hz,1H),7.45(t,J=7.8 Hz,2H),7.38(t,J=7.2Hz,1H).13C NMR(151 MHz,CDCl3)δ152.1,142.0,137.8,134.2,131.5,129.8,129.3,129.0,128.4,127.7,124.7,124.5,121.9,113.7.
1-((4-methoxyphenyl)sulfonyl)-3-phenyl-1H-indazole(3r):White solid;92.5mg,85%yield;1H NMR(600MHz,CDCl3)δ8.28(d,J=8.4Hz,1H),7.96(d,J=9.0Hz,2H),7.92(d,J=7.2Hz,3H),7.57(t,J=8.4Hz,1H),7.50(t,J=7.2Hz,2H),7.46(t,J=7.2Hz,1H),7.36(t,J=7.2Hz,1H),6.87(d,J=9.0Hz,2H),3.75(s,3H).13C NMR(151MHz,CDCl3)δ164.1,151.6,141.9,131.5,129.9,129.6,129.1,129.0,128.9,128.3,124.5,124.3,121.7,114.4,113.6,55.7.
1-(methylsulfonyl)-3-phenyl-1H-indazole(3s):White solid;54.2mg,66%yield;1H NMR(600MHz,CDCl3)δ8.15(d,J=8.4Hz,1H),8.02(d,J=8.4Hz,1H),7.99(d,J=6.6Hz,2H),7.59(d,J=8.4Hz,1H),7.55(d,J=7.2Hz,2H),7.51(t,J=7.2Hz,1H),7.43(t,J=7.8Hz,1H),3.30(s,3H).13C NMR(151MHz,CDCl3)δ151.8,141.9,131.4,129.9,129.4,129.1,128.4,124.7,124.1,121.9,113.6,41.0.
1-tosyl-1H-indazole(3t):White solid;63.8mg,78%yield;1H NMR(600MHz,CDCl3)δ8.21(dd,J=9.0,1.2Hz,1H),8.18(s,1H),7.86(d,J=8.4Hz,2H),7.68(d,J=8.4Hz,1H),7.55(t,J=8.4Hz,1H),7.32(t,J=7.8Hz,1H),7.23(d,J=8.4Hz,2H),2.34(s,3H).13C NMR(151MHz,CDCl3)δ145.5,141.4,140.4,134.7,130.0,129.3,127.7,126.0,124.3,121.5,113.3,21.7.
以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (4)

1.一种芳烃并吡唑类化合物的合成方法,其特征在于,包括如下操作:以2-磺酰氨基苯甲醛/酮1和氨2为原料,在碘代物催化剂和碱存在下,有机溶剂中恒电流条件下,反应得到芳烃并吡唑类化合物3;反应方程式如下:
Figure FDA0004236897150000011
其中:R1选自氢、苯基、C1-C4烷基苯基、甲氧基苯基、联苯基、卤代苯基、萘基、2,3-二氢-1,4-苯并二恶烷基;R2选自卤素、甲基、甲氧基;R3选自甲基、苯基、4-甲基苯基、4-甲氧基苯基;所述碘代物选自碘化铵,有机溶剂选自MeOH或DMSO,碱选自KOH或DBU,恒电流条件下,电极材料选自Pt(+)/Pt(-)、GF(+)/Pt(-)或GF(+)/GF(-)。
2.根据权利要求1所述芳烃并吡唑类化合物的合成方法,其特征在于:氨2来源为4-7M氨/甲醇溶液。
3.根据权利要求1所述芳烃并吡唑类化合物的合成方法,其特征在于:电流强度为3-8mA。
4.根据权利要求1-3任意一项所述芳烃并吡唑类化合物的合成方法,其特征在于:反应时间为8-12小时。
CN202211707454.3A 2022-12-29 2022-12-29 一种芳烃并吡唑类化合物的合成方法 Active CN115928114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211707454.3A CN115928114B (zh) 2022-12-29 2022-12-29 一种芳烃并吡唑类化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211707454.3A CN115928114B (zh) 2022-12-29 2022-12-29 一种芳烃并吡唑类化合物的合成方法

Publications (2)

Publication Number Publication Date
CN115928114A CN115928114A (zh) 2023-04-07
CN115928114B true CN115928114B (zh) 2023-06-27

Family

ID=86654098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211707454.3A Active CN115928114B (zh) 2022-12-29 2022-12-29 一种芳烃并吡唑类化合物的合成方法

Country Status (1)

Country Link
CN (1) CN115928114B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185730A1 (en) * 2018-03-27 2019-10-03 Katholieke Universiteit Leuven Catalytic synthesis of biarylic compounds

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001967B1 (fr) * 2013-02-11 2015-07-10 Commissariat Energie Atomique Procede de fabrication de pyrazoles, nouveaux pyrazoles et leurs applications
US9863048B2 (en) * 2014-07-03 2018-01-09 Université de Bourgogne Synthesis and use of biobased imidazolium carboxylates
EP2982672A1 (en) * 2014-08-07 2016-02-10 ETH Zurich Hypervalent iodine CF2CF2X reagents and their use
CN112981436B (zh) * 2021-02-07 2022-02-01 昆明学院 一种电化学氧化合成2-氨基-1,3,4-噻二唑衍生物的方法
CN113089006B (zh) * 2021-04-15 2022-02-08 南华大学 一种4-硒基-1h-吡唑化合物的合成方法
CN113737207A (zh) * 2021-09-10 2021-12-03 南京理工大学 一种电化学法制备1,3,5-三硝基吡唑的方法
CN114000167B (zh) * 2021-11-25 2024-02-06 南京先进生物材料与过程装备研究院有限公司 一种电化学合成吡唑类化合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185730A1 (en) * 2018-03-27 2019-10-03 Katholieke Universiteit Leuven Catalytic synthesis of biarylic compounds

Also Published As

Publication number Publication date
CN115928114A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
Liang et al. Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu 4 NI induced C–N followed by a C–O bond formation cascade for the synthesis of indolines
Ma et al. TEMPO in metal complex catalysis
Zhang et al. Cobalt (II)-catalyzed C–H amination of arenes with simple alkylamines
Zhi et al. Cu-catalyzed direct C7 sulfonylation of indolines with arylsulfonyl chlorides
CN111910209B (zh) 一种3-芳硒基喹啉酮化合物的电化学合成方法
Lu et al. An efficient synthesis of dihydrothiophene ureidoformamides by domino reactions of 1, 3-thiazolidinedione under catalyst-free conditions
Azad et al. Organocatalyzed asymmetric Michael addition by an efficient bifunctional carbohydrate–thiourea hybrid with mechanistic DFT analysis
Tang et al. Decarboxylative C (sp3)–N cross-coupling of diacyl peroxides with nitrogen nucleophiles
CN111690947B (zh) 三氟甲基化芳基酰胺衍生物的电化学合成方法
Nordstrøm et al. Iridium catalysed synthesis of piperazines from diols
Zeng et al. Electrochemical radical–radical cross-coupling: direct access to β-amino nitriles from unactivated imines and alkyl nitriles
Ye et al. Electrochemical difunctionalization of styrenes via chemoselective oxo-azidation or oxo-hydroxyphthalimidation
WO2023039975A1 (zh) 一种制备间位官能团化的吡啶化合物的方法
CN111041515A (zh) 一种电催化下3-烷硫基取代喹喔啉酮衍生物的合成方法
CN115928114B (zh) 一种芳烃并吡唑类化合物的合成方法
Jinan et al. O-Protected NH-free hydroxylamines: emerging electrophilic aminating reagents for organic synthesis
Narczyk et al. The synthesis of non-racemic β-alkyl-β-aryl-disubstituted allyl alcohols and their transformation into allylamines and amino acids bearing a quaternary stereocenter
Nugent et al. Picolylamine as an organocatalyst template for highly diastereo-and enantioselective aqueous aldol reactions
Li et al. Deoxygenative arylation of secondary amides by merging iridium catalysis with electrochemical radical cross-coupling
CN111217724B (zh) 一种邻位烷基化的富电子芳胺及其制备方法与应用
CN111575731B (zh) 电化学合成c5、c7二卤化喹啉酰胺衍生物的方法
JP2004537405A (ja) パラジウム触媒
WO2015192774A1 (zh) 手性氨基酚配体在依法韦仑不对称合成中的应用
JP2022075375A (ja) 光学活性アミン化合物の製造方法
US8563763B2 (en) Composition, synthesis and use of isonitriles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant