CN115896821A - 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法 - Google Patents

电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法 Download PDF

Info

Publication number
CN115896821A
CN115896821A CN202111106834.7A CN202111106834A CN115896821A CN 115896821 A CN115896821 A CN 115896821A CN 202111106834 A CN202111106834 A CN 202111106834A CN 115896821 A CN115896821 A CN 115896821A
Authority
CN
China
Prior art keywords
reaction
compound
ring
substituted
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111106834.7A
Other languages
English (en)
Other versions
CN115896821B (zh
Inventor
余达刚
廖黎丽
曹可弓
孙国权
张伟
曹光梅
王哲昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Sanli Bennuo New Materials Ltd By Share Ltd
Sichuan University
Original Assignee
Qingdao Sanli Bennuo New Materials Ltd By Share Ltd
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Sanli Bennuo New Materials Ltd By Share Ltd, Sichuan University filed Critical Qingdao Sanli Bennuo New Materials Ltd By Share Ltd
Priority to CN202111106834.7A priority Critical patent/CN115896821B/zh
Publication of CN115896821A publication Critical patent/CN115896821A/zh
Application granted granted Critical
Publication of CN115896821B publication Critical patent/CN115896821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,属于有机合成技术领域,该方法主要包括:将反应底物加入反应容器中,然后在CO2气氛下加入溶剂,于电化学体系下搅拌反应,反应结束后对反应产物进行分离纯化,制得二酸类化合物;本发明首次实现了小环化合物碳‑碳单键(σ‑C‑C键)的双羧基化反应,通过电促进CO2参与的小环化合物的还原型开环双羧基化反应,高效构建了一系列结构各样的、重要的戊二酸、己二酸类化合物。该反应呈现出了广泛的底物范围、优异的官能团兼容性、优异的选择性、高原子经济性等的优点,具有广泛的实际应用前景。

Description

电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化 合物的方法
技术领域
本发明涉及有机合成技术领域,具体涉及到一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法。
背景技术
由于CO2的大量排放,大气中CO2浓度持续增高,直接导致了全球气候日益变暖等一系列问题。因此,积极开展CO2减排和合理利用的研究十分重要。若能够实现其向具有重要价值的羧酸分子的高效转化,可提高CO2资源的利用效率。目前化学家们已经实现了一些CO2的转化并且获得的一系列具有高附加值化学品。然而,对CO2的化学利用特别是实现其工业化的部分仅仅是冰山一角,其主要原因归结于CO2的热力学稳定性和动力学惰性。因此,探索高效的、新型的CO2的转化反应,推动CO2的资源化利用进程,这具有重要的学术价值和实际意义。
有机二元酸作为高分子材料领域中的重要单体或引发剂,也可在有机合成中作为关键中间体,因此其合成研究具有重要的科学意义。例如己二酸,它是合成重要聚合物如尼龙66的关键单体,并且也是工业化学中最重要的合成中间体之一。目前,生产饱和二元羧酸主要有以下方法:1)环状化合物的氧化开环裂解(例如,环己烷产生己二酸);2)不饱和一元羧酸的氧化裂解(例如,油酸产生壬二酸);3)取代一元羧酸的碱性裂解(例如,蓖麻油酸产生癸二酸);4)不饱和二元羧酸的氢化(例如,马来酸产生琥珀酸);5)二醇的氧化(例如,1,7-庚二醇产生庚二酸);6)羰基化反应(例如,1,6-己二醇产生辛二酸)。在工业上,己二酸主要采用环状化合物的氧化开环裂解制备。但是其生产工艺不仅能耗高,而且还存在N2O,温室气体和臭氧等气体排放的污染问题,并且由于环己烷氧化中KA油(即环己酮和环己醇的混合物)的收率低而导致该路线效率低下。另一方面,戊二酸作为重要的有机化工原料和中间体,主要用作合成树脂、合成橡胶聚合时的引发剂,其合成工艺仍存在一定的局限性。因此开发高效、绿色环保、可持续的合成有机二元酸的新方法,是当今社会亟需解决的问题之一。
目前,利用CO2作为羧基源合成有机二元酸类化合物已有所报道。如通过直接电解的方式实现了活化烯烃的双羧基化反应合成了二酸化合物;还有光促进CO2参与的碳碳双键的双羧基化反应等等。但是,目前针对更为惰性的碳-碳单键(σ-C-C键)的双羧基化反应从未被报道。另外,现有报道的双羧基化反应无法实现重要的戊二酸类化合物的合成,且二元酸类产物的种类、官能团兼容性等方面还有待进一步提高。
发明内容
针对上述不足,本发明的目的是提供一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,可有效解决现有技术中针对更为惰性的碳-碳单键(σ-C-C键)的双羧基化反应研究空白的问题,同时当反应底物自身含有酯基官能团时,可制备得到用途广泛的如三元羧酸、四元羧酸等多元羧酸衍生物。同时该方法具有反应条件温和、产物收率高和官能团兼容性高的特点。
为达上述目的,本发明采取如下的技术方案:
本发明提供一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,包括以下过程:
将反应底物加入反应容器中,然后在CO2气氛下加入溶剂,于电化学体系下搅拌反应,反应结束后对反应产物进行分离纯化,制得二酸类化合物;
其中,反应底物为取代环丙烷类化合物或取代环丁烷类化合物,其结构通式如下所示:
Figure BDA0003272648330000011
其中,n=1或2;R1为芳基、被一个或多个R1a取代的芳基或吸电子基;R2为氢、烷基或被一个或多个R1a取代的烷基;R3为芳基、被一个或多个R1a取代的芳基、杂芳基、被一个或多个R1a取代的杂芳基或吸电子基;R4为氢、烷基、被一个或多个R1a取代的烷基、杂芳基、被一个或多个R1a取代的杂芳基、芳基或被一个或多个R1a取代的芳基;所述R1a为C1~C10烷基、卤素、酯基、氰基或酰胺基等。
进一步地,R1为芳基、甲酯基、乙酯基、异丙酯基、正丁酯基、苯酯基、氰基、三氟甲基、酰胺基等吸电子基;R2为氢或烷基;R3为芳基等吸电子基;R4为氢或芳基;烷基为甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基或癸基。
进一步地,芳基的结构式如下所示:
Figure BDA0003272648330000021
进一步地,吸电子基的结构式如下所示:
Figure BDA0003272648330000022
进一步地,烷基为甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基或癸基。
进一步地,所述二氧化碳压力为0.1-50倍大气压;电化学体系的工作参数为:阴极为金属铌、玻碳电极、碳毡电极、金属铂、金属铁、金属锌、金属铅、金属镁、金属铜、泡沫镍、石墨棒、碳板、RVC,阳极为金属锌、金属镁、金属锡、金属铝,电解质为nBu4NBF4nBu4NClO4nBu4NPF6nBu4NI、nBu4NCl、Me4NI、nBu4NOAc、nBu4NBr、Et4NBF4、NaI、LiCl、LiClO4,工作电流为0.1mA~100mA。
进一步地,上述电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,具体包括以下步骤:
步骤(1):将连接有导线的阳极和阴极固定于反应装置两侧,干燥,待用;
步骤(2):将反应底物加入步骤(1)所得的反应装置中,于惰性气体保护下,再将加入电解质反应容器中,密封反应装置;
步骤(3):将步骤(2)所得的反应装置中的惰性气体置换成CO2,并在CO2氛围下加入溶剂,搅拌溶解后通入电流,室温下开始搅拌反应0.1~48h,反应结束后对反应产物进行分离纯化,制得二酸类化合物。
进一步地,反应底物的浓度为0.01~5mol/L,优选为0.05mol/L。
进一步地,反应底物与电解质的摩尔比为1:1~1:100,优选为1:1.5。
进一步地,溶剂为无水溶剂,优选为无水二甲基亚砜、无水N-甲基吡咯烷酮或无水N,N-二甲基甲酰胺。
进一步地,反应时间为0.1~48h。
本发明的反应式如下所示(以最优反应条件为例):
Figure BDA0003272648330000031
其中,n=1或2;R1为芳基、被一个或多个R1a取代的芳基或吸电子基;R2为氢、烷基或被一个或多个R1a取代的烷基;R3为芳基、被一个或多个R1a取代的芳基、杂芳基、被一个或多个R1a取代的杂芳基或吸电子基;R4为氢、烷基、被一个或多个R1a取代的烷基、杂芳基、被一个或多个R1a取代的杂芳基、芳基或被一个或多个R1a取代的芳基;所述R1a为C1~C10烷基、卤素、酯基、氰基或酰胺基等。
本发明的反应机理如图1所示,具体过程为:反应底物首先在阴极表面被还原产生自由基阴离子中间体,进攻一分子CO2生成羧基化的自由基中间体,该中间体进一步被还原产生碳负离子中间体后再亲核进攻一分子CO2,得到二元酸的目标产物。
综上所述,本发明具有以下优点:
1、本发明提供了一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,在电化学体系促进条件下,具体以取代环丙烷类化合物或取代环丁烷类化合物作为反应底物,二氧化碳作为羧酸源,制得二酸类化合物;本方法具有反应条件温和、原料廉价易得的特点;
2、本发明首次实现了小环化合物(三元环化合物或四元环化合物)上碳-碳单键(σ-C-C键)的双羧基化反应,通过电促进CO2参与的小环化合物的还原型开环双羧基化反应,高效构建了一系列结构各样的、重要的戊二酸、己二酸类化合物;同时当反应底物自身含有酯基官能团时,可制备得到用途广泛的如三元羧酸、四元羧酸等多元羧酸衍生物。该反应呈现出了广泛的底物范围、优异的官能团兼容性、优异的选择性、高原子经济性等的优点,具有广泛的实际应用前景;
3、本发明提供的方法可适用许多复杂分子结构,如雌酚酮、香茅醇、叶醇、香叶醇、孕烯醇酮、薄荷醇等;同时,该反应的产物还可以进行一定的衍生化,得到具有高附加值的化合物。
附图说明
图1为本发明中反应机理示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
因此,以下对提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本例提供一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,具体操作如下:
1)准备50mL三口瓶,铌片需要切割为1×1.5cm2的薄片(作为阴极),锌片的裁剪尺寸为1.5×2cm2(作为阳极),并在电极上打小孔。剪取一段长度分别为8cm的铜丝,并将铜丝一段弯成钩状,牢牢钩住电极的一端。将制作好的电极连带三口瓶放入120℃烘箱中烘烤3~4小时。取出放置室温后,电极刺穿翻口塞并固定在三口瓶的一侧。待固定完成后,翻口塞与瓶口接触处以及塞子顶部需要用密封胶封死。
2)在50mL的三口瓶中加入二芳基环丙烷类底物(0.3mmol)后进入手套箱称取电解质nBu4NBF4(149mg,0.45mmol);
3)装置密封,从手套箱中取出后,通过双排管导气系统将反应瓶中的N2抽置换成CO2(反复五次,每次持续1分钟),接着在CO2氛围下用注射器依次加入超干的N-甲基吡咯烷酮(NMP)6mL。开动搅拌器,直至所有的固体全部溶解后,将电极浸没到溶液中;
4)在室温下设定恒定电流I=15mA开始电解,通过TLC检测反应情况;
5)反应结束后,加入约6mL的2N盐酸水溶液酸化10分钟左右,酸化结束后,乙酸乙酯萃取反应液(5×6mL),有机层合并后用水(2×10mL)清洗有机层中的NMP;随后浓缩并旋干反应液,通过柱层析的方式分离得到目标羧酸2。
具体结果如下:
Figure BDA0003272648330000051
注:[a]基本反应条件:环丙烷类底物1a(0.3mmol)或1b~1x(0.3mmol),Nb阴极,Zn阳极,nBu4NBF4(0.45mmol)在NMP(6mL)中,非分隔池,室温,反应装置连通CO2气囊下恒定电流电解12小时;[b]基本反应条件:使用顺式-1a(38.8mg,0.2mmol)。
实施例2
本例提供一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,具体操作如下:
1)准备50mL三口瓶,铌需要切割为1×1.5cm2的薄片(作为阴极),锌片的裁剪尺寸为1.5×2cm2(作为阳极),并在电极上打小孔。剪取一段长度分别为8cm的铜丝,并将铜丝一段弯成钩状,牢牢钩住电极的一端。将制作好的电极连带三口瓶放入120℃烘箱中烘烤3~4小时。取出放置室温后,电极刺穿翻口塞并固定在三口瓶的一侧。待固定完成后,翻口塞与瓶口接触处以及塞子顶部需要用密封胶封死;
2)在50mL的三口瓶中加入酯基取代环丙烷类底物(0.3mmol)后进入手套箱称取电解质nBu4NBF4(149mg,0.45mmol);
3)装置密封,从手套箱中取出后,通过双排管导气系统将反应瓶中的N2抽置换成CO2(反复五次,每次持续1分钟),接着在CO2氛围下用注射器依次加入超干的N-甲基吡咯烷酮(NMP)6mL。开动搅拌器,直至所有的固体全部溶解后,将电极浸没到溶液中;
4)在室温下设定恒定电流I=15mA开始电解,通过TLC检测反应情况;
5)反应结束后,加入约6mL的2N盐酸水溶液酸化10分钟左右,酸化结束后,乙酸乙酯萃取反应液(5×6mL),有机层合并后用水(2×10mL)清洗有机层中的NMP;随后浓缩并旋干反应液,通过柱层析的方式分离得到目标羧酸4。
Figure BDA0003272648330000061
注:[a]基本反应条件:环丙烷类底物3a~3l(0.3mmol),3m~3s(0.3mmol),Nb阴极,Zn阳极,nBu4NBF4(0.45mmol)在NMP(6mL)中,非分隔池,室温,反应装置连通CO2气囊下恒定电流电解12小时;[b]反式-3t(0.6mmol)。
实施例3
本例提供一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,具体操作如下:
1)准备50mL三口瓶,铌需要切割为1×1.5cm2的薄片(作为阴极),锌片的裁剪尺寸为1.5×2cm2(作为阳极),并在电极上打小孔。剪取一段长度分别为8cm的铜丝,并将铜丝一段弯成钩状,牢牢钩住电极的一端。将制作好的电极连带三口瓶放入120℃烘箱中烘烤3~4小时。取出放置室温后,电极刺穿翻口塞并固定在三口瓶的一侧。待固定完成后,翻口塞与瓶口接触处以及塞子顶部需要用密封胶封死;
2)在50mL的三口瓶中加入取代环丁烷类底物(0.3mmol)后进入手套箱称取电解质nBu4NBF4(149mg,0.45mmol);
3)装置密封,从手套箱中取出后,通过双排管导气系统将反应瓶中的N2抽置换成CO2(反复五次,每次持续1分钟),接着在CO2氛围下用注射器依次加入超干的N-甲基吡咯烷酮(NMP)6mL。开动搅拌器,直至所有的固体全部溶解后,将电极浸没到溶液中;
4)在室温下设定恒定电流I=15mA或者20mA并开始电解,通过TLC检测反应情况;
5)反应结束后,加入约6mL的2N盐酸水溶液酸化10分钟左右,酸化结束后,乙酸乙酯萃取反应液(5×6mL),有机层合并后用水(2×10mL)清洗有机层中的NMP;随后浓缩并旋干反应液,通过柱层析的方式分离得到目标羧酸6。
Figure BDA0003272648330000071
注:[a]基本反应条件:环丁烷类底物5(0.3mmol,反式/顺式=2~4:1),Nb阴极,Zn阳极,nBu4NBF4(0.45mmol)在NMP(6mL)中,非分隔池,室温,反应装置连通CO2气囊下恒定电流电解12小时。
实验例
本例在实施例1的基础上,以1a化合物作为反应底物,通过改变反应条件,考察对反应的影响。具体过程如下:
Figure BDA0003272648330000072
Figure BDA0003272648330000081
注:[a]基本反应条件:反式-1,2-二苯环丙烷1a(0.3mmol),阴极,阳极,添加剂,电解质在溶剂(6mL),非分隔池,室温。反应装置连通CO2气囊下恒定电流电解12小时。[b]以10μL苯甲醚为内标的UPLC收率,括号内表示的分离收率。n.d.:没有检测到产物的生成。[c]反应温度为40℃。
本发明所制得的目标化合物的结构表征参数如下:
2,4-diphenylpentanedioic acid(2a)
Figure BDA0003272648330000091
2.58(t,J=7.8Hz,1H),2.21(dt,J=14.2,7.2Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.84,179.77,137.43,136.86,128.92,128.91,128.26,128.01,127.95,127.87,48.92,48.73,35.81,35.25;
HRMS(ESI-)[M-H]-calculated m/z for[C17H15O4]-:283.0976,found:283.0969;
Racemic(dl-)isomer and meso-isomer were determined by crude 1H NMRanalysis as 1.1:1.
2-([1,1'-biphenyl]-4-yl)-4-phenylpentanedioic acid(2b)
Figure BDA0003272648330000092
Hz,1H),3.04–2.84(m,0.5H),2.62(t,J=7.7Hz,1H),2.23(dt,J=14.0,6.8Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.32,179.30,140.84,140.74,140.51,137.55,136.93,136.55,135.96,128.91,128.78,128.76,128.66,128.41,128.28,128.01,127.93,127.83,127.61,127.39,127.08,127.07,49.08,48.74,48.67,48.31,35.99,35.32,30.58,29.77,17.57;
HRMS(ESI-)[M-H]-calculated m/z for[C23H19O4]-:359.1289,found:359.1280;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(4-phenoxyphenyl)-4-phenylpentanedioic acid(2c)
Figure BDA0003272648330000093
1H),3.40(dt,J=16.3,7.7Hz,1H),2.85(dt,J=13.8,8.1Hz,0.5H),2.56(t,J=7.9Hz,1H),2.19(dt,J=14.1,7.2Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.83,179.77,179.74,179.68,157.23,157.09,156.79,156.71,137.45,136.84,132.03,131.36,129.86,129.84,129.63,129.39,128.99,128.30,128.05,127.95,123.64,123.58,119.32,119.21,118.94,118.85,49.06,48.75,48.33,48.02,35.99,35.36;
HRMS(ESI-)[M-H]-calculated m/z for[C23H19O5]-:375.1238,found:375.1231;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(4-methoxyphenyl)-4-phenylpentanedioic acid(2d)
Figure BDA0003272648330000094
1H),2.96–2.79(m,0.5H),2.58(t,J=7.8Hz,1H),2.28–2.16(m,0.5H);
13C NMR(101MHz,CDCl3)δ179.91,179.83,179.66,179.57,159.19,159.12,137.58,136.89,129.44,129.32,129.07,128.88,128.81,128.27,127.99,127.90,127.80,114.28,55.26,48.89,48.64,48.10,47.79,35.90,35.23;
HRMS(ESI-)[M-H]-calculated m/z for[C18H17O5]-:313.1081,found:313.1071;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1
2-(4-(methylthio)phenyl)-4-phenylpentanedioic acid(2e)
Figure BDA0003272648330000101
16.4,7.7Hz,1H),2.88(dt,J=15.4,8.0Hz,0.5H),2.60(t,J=7.8Hz,1H),2.50(d,J=3.7Hz,3H),2.30–2.17(m,0.5H);
13C NMR(101MHz,CDCl3)δ179.74,179.72,179.66,179.64,138.40,138.28,137.40,136.74,134.02,133.43,128.95,128.77,128.73,128.48,128.27,128.00,126.85,126.79,48.81,48.64,48.37,48.14,35.68,35.05,15.68,15.65;
HRMS(ESI-)[M-H]-calculated m/z for[C18H17O4S]-:329.0853,found:329.0844;
Diastereoisomers were determined by crude 1H NMR analysis as 1.3:1.
2-(4-(diphenylamino)phenyl)-4-phenylpentanedioic acid(2f)
Figure BDA0003272648330000102
7.7Hz,1H),3.36(t,J=7.7Hz,0.5H),2.91–2.79(m,0.5H),2.55(t,J=7.7Hz,1H),2.26–2.16(m,0.5H);
13C NMR(101MHz,CDCl3)δ179.94,179.85,179.79,179.70,147.55,137.47,137.03,131.04,130.38,129.39,129.33,129.30,129.23,128.97,128.94,128.75,128.31,128.10,126.96,126.40,124.62,124.61,124.51,123.58,123.48,123.43,123.34,123.28,123.10,123.04,49.12,48.86,48.31,48.11,35.82,35.37;
HRMS(ESI-)[M-H]-calculated m/z for[C29H24NO4]-:450.1711,found:450.1707;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-phenyl-4-(4-(trifluoromethoxy)phenyl)pentanedioic acid(2g)
Figure BDA0003272648330000103
–2.22(m,0.5H);
13C NMR(101MHz,CDCl3)δ179.92,179.84,179.69,179.65,179.43,179.36,148.86,148.84,148.78,148.76,137.38,137.08,136.81,136.61,136.06,135.52,129.71,129.48,129.02,128.95,128.94,128.27,128.18,128.11,128.01,127.91,121.69,121.34,119.13,48.93,48.89,48.75,48.73,48.26,48.16,35.82,35.75,35.30,35.18;
19F NMR(376MHz,CDCl3)δ-57.77,-57.80;
HRMS(ESI-)[M-H]-calculated m/z for[C18H14F3O5]-:367.0799,found:367.0795;
Diastereoisomers were determined by crude 19F NMR analysis as 1.1:1.
2-(4-fluorophenyl)-4-phenylpentanedioic acid(2h)
Figure BDA0003272648330000104
7.06–6.94(m,1.6H),3.49(td,J=7.8,2.3Hz,1H),3.44–3.34(m,1H),2.87–2.77(m,0.5H),2.55(dt,J=12.8,7.7Hz,1H),2.18(dd,J=14.4,7.2Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.83,179.76,179.69,179.63,179.57,163.60,163.54,161.15,161.09,137.40,137.27,136.84,136.67,133.15,133.12,132.57,132.54,129.94,129.86,129.69,129.61,128.97,128.94,128.93,128.26,128.21,128.05,128.01,127.98,127.96,127.90,115.94,115.72,48.88,48.71,48.16,47.99,35.92,35.29;
19F NMR(376MHz,CDCl3)δ-114.10,-114.27;
HRMS(ESI-)[M-H]-calculated m/z for[C17H14FO4]-:301.0882,found:301.0873;
Diastereoisomers were determined by crude 19F NMR analysis as 1.4:1.
2-(4-(methoxycarbonyl)phenyl)-4-phenylpentanedioic acid(2i)
Figure BDA0003272648330000111
2.91(dt,J=13.8,8.2Hz,1H),2.68–2.55(m,1H),2.26(d,J=7.2Hz,1H);
13C NMR(101MHz,CDCl3)δ179.28,179.25,178.76,178.69,166.78,142.56,142.04,137.15,136.54,130.19,129.73,129.64,128.99,128.36,128.19,128.12,128.07,127.99,127.95,52.28,52.26,48.91,48.66,48.62,35.74,35.09.
HRMS(ESI-)[M-H]-calculated m/z for[C19H17O6]-:341.1031,found:341.1026;
Diastereoisomers were determined by crude 1H NMR analysis as 1.2:1.
2-phenyl-4-(4-(trifluoromethyl)phenyl)pentanedioic acid(2j)
Figure BDA0003272648330000112
7.7Hz,1H),2.81(dt,J=13.8,7.8Hz,0.5H),2.53(td,J=7.7,2.2Hz,1H),2.19(dt,J=13.9,7.7Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ175.31,175.23,174.62,174.50,143.37,143.36,143.06,143.05,138.57,138.36,129.39,129.34,129.07,129.02,128.53,128.43,128.35,127.69,127.62,127.19,127.15,125.24,125.21,125.20,125.17,49.06,49.03,48.95,48.87,36.35,36.08;
HRMS(ESI-)[M-H]-calculated m/z for[C18H14F3O4]-:351.0850,found:351.0844;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(4-cyanophenyl)-4-phenylpentanedioic acid(2k)
Figure BDA0003272648330000113
16.0,7.7Hz,1H),2.80(dt,J=15.1,7.9Hz,0.5H),2.51(t,J=8.0Hz,1H),2.17(dt,J=14.7,7.7Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ175.18,175.11,174.22,174.09,144.57,144.25,138.51,138.33,132.22,132.20,128.96,128.78,128.45,127.67,127.62,127.22,127.18,118.16,118.12,110.91,110.85,49.19,49.09,49.02,48.98,36.21,35.96;
HRMS(ESI-)[M-H]-calculated m/z for[C18H14NO4]-:308.0928,found:308.0921;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0.
2-(3-methoxyphenyl)-4-phenylpentanedioic acid(2l)
Figure BDA0003272648330000121
Hz,1H),3.40(dt,J=17.4,7.8Hz,1H),2.84(dt,J=13.9,8.1Hz,0.5H),2.57(t,J=7.8Hz,1H),2.21(dt,J=14.3,7.3Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.83,179.75,179.70,179.61,159.83,138.86,138.32,137.44,136.87,129.94,129.92,128.94,128.91,128.31,128.02,127.97,127.87,120.58,120.34,113.87,113.69,113.41,113.28,55.24,48.89,48.84,48.69,35.70,35.14;
HRMS(ESI-)[M-H]-calculated m/z for[C18H17O5]-:313.1081,found:311.1078;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(3-phenoxyphenyl)-4-phenylpentanedioic acid(2m)
Figure BDA0003272648330000122
J=10.6,7.7Hz,1H),3.45(dt,J=23.1,7.6Hz,1H),2.88(dt,J=13.9,8.1Hz,0.5H),2.61(t,J=7.8Hz,1H),2.26(dt,J=14.2,7.2Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.72,179.63,179.47,179.40,157.79,157.71,156.79,139.38,138.83,137.41,136.79,130.21,129.87,129.84,129.00,128.98,128.29,128.03,123.60,123.53,122.86,122.78,119.20,119.04,118.81,118.54,118.02,117.96,48.98,48.85,48.76,48.62,35.84,35.28;
HRMS(ESI-)[M-H]-calculated m/z for[C23H19O5]-:375.1238,found:375.1228;
Diastereoisomers were determined by crude 1H NMR analysis as 1.2:1.
2-(3-fluorophenyl)-4-phenylpentanedioic acid(2n)
Figure BDA0003272648330000123
5.8H),7.04–6.93(m,2.2H),3.48–3.37(m,1.8H),3.31–3.25(m,0.2H),2.80–2.67(m,0.5H),2.52–2.42(m,1H),2.20–2.08(m,0.5H);
13C NMR(101MHz,Methanol-d4)mixture of isomers:δ175.47,175.37,174.99,174.86,164.17,161.74,141.61,141.54,141.29,141.22,138.92,138.73,138.56,138.46,130.19,130.14,130.10,130.05,128.49,128.46,128.42,127.81,127.77,127.64,127.62,127.24,127.20,127.14,123.83,123.80,123.64,123.62,114.63,114.49,114.41,114.27,114.01,113.97,113.80,113.76,49.09,48.88,48.82,36.54,36.22;
19F NMR(376MHz,CDCl3)mixture of isomers:δ-112.00,-112.02;
HRMS(ESI-)[M-H]-calculated m/z for[C17H14FO4]-:301.0882,found:301.0882;
Diastereoisomers were determined by crude 19F NMR analysis as 1.2:1.
2-(2-fluorophenyl)-4-phenylpentanedioic acid(2o)
Figure BDA0003272648330000131
2H),3.81(t,J=7.7Hz,0.5H),3.70(t,J=7.7Hz,0.5H),3.49–3.37(m,1H),2.78(dt,J=13.8,7.9Hz,0.5H),2.62–2.45(m,1H),2.11(dt,J=14.3,7.6Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ175.59,175.49,175.46,175.35,174.74,174.63,161.84,161.76,159.40,159.33,138.84,138.73,138.35,129.31,129.27,128.98,128.94,128.90,128.86,128.82,128.43,128.40,128.38,127.75,127.73,127.56,127.53,127.17,127.14,127.12,126.12,125.97,125.71,125.56,124.27,124.23,124.18,124.14,115.25,115.22,115.03,114.99,49.14,48.99,41.75,41.73,41.59,41.57,35.47,34.93;
19F NMR(376MHz,Methanol-d4)δ-118.92,-119.56;
HRMS(ESI-)[M-H]-calculated m/z for[C17H14FO4]-:301.0882,found:301.0874;
Diastereoisomers were determined by crude 1H NMR analysis as 1.2:1.
2-(2,3-dihydrobenzofuran-6-yl)-4-phenylpentanedioic acid(2p)
Figure BDA0003272648330000132
(m,1H),7.01–6.88(m,1H),6.79–6.58(m,1H),4.52(td,J=8.6,5.6Hz,2H),3.43(dq,J=17.0,8.6,8.1Hz,1H),3.16(q,J=9.1Hz,2H),2.73(dt,J=15.0,7.9Hz,0.5H),2.47(t,J=7.7Hz,1H),2.12(dt,J=14.6,7.6Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ176.05,175.92,175.66,175.51,159.47,159.43,138.96,138.57,130.63,130.23,128.37,128.34,127.77,127.68,127.66,127.56,127.50,127.21,127.08,127.03,124.11,124.06,108.66,108.59,70.95,70.93,48.99,48.94,48.38,48.31,36.75,36.32,29.10,29.08;
HRMS(ESI-)[M-H]-calculated m/z for[C19H17O5]-:325.1081,found:325.1079;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2,4-di-p-tolylpentanedioic acid(2q)
Figure BDA0003272648330000141
Hz,1H),3.38(t,J=7.7Hz,1H),2.86(dt,J=13.9,8.3Hz,0.5H),2.56(t,J=7.8Hz,1H),2.36(d,J=4.0Hz,6H),2.19(dt,J=14.1,7.2Hz,0.5H);
13C NMR(101MHz,CDCl3)δ179.92,179.83,137.62,137.52,134.52,133.84,129.56,128.12,127.84,48.50,48.10,35.76,35.08,21.10,21.09;
HRMS(ESI-)[M-H]-calculated m/z for[C19H19O4]-:311.1289,found:311.1279;
Racemic(dl-)isomer and meso-isomer were determined by crude 1H NMRanalysis as 1.1:1.
2,4-di([1,1'-biphenyl]-4-yl)pentanedioic acid(2r)
Figure BDA0003272648330000142
4H),7.38–7.28(m,6H),3.67(t,J=7.6Hz,0.7H),3.53(t,J=7.7Hz,1.3H),2.99(dd,J=8.8,5.2Hz,0.5H),2.66(t,J=7.8Hz,1H),2.27(dt,J=13.4,6.7Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ175.49,175.38,140.50,140.47,140.27,140.19,137.89,137.54,128.44,128.42,128.28,128.12,126.96,126.94,126.91,126.52,126.51,48.79,48.68,36.48,36.10;
HRMS(ESI-)[M-H]-calculated m/z for[C29H23O4]-:435.1602,found:435.1593.
Racemic(dl-)isomer and meso-isomer were determined by crude 1H NMRanalysis as 1.9:1.
2,4-bis(4-(trifluoromethyl)phenyl)pentanedioic acid(2s)
Figure BDA0003272648330000143
7.34(m,4H),3.70–3.46(m,2H),2.87(dt,J=14.7,7.6Hz,0.5H),2.58(t,J=7.7Hz,1H),2.27(dt,J=14.0,7.9Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ174.36,174.29,143.10,142.98,142.97,129.45,129.38,129.13,129.06,128.47,128.44,125.55,125.51,125.30,125.26,125.23,125.20,125.18,125.16,125.13,122.85,122.82,48.97,36.02,35.94;
19F NMR(376MHz,Methanol-d4)δ-64.02,-64.06;
HRMS(ESI-)[M-H]-calculated m/z for[C19H13F6O4]-:419.0724,found:419.0714.
Racemic(dl-)isomer and meso-isomer were determined by crude 1HNMRanalysis as 1.1:1.
2,4-bis(4-fluorophenyl)pentanedioic acid(2t)
Figure BDA0003272648330000151
(m,4H),3.46(dt,J=15.1,7.8Hz,2H),2.78(dt,J=15.0,7.9Hz,0.5H),2.50(t,J=7.8Hz,1H),2.14(dt,J=14.7,7.8Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ175.32,175.20,163.39,163.35,160.96,160.92,134.78,134.75,134.45,134.42,129.63,129.54,129.49,129.41,128.44,128.40,127.79,127.77,127.62,127.60,127.15,127.11,115.17,114.96,36.67,36.32;
19F NMR(376MHz,Methanol-d4)δ-117.09,-117.17;
HRMS(ESI-)[M-H]-calculated m/z for[C17H13F2O4]-:319.0787,found:319.0777.
Diastereoisomers were determined by crude 19F NMR analysis as 1.2:1.
2-(4-(methoxycarbonyl)phenyl)-4-(4-methoxyphenyl)pentanedioic acid(2u)
Figure BDA0003272648330000152
7.43–7.32(m,2H),7.22–7.11(m,2H),6.94–6.84(m,2H),3.91(d,J=3.7Hz,3H),3.79(d,J=5.9Hz,3H),3.52(q,J=7.8Hz,1H),3.41(dd,J=17.9,10.1Hz,1H),2.77(dt,J=15.0,7.8Hz,0.5H),2.51(dt,J=9.9,4.6Hz,1H),2.15(dt,J=14.6,7.7Hz,0.5H);
13C NMR(101MHz,Methanol-d4)δ175.65,175.56,174.72,174.57,166.80,166.77,159.13,159.09,144.48,144.07,130.43,130.14,129.51,129.48,129.03,128.97,128.72,128.61,128.06,127.85,113.73,113.71,54.25,54.24,51.20,49.03,48.99,48.18,48.11,36.46,36.06;
HRMS(ESI-)[M-H]-calculated m/z for[C20H19O7]-:371.1136,found:371.1126;
Diastereoisomers were determined by crude 1H NMR analysis as 1.2:1.
2-(4-methoxyphenyl)-4-(4-(trifluoromethoxy)phenyl)pentanedioic acid(2v)
Figure BDA0003272648330000161
7H),6.98–6.84(m,2H),3.82(d,J=3.1Hz,3H),3.61–3.34(m,2H),2.87(dt,J=15.7,8.2Hz,0.5H),2.59(t,J=8.0Hz,1H),2.21(dt,J=14.2,7.3Hz,0.5H);
13C NMR(101MHz,CDCl3)δ180.03,179.96,179.79,179.70,179.30,179.22,159.25,159.18,137.59,136.90,136.28,135.62,129.76,129.50,129.44,129.37,129.30,129.11,128.93,128.81,128.32,128.03,127.96,127.86,121.32,114.33,55.30,48.92,48.68,48.14,47.83,35.92,35.25,29.75,29.36;
19F NMR(376MHz,CDCl3)δ-57.77,-57.81;
HRMS(ESI-)[M-H]-calculated m/z for[C19H16F3O6]-:397.0904,found:397.0895;
Diastereoisomers were determined by crude 19F NMRanalysis as 1.1:1.
2-(4-cyanophenyl)-4-(4-methoxyphenyl)pentanedioic acid(2w)
Figure BDA0003272648330000162
(m,2H),7.20–7.10(m,2H),6.92–6.80(m,2H),3.79–3.71(m,3H),3.57–3.48(m,1H),3.44–3.38(m,1H),3.37–3.32(m,1H),2.76(dt,J=13.9,7.7Hz,1H),2.56–2.42(m,1H),2.19–2.09(m,1H);
13C NMR(101MHz,Methanol-d4)δ175.55,175.48,174.30,174.15,159.13,159.09,144.64,144.25,132.21,132.19,130.28,130.04,128.99,128.78,128.73,128.67,118.20,118.16,113.77,110.86,110.78,54.28,49.15,49.09,48.20,48.10,36.28,35.93;
HRMS(ESI-)[M-H]-calculated m/z for[C19H16NO5]-:338.1034,found:338.1026;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2,2,4-triphenylpentanedioic acid(2x)
Figure BDA0003272648330000163
1H NMR(400MHz,Methanol-d4)δ7.50–6.73(m,15H),3.55(dd,J=7.7,2.4Hz,1H),3.43(dd,J=14.1,7.7Hz,1H),2.80(dd,J=14.1,2.5Hz,1H);
13C NMR(101MHz,Methanol-d4)δ175.96,175.92,142.59,142.26,141.41,129.21,128.83,128.70,128.12,127.55,127.43,127.38,126.63,126.59,126.55,60.24,48.77,41.73;
HRMS(ESI-)[M-H]-calculated m/z for[C23H19O4]-:359.1289,found:359.1281;
2-methyl-2,4-diphenylpentanedioic acid(2y)
Figure BDA0003272648330000171
3.85(m,1H),3.33(t,J=12.9Hz,0.5H),3.09(dd,J=15.0,10.7Hz,0.5H),2.48(d,J=14.9Hz,0.5H),2.13(dd,J=14.1,2.7Hz,0.5H),1.82(s,1.6H),1.52(s,1.4H);
13C NMR(101MHz,CDCl3)δ183.06,182.39,180.58,180.43,143.16,142.14,139.55,138.91,129.15,128.78,128.71,128.58,128.11,127.80,127.74,127.61,127.35,127.10,126.61,125.98,51.36,49.27,48.00,47.70,43.46,41.07,28.94,22.06;
HRMS(ESI-)[M-H]-calculated m/z for[C18H17O4]-:297.1132,found:297.1125;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(ethoxycarbonyl)-4-phenylpentanedioic acid(4a)
Figure BDA0003272648330000172
4.26–4.10(m,2H),3.71(dt,J=12.4,7.7Hz,1H),3.43–3.26(m,1H),2.66(dd,J=14.5,7.4Hz,1H),2.46–2.32(m,1H),1.24(dt,J=11.0,7.1Hz,3H);
13C NMR(101MHz,CDCl3)δ178.77,174.42,174.31,168.74,168.66,136.98,136.91,129.03,128.11,128.06,62.05,49.69,49.40,48.94,48.66,31.52,31.40,13.99,13.93.
HRMS(ESI+)[M+Na]+calculated m/z for[C14H16NaO6]+:303.0840,found:303.0842;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(methoxycarbonyl)-4-phenylpentanedioic acid(4b)
Figure BDA0003272648330000173
3.63(m,4H),3.37–3.30(m,1H),2.66(dtd,J=14.2,7.9,2.7Hz,1H),2.39(ddd,J=14.4,8.1,6.6Hz,1H);
13C NMR(101MHz,CDCl3)δ179.05,174.70,174.59,168.99,168.93,136.70,129.02,128.07,128.05,52.87,49.39,49.18,48.83,48.61,31.38,31.28;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C12H13O4]-:221.0819,found:221.0826;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2-(butoxycarbonyl)-4-phenylpentanedioic acid(4c)
Figure BDA0003272648330000181
5H),4.23–4.02(m,2H),3.72(dt,J=11.2,7.7Hz,1H),3.32(dt,J=13.9,7.3Hz,1H),2.67(q,J=6.3Hz,1H),2.39(dd,J=14.2,7.2Hz,1H),1.67–1.55(m,2H),1.33(dq,J=14.5,7.3Hz,2H),0.90(q,J=7.0Hz,3H);
13C NMR(101MHz,CDCl3)δ179.04,174.84,174.72,168.60,168.50,136.83,136.74,128.99,128.08,128.05,65.82,65.80,49.61,49.34,48.87,48.64,31.44,31.30,30.35,30.31,18.95,18.92,13.57;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C15H19O4]-:263.1289,found:263.1285;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(isopropoxycarbonyl)-4-phenylpentanedioic acid(4d)
Figure BDA0003272648330000182
=18.9,6.2Hz,1H),3.72(dt,J=11.9,7.8Hz,1H),3.29(ddd,J=23.6,8.3,6.5Hz,1H),2.74–2.60(m,1H),2.46–2.30(m,1H),1.31–1.20(m,7H);
13C NMR(101MHz,CDCl3)δ179.15,175.05,174.93,168.04,167.93,136.94,136.75,129.00,128.09,128.06,128.03,77.36,77.04,76.72,69.82,69.75,49.83,49.47,48.88,48.60,31.44,31.26,21.59,21.52,21.46,21.43;
HRMS(ESI-)[M-H]-calculated m/z for[C14H17O4]-:249.1132,found:249.1130;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(phenoxycarbonyl)-4-phenylpentanedioic acid(4e)
Figure BDA0003272648330000183
1.2Hz,1H),7.07–7.00(m,1H),3.72(td,J=7.8,2.2Hz,1H),2.67(ddd,J=14.0,7.6,2.5Hz,1H),2.47–2.37(m,1H);
13C NMR(101MHz,Methanol-d4)δ174.98,138.35,138.30,129.11,129.05,128.95,128.54,128.49,128.43,128.39,127.71,127.66,127.65,127.57,127.21,125.77,121.05,121.03,119.01,114.71,48.85,48.77,31.85;
ESI-MS[M-H]-calculated m/z for[C18H15O6]-:327.09,found:326.84;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)-4-phenylpentanedioicacid(4f)
Figure BDA0003272648330000184
3.55(m,1H),2.94–2.75(m,3H),2.57–2.44(m,2H),2.42–2.34(m,1H),2.30–2.23(m,1H),2.21–2.10(m,1H),2.09–1.91(m,3H),1.67–1.37(m,6H),0.90(d,J=2.7Hz,3H);
13C NMR(101MHz,CDCl3)δ178.91,178.89,174.25,167.30,148.22,138.22,138.17,137.91,137.87,137.08,136.98,129.15,129.12,128.17,128.10,128.07,126.51,126.47,121.20,118.38,50.40,49.99,49.35,49.11,48.41,48.08,44.11,37.94,35.91,31.65,31.49,31.38,29.38,29.36,26.30,25.74,21.61,13.84;
HRMS(ESI+)[M+Na]+calculated m/z for[C30H32NaO7]+:527.2050,found:527.2045;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2-((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)-4-phenylpentanedioic acid(4g)
Figure BDA0003272648330000191
=17.0,9.3,8.1,5.1Hz,1H),1.82(dqd,J=17.7,6.8,3.2Hz,1H),1.73–1.60(m,2H),1.55–1.34(m,2H),1.15–0.65(m,12H);
13C NMR(101MHz,CDCl3)δ179.15,179.08,175.18,174.98,168.04,168.00,167.93,167.76,137.10,137.00,136.70,136.68,129.00,128.99,128.11,128.07,128.02,127.98,127.94,76.30,76.26,76.21,76.07,50.00,48.93,48.49,46.81,46.78,46.69,46.67,40.52,40.42,40.19,40.12,34.08,34.06,31.50,31.37,31.34,31.05,26.10,26.03,25.92,25.87,23.25,23.18,23.15,23.10,21.98,21.94,20.68,20.66,20.64,16.11,15.95,15.86;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C21H29O4]-:345.2071,found:345.2070;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2-((((3S,8S,9S,10R,13S,14S,17S)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)-4-phenylpentanedioic acid(4h)
Figure BDA0003272648330000192
1.73–1.40(m,8H),1.25–1.09(m,3H),1.00(d,J=4.8Hz,4H),0.63(d,J=2.7Hz,3H);
13C NMR(101MHz,CDCl3)δ210.19,178.89,174.61,167.81,139.23,139.17,139.15,137.26,137.16,128.98,128.96,128.00,127.93,122.66,122.62,75.56,63.64,56.76,49.76,49.20,44.03,38.70,37.68,36.82,36.55,36.52,31.74,31.72,31.54,27.41,27.29,24.45,22.80,20.99,19.28,13.20;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C32H41O5]-:505.2959,found:505.2959;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2-((((E)-3,7-dimethylocta-2,6-dien-1-yl)oxy)carbonyl)-4-phenylpentanedioic acid(4i)
Figure BDA0003272648330000193
1H NMR(400MHz,CDCl3)δ10.21(b,2H),7.36–7.25(m,5H),5.48–5.17(m,1H),5.11–5.00(m,1H),4.85–4.44(m,2H),3.84–3.64(m,1H),3.44–3.29(m,1H),2.76–2.62(m,1H),2.47–2.32(m,1H),2.16–2.00(m,4H),1.77–1.61(m,6H),1.62–1.53(m,3H);
13C NMR(101MHz,CDCl3)δ179.18,174.96,174.90,168.49,168.43,143.45,143.33,137.01,136.86,131.93,131.90,129.03,128.56,128.13,128.07,123.67,117.48,117.45,62.87,62.80,49.81,49.26,49.03,48.52,39.51,31.60,31.40,26.29,26.26,25.68,17.70,16.54,16.51;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C21H27O4]-:343.1915,found:343.1918;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(((3,7-dimethyloct-6-en-1-yl)oxy)carbonyl)-4-phenylpentanedioicacid(4j)
Figure BDA0003272648330000201
3.67(m,1H),3.36–3.25(m,1H),2.73–2.60(m,1H),2.46–2.32(m,1H),1.95(dp,J=18.3,6.7Hz,2H),1.66(s,4H),1.60–1.56(m,3H),1.55–1.39(m,2H),1.37–1.25(m,1H),1.22–1.11(m,1H),0.93–0.82(m,3H);
13C NMR(101MHz,CDCl3)δ179.30,175.18,175.05,168.49,168.40,136.83,136.73,131.40,129.04,128.12,128.10,124.49,64.63,64.58,49.66,49.32,48.93,48.64,36.93,36.91,35.21,35.15,31.45,31.28,29.47,29.45,25.71,25.39,25.37,19.33,17.66;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C21H29O4]-:345.2071,found:345.2066;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
(Z)-2-((hex-3-en-1-yloxy)carbonyl)-4-phenylpentanedioic acid(4k)
Figure BDA0003272648330000202
Hz,1H),4.16–4.02(m,2H),3.70(dt,J=15.4,7.7Hz,1H),3.31(q,J=7.3Hz,1H),2.65(ddd,J=14.3,6.7,3.3Hz,1H),2.36(ddd,J=9.6,7.7,5.6Hz,3H),2.01(qd,J=7.4,1.5Hz,2H),0.92(td,J=7.5,4.5Hz,3H);
13C NMR(101MHz,CDCl3)δ178.80,174.49,174.37,168.69,168.61,136.91,136.83,134.92,134.89,128.99,128.97,128.06,128.04,128.02,123.10,123.04,65.37,49.69,49.30,48.92,48.55,31.48,31.34,26.45,26.41,20.58,20.55,14.16;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C17H21O4]-:289.1445,found:289.1445;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
2-((hex-5-yn-1-yloxy)carbonyl)-4-phenylpentanedioic acid(4l)
Figure BDA0003272648330000203
(m,1H),3.42–3.27(m,1H),2.75–2.61(m,1H),2.43–2.31(m,1H),2.23–2.15(m,1.0H),2.06–2.00(m,0.6H),1.95–1.91(m,0.5H),1.79–1.69(m,1.3H),1.67–1.50(m,2H),1.46–1.36(m,0.7H);
13C NMR(101MHz,CDCl3)δ178.64,174.26,168.55,168.52,138.15,137.01,136.98,136.92,128.99,128.97,128.02,128.01,114.90,83.72,68.89,68.87,65.85,65.81,65.38,65.34,49.79,49.23,49.02,48.47,33.10,33.08,31.53,31.33,27.75,27.70,27.37,27.31,24.94,24.91,24.66,24.63,17.92,17.91;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C17H19O4]-:287.1289,found:287.1287;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
1-ethyl 1,3-dimethyl 3-(4-phenoxyphenyl)propane-1,1,3-tricarboxylate(4m)
Figure BDA0003272648330000211
4.23–4.13(m,2H),3.75–3.69(m,3H),3.69–3.62(m,4H),3.34–3.23(m,1H),2.67–2.58(m,1H),2.43–2.34(m,1H),1.30–1.22(m,3H);
13C NMR(101MHz,CDCl3)δ173.44,169.40,169.29,168.82,168.69,156.93,156.74,132.12,132.06,129.76,129.30,129.26,123.50,119.12,118.85,61.64,61.63,52.58,52.56,52.22,49.47,49.42,48.05,48.03,32.03,32.00,14.04,13.99;
HRMS(ESI+)[M+Na]+calculated m/z for[C22H24NaO7]+:423.1420,found:423.1413;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(ethoxycarbonyl)-4-(4-fluorophenyl)pentanedioic acid(4n)
Figure BDA0003272648330000212
2.59(m,1H),2.44–2.29(m,1H),1.29–1.21(m,4H);
13C NMR(101MHz,CDCl3)δ178.66,178.41,174.27,174.16,174.14,174.01,168.74,168.67,168.59,163.60,161.15,136.90,136.83,132.66,129.77,129.69,128.98,128.04,115.98,115.98,115.78,115.76,62.10,62.07,62.04,62.02,49.64,49.58,49.30,48.89,48.58,48.13,47.82,31.56,31.44,31.33,13.94,13.88;
19F NMR(376MHz,CDCl3)δ-114.05,-114.07;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C13H14FO4]-:253.0882,found:253.0884;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(4-cyanophenyl)-4-(ethoxycarbonyl)pentanedioic acid(4o)
Figure BDA0003272648330000213
3.25(m,1H),2.84–2.62(m,1H),2.45–2.32(m,1H),1.33–1.23(m,3H);
13C NMR(101MHz,CDCl3)δ177.65,174.26,168.19,168.16,142.30,142.27,132.80,129.02,118.24,112.04,62.30,62.28,49.60,49.20,48.98,48.56,31.36,31.19,13.98,13.94;
HRMS(ESI-)[M-H]-calculated m/z for[C15H14NO6]-:304.0827,found:304.0833;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(4-chlorophenyl)-4-(ethoxycarbonyl)pentanedioic acid(4p)
Figure BDA0003272648330000214
Rf(PE/EA/HOAc):0.2;
1H NMR(400MHz,CDCl3,含脱氯产物4a)δ10.75(b,2H),7.42–7.09(m,4H),4.30–4.07(m,2H),3.79–3.72(m,0.5H),3.72–3.64(m,0.5H),3.39–3.27(m,1H),2.75–2.58(m,1H),2.42–2.28(m,1H),1.33–1.17(m,3H);
13C NMR(101MHz,CDCl3,含脱氯产物4a)δ179.36,179.34,178.92,178.89,175.17,175.01,174.96,168.35,168.24,168.21,136.84,136.78,135.32,134.05,134.03,129.42,129.41,129.19,129.17,129.02,128.11,128.03,127.99,62.15,62.11,62.07,62.04,49.70,49.20,49.14,49.02,48.39,47.80,31.41,31.20,14.00,13.95;
HRMS(ESI-)[M-CO2H]-calculated m/z for[C13H14ClO4]-:269.0586,found:269.0587;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2-(4-(tert-butyl)phenyl)-4-(ethoxycarbonyl)pentanedioic acid(4q)
Figure BDA0003272648330000221
(m,1H),2.77–2.64(m,1H),2.47–2.36(m,1H),1.33(s,9H),1.31–1.25(m,3H);
13C NMR(101MHz,CDCl3)δ179.40,175.03,174.98,168.46,168.44,150.98,133.82,133.77,127.69,125.95,125.93,61.96,61.93,49.85,49.30,48.57,48.05,34.52,31.29,14.02,13.97;
LRMS(ESI+)[M+Na]+calculated m/z for[C18H24NaO6]-:359.147,found:359.100;
Diastereoisomers were determined by crude 1H NMR analysis as 1.0:1.
1-ethyl 1,3-dimethyl 3,3-diphenylpropane-1,1,3-tricarboxylate(4r)
Figure BDA0003272648330000222
4.79–4.69(m,1H),4.22–4.10(m,2H),3.68(s,3H),3.62(s,3H),2.69–2.60(m,1H),2.32–2.22(m,1H),1.29–1.20(m,3H);
13C NMR(101MHz,CDCl3)δ173.16,172.48,172.17,139.98,138.94,130.44,129.21,128.23,127.47,127.41,127.28,61.79,60.77,52.50,52.13,46.45,33.72,14.14;
GCMS(EI)[M]calculated m/z for[C22H24O6]:384.2,found:384.2.
4-(ethoxycarbonyl)-2-methyl-2-phenylpentanedioic acid(4s)
Figure BDA0003272648330000223
7.29–7.23(m,1H),4.25–4.06(m,2H),3.64–3.48(m,1H),3.03–2.94(m,1H),2.79–2.63(m,1H),2.37–2.29(m,1H),1.74–1.51(m,3H),1.31–1.20(m,4H);
13C NMR(101MHz,CDCl3)δ182.18,181.65,175.94,175.58,169.16,168.59,142.12,141.09,128.68,128.66,127.54,127.28,126.51,125.87,62.14,61.96,50.12,48.88,48.46,48.38,37.72,36.89,26.72,21.13,13.94,13.93;
Diastereoisomers were determined by crude 1H NMR analysis as 1.1:1.
2,4-bis(ethoxycarbonyl)pentanedioic acid(4t)
Figure BDA0003272648330000224
1H NMR(400MHz,CDCl3)δ9.89(s,2H),4.18(q,J=7.1Hz,4H),3.54(dt,J=14.8,7.4Hz,2H),2.46(td,J=7.4,3.0Hz,2H),1.24(t,J=7.1Hz,6H);
13C NMR(101MHz,CDCl3)δ173.93,168.31,168.27,62.23,62.21,49.25,49.00,27.01,26.93,13.88;
HRMS(ESI+)[M+Na]+calculated m/z for[C11H17O8]+:277.0923,found:277.0918.
2,5-diphenylhexanedioic acid(6a)
Figure BDA0003272648330000231
2.62–2.58(m,0H),2.07–1.90(m,1H),1.72–1.56(m,1H);
13C NMR(101MHz,Methanol-d4)δ176.00,175.20,173.77,139.22,139.09,138.42,128.35,128.18,128.16,127.58,127.53,127.43,127.06,126.82,51.22,51.18,37.32,31.05,30.82;
HRMS(ESI-)[M-H]-calculated m/z for[C18H17O4]-:297.1132,found:297.1126;
Meso-isomer and racemic(dl)-isomer were determined for its methylester by 1H NMR analysis as1.0:1.
dimethyl 2,5-bis(4-cyanophenyl)hexanedioate(6b)
Figure BDA0003272648330000232
13C NMR(101MHz,CDCl3)δ172.76,143.58,143.49,132.61,132.58,128.75,128.72,118.51,118.47,111.64,52.46,51.34,51.26,31.10,30.90;
HRMS(ESI+)[M+Na]+calculated m/z for[C22H20N2NaO4]+:399.1321,found:399.1315;Meso-isomer and racemic(dl)-isomer were determined by 1H NMRanalysis as 3.0:1.
1-ethyl 1,3-dimethyl 3-phenylbutane-1,1,3-tricarboxylate(6c)
Figure BDA0003272648330000233
13C NMR(101MHz,CDCl3)δ173.29,173.27,166.70,166.68,143.49,143.36,130.01,129.98,129.34,127.93,127.90,52.23,52.21,52.11,51.26,51.21,31.08,30.84;
HRMS(ESI+)[M+Na]+calculated m/z for[C24H26NaO8]+:465.1526,found:465.1520;
Meso-isomer and racemic(dl)-isomer were determined by 1H NMR analysisas 1.1:1.
2,5-bis(4-(trifluoromethyl)phenyl)hexanedioic acid(6d)
Figure BDA0003272648330000234
1.77(m,1H),1.78–1.64(m,1H),1.61–1.48(m,1H);
13C NMR(101MHz,DMSO-d6)δ179.21,149.39,149.27,133.96,133.08,132.76,132.44,130.82,130.61,130.57,130.53,128.12,55.47,55.43,35.83,35.67;
19F NMR(376MHz,DMSO-d6)δ-56.21,-56.23;
HRMS(ESI-)[M-H]-calculated m/z for[C20H15F6O4]-:433.0880,found:433.0874;
Racemic(dl)-isomer and meso-isomer were determined by 19F NMR analysisas 1.1:1.
dimethyl 2,5-bis(4-phenoxyphenyl)hexanedioate(6e)
Figure BDA0003272648330000241
–6.92(m,4H),4.14–4.08(m,0.6H),3.71(d,J=6.0Hz,3H),3.68(d,J=4.8Hz,3H),3.59–3.51(m,1.4H),3.26–3.18(m,0.5H),2.74–2.67(m,0.5H),2.07–1.99(m,1H),1.86–1.64(m,2H);
13C NMR(101MHz,CDCl3)δ174.22,174.18,173.49,171.95,156.95,156.93,156.81,156.67,133.26,133.11,132.21,129.80,129.76,129.20,129.15,129.07,123.55,123.43,119.17,119.08,118.90,118.82,118.78,52.41,52.09,52.07,51.91,50.66,50.62,46.39,37.70,31.40,31.15;
HRMS(ESI+)[M+Na]+calculated m/z for[C32H30O6Na]+:533.1934,found:533.1915;
Meso-isomer and racemic(dl)-isomer were determined by 1H NMR analysisas 1.1:1.
2,5-di-m-tolylhexanedioic acid(6f)
Figure BDA0003272648330000242
1H NMR(400MHz,Methanol-d4,meso)δ7.25–7.14(m,2H),7.04(td,J=15.1,13.7,8.8Hz,6H),3.52–3.40(m,2H),2.30(d,J=6.0Hz,6H),2.04–1.88(m,2H),1.74–1.55(m,2H);
13C NMR(101MHz,Methanol-d4,meso)δ176.21,139.00,137.86,131.27,128.18,128.03,128.01,127.44,124.67,124.57,51.17,31.03,30.73,30.30,20.03;
HRMS(ESI-)[M-H]-calculated m/z for[C20H21O4]-:325.1445,found:325.1441;
性状:油状液体;
1H NMR(400MHz,Methanol-d4,dl)δ7.24–7.09(m,3H),7.09–6.95(m,5H),3.95(dd,J=10.2,5.1Hz,1H),3.50–3.39(m,1H),3.07(dd,J=17.0,10.3Hz,1H),2.57(dd,J=17.0,5.1Hz,1H),2.31–2.22(m,6H),2.00–1.85(m,1H),1.66–1.53(m,1H);
13C NMR(101MHz,Methanol-d4,dl)δ176.15,175.28,173.82,138.94,138.28,138.14,137.89,128.25,128.19,128.07,128.04,127.74,127.49,124.68,124.42,51.11,37.36,31.00,30.71,20.06,20.02;
HRMS(ESI-)[M-H]-calculated m/z for[C20H21O4]-:325.1445,found:325.1448.
The ratio of meso-isomer and racemic(dl)-isomer was calculated as1.6:1.
以上内容仅仅是对本发明结构所作的举例和说明,所属本领域的技术人员不经创造性劳动即对所描述的具体实施例做的修改或补充或采用类似的方式替代仍属本专利的保护范围。

Claims (10)

1.一种电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,包括以下过程:
将反应底物加入反应容器中,然后在CO2气氛下加入溶剂,于电化学体系下搅拌反应,反应结束后对反应产物进行分离纯化,制得二酸类化合物;
所述反应底物为取代环丙烷类化合物或取代环丁烷类化合物,其结构通式如下所示:
Figure FDA0003272648320000011
其中,n=1或2;R1为芳基、被一个或多个R1a取代的芳基或吸电子基;R2为氢、烷基或被一个或多个R1a取代的烷基;R3为芳基、被一个或多个R1a取代的芳基、杂芳基、被一个或多个R1a取代的杂芳基或吸电子基;R4为氢、烷基、被一个或多个R1a取代的烷基、杂芳基、被一个或多个R1a取代的杂芳基、芳基或被一个或多个R1a取代的芳基;所述R1a为C1~C10烷基、卤素、酯基、氰基或酰胺基。
2.如权利要求1所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,所述二氧化碳压力为0.1-50倍大气压;所述电化学体系的工作参数为:阴极为金属铌、玻碳电极、碳毡电极、金属铂、金属铁、金属锌、金属铅、金属镁、金属铜、泡沫镍、石墨棒、碳板或RVC,阳极为金属锌、金属镁、金属锡或金属铝,电解质为nBu4NBF4nBu4NClO4nBu4NPF6nBu4NI、nBu4NCl、Me4NI、nBu4NOAc、nBu4NBr、Et4NBF4、NaI、LiCl或LiClO4,工作电流为0.1mA~100mA。
3.如权利要求1-2任一项所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,具体包括以下步骤:
步骤(1):将连接有导线的阳极和阴极固定于反应装置两侧,干燥,待用;
步骤(2):将反应底物加入步骤(1)所得的反应装置中,于惰性气体保护下,再将加入电解质反应容器中,密封反应装置;
步骤(3):将步骤(2)所得的反应装置中的惰性气体置换成CO2,并在CO2氛围下加入溶剂,搅拌溶解后通入电流,室温下开始搅拌反应0.1~48h,反应结束后对反应产物进行分离纯化,制得二酸类化合物。
4.如权利要求3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,所述溶剂为无水溶剂。
5.如权利要求3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,所述溶剂为无水二甲基亚砜、无水N-甲基吡咯烷酮、无水N,N-二甲基甲酰胺、乙腈、四氢呋喃、二氯甲烷、丙酮、1,4-二氧六环或甲醇。
6.如权利要求3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,所述反应底物的浓度为0.01~5mol/L。
7.如权利要求3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于,所述反应底物与电解质的摩尔比为1:1~1:100。
8.如权利要求1或3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于:所述小环化合物为对称或不对称取代的环丙烷化合物或环丁烷化合物。
9.如权利要求1或3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于:所述芳基的结构式如下所示:
Figure FDA0003272648320000021
10.如权利要求1或3所述的电促进CO2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法,其特征在于:所述吸电子基的结构式如下所示:
Figure FDA0003272648320000022
CN202111106834.7A 2021-09-22 2021-09-22 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法 Active CN115896821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111106834.7A CN115896821B (zh) 2021-09-22 2021-09-22 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111106834.7A CN115896821B (zh) 2021-09-22 2021-09-22 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法

Publications (2)

Publication Number Publication Date
CN115896821A true CN115896821A (zh) 2023-04-04
CN115896821B CN115896821B (zh) 2024-06-11

Family

ID=86478449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111106834.7A Active CN115896821B (zh) 2021-09-22 2021-09-22 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法

Country Status (1)

Country Link
CN (1) CN115896821B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8515644D0 (en) * 1984-06-21 1985-07-24 Poudres & Explosifs Ste Nale Electrosynthesis of carboxylic acids
US20130310555A1 (en) * 2012-05-21 2013-11-21 Illinois Institute Of Technology Synthesis of therapeutic and diagnostic drugs centered on regioselective and stereoselective ring opening of aziridinium ions
CN110028403A (zh) * 2019-04-19 2019-07-19 四川大学 一种合成丁二酸类化合物的方法
EP3549927A1 (en) * 2018-04-06 2019-10-09 Commissariat à l'Energie Atomique et aux Energies Alternatives A process for the synthesis of carbon labeled organic compounds
CN111039773A (zh) * 2019-12-25 2020-04-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
CN111254457A (zh) * 2020-03-31 2020-06-09 四川大学 一种芳香羧酸和烷基羧酸的电化学合成方法
CN113200954A (zh) * 2021-04-30 2021-08-03 南京工业大学 一种环状碳酸酯的制备方法
CN115584516A (zh) * 2022-10-13 2023-01-10 南京林业大学 一种电化学诱导二氟环丙烷脱氟羧化反应的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8515644D0 (en) * 1984-06-21 1985-07-24 Poudres & Explosifs Ste Nale Electrosynthesis of carboxylic acids
US20130310555A1 (en) * 2012-05-21 2013-11-21 Illinois Institute Of Technology Synthesis of therapeutic and diagnostic drugs centered on regioselective and stereoselective ring opening of aziridinium ions
EP3549927A1 (en) * 2018-04-06 2019-10-09 Commissariat à l'Energie Atomique et aux Energies Alternatives A process for the synthesis of carbon labeled organic compounds
CN110028403A (zh) * 2019-04-19 2019-07-19 四川大学 一种合成丁二酸类化合物的方法
CN111039773A (zh) * 2019-12-25 2020-04-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
CN111254457A (zh) * 2020-03-31 2020-06-09 四川大学 一种芳香羧酸和烷基羧酸的电化学合成方法
CN113200954A (zh) * 2021-04-30 2021-08-03 南京工业大学 一种环状碳酸酯的制备方法
CN115584516A (zh) * 2022-10-13 2023-01-10 南京林业大学 一种电化学诱导二氟环丙烷脱氟羧化反应的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIAN-HENG YE等: "Radical Carboxylative Cyclizations and Carboxylations with CO2", ACC. CHEM. RES., vol. 54, no. 10, 6 May 2021 (2021-05-06), pages 2518 *
LI-LI-LAO 等: "Electrochemical Ring-Opening Dicarboxylation of Strained Carbon–Carbon Single Bonds with CO2: Facile Synthesis of Diacids and Derivatization into Polyesters", J. AM. CHEM. SOC., vol. 144, 27 December 2021 (2021-12-27), pages 2062 - 2068 *
PAN PENG 等: "Electrochemical C−C bond cleavage of cyclopropanes towards the synthesis of 1, 3-difunctionalized molecules", NATURE COMMUNICATIONS, vol. 3075, 24 May 2021 (2021-05-24), pages 2518 - 2531 *
刘文竹;豆立娟;母伟花;: "环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展", 有机化学, vol. 40, no. 05, 31 January 2020 (2020-01-31), pages 1150 - 1176 *
吕 帅 等: "电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展", 有机化学, vol. 44, 29 February 2024 (2024-02-29), pages 780 *

Also Published As

Publication number Publication date
CN115896821B (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
JP6226954B2 (ja) (3e,7e)−ホモファルネソールの改良製造方法
US6342149B1 (en) Method for carboxylating terminal alkynes
US20170001944A1 (en) Chemical process to convert mucic acid to adipic acid
Matthessen et al. Electrochemical dicarboxylation of conjugated fatty acids as an efficient valorization of carbon dioxide
CN104744413B (zh) 氧化工艺
CN111777477A (zh) 一种丁二酸衍生物或3-芳基丙酸的合成方法
Senboku et al. Regioselective electrochemical carboxylation of polyfluoroarenes
CN106567104A (zh) 1,1’‑二吲哚甲烷类衍生物的电化学合成方法
CN112321475B (zh) 一种γ-氨基酸类似物及其合成方法
CN115896821B (zh) 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法
Jones et al. The Claisen rearrangement in synthesis: acceleration of the Johnson orthoester protocol en route to bicyclic lactones
CN111423320B (zh) 一种神经酸的制备方法及神经酸
Senboku et al. Electrochemical carboxylation of flavones: facile synthesis of flavanone-2-carboxylic acids
CN108976243A (zh) 通过二甲基呋喃与含氧化吲哚邻羟基苄醇合成螺-色满-4,3′-氧化吲哚的合成方法
CN101691664B (zh) 一种利用电化学反应合成3-烯-1,6-二酸的方法
CN102060659A (zh) 高烯丙基醇的制备方法
CN110143875A (zh) 一种4-乙酰氧基-2-甲基-2-丁烯醛的制备方法
CN108560016A (zh) 一种多取代烯丙基羧酸类化合物的合成方法
CN106242934A (zh) 一种酮的β‑位C‑H键乙酰氧化合成方法
CN115838330B (zh) 一种基于非活化烯烃远程羧基化合成二元羧酸类化合物的方法
CN110016688B (zh) 一种醇类物质的电化学制备方法
CN117210834A (zh) 一种基于电化学促进co2合成二元羧酸类化合物的方法
CN114990590B (zh) 一种电催化无金属转酰胺化反应的新方法
JP6094752B2 (ja) ピロールカルボン酸類の製造方法
CN115786940A (zh) 一种γ-磺酰内酯化衍生物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant