CN115887646A - 一种纳米复合材料及其制备方法和应用 - Google Patents

一种纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN115887646A
CN115887646A CN202211315441.1A CN202211315441A CN115887646A CN 115887646 A CN115887646 A CN 115887646A CN 202211315441 A CN202211315441 A CN 202211315441A CN 115887646 A CN115887646 A CN 115887646A
Authority
CN
China
Prior art keywords
hrp
aptamer
cancer cells
platelet membrane
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211315441.1A
Other languages
English (en)
Inventor
郭英姝
李文鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202211315441.1A priority Critical patent/CN115887646A/zh
Priority to US18/251,185 priority patent/US20240342103A1/en
Priority to PCT/CN2022/134412 priority patent/WO2024087292A1/zh
Publication of CN115887646A publication Critical patent/CN115887646A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种纳米复合材料及其制备方法和应用,属于生物医药技术领域。本发明的纳米复合材料以血小板膜(PM)为壳体,包裹有普鲁士蓝纳米粒子(PB);所述PM表面修饰有癌细胞的适配体和辣根过氧化物酶(HRP)。本发明利用血小板(PLT)特异性靶向癌细胞和炎性部位的能力,可以有效增强纳米粒子在肿瘤部位的积累,并在近红外光的照射下帮助PB更好的实现良好的光热疗法(PTT)。此外,肿瘤微环境中高表达过氧化氢,修饰于纳米复合材料表面的HRP能够分解过氧化氢生成氧气气泡,驱动纳米复合物主动运输,从而增强癌细胞中的累积。最后,本发明在血小板膜表面修饰癌细胞的适配体,实现增强对癌细胞靶向的作用。

Description

一种纳米复合材料及其制备方法和应用
技术领域
本发明属于生物医药技术领域,具体涉及一种纳米复合材料及其制备方法和应用。
背景技术
在医学上,癌症(cancer)是指起源于上皮组织的恶性肿瘤,是恶性肿瘤中最常见的一类。到目前为止,癌症仍然是医学领域的一个大问题。尽管科学家们在这一领域继续探索并取得了巨大的成就,但仍有许多未知的问题有待解决。有效的肿瘤细胞治疗的理想结果应该包括原发性肿瘤的消除和持续抑制转移性肿瘤的发展。目前常用的治疗手段有手术治疗、化疗、光疗和免疫治疗等。
但是,肿瘤细胞位于肿瘤组织的深部,肿瘤微环境具有致密的细胞外基质、升高的间质液压力、缺氧和无血管区等特征。这种特殊性限制了纳米材料向肿瘤细胞的运输,它们可能导致其外渗回到血流中。由于上述肿瘤部位的特殊性,探索性研究已确定单药治疗难以达到良好的肿瘤消除效果,更不要提抑制原发肿瘤转移。因此,为了提高对肿瘤细胞的治疗功效,迫切需要多模式的协同治疗。
发明内容
本发明的目的是研究一种纳米复合材料及其制备方法和应用,本发明可以有效增强普鲁士蓝纳米粒子在肿瘤部位的积累以及实现对肿瘤细胞增强靶向的作用。
本发明提供了一种纳米复合材料,以血小板膜为壳体,包裹有普鲁士蓝纳米粒子;所述血小板膜表面修饰有癌细胞的适配体和辣根过氧化物酶。
优选的,所述癌细胞包括乳腺癌细胞。
优选的,所述乳腺癌细胞的适配体包括AS1411适配体。
本发明还提供了上述方案所述的纳米复合材料的制备方法,包括以下步骤:
1)将血小板膜和普鲁士蓝纳米粒子混合,得到PB/PM纳米粒子;
2)将PB/PM纳米粒子附着于底部有一层聚赖氨酸的孔板中,再在孔板中加入辣根过氧化物酶,辣根过氧化物酶和PB/PM纳米粒子进行脱水缩合反应,将脱水缩合反应后的产物从孔板分离,得到PB/PM/HRP;
3)将PB/PM/HRP和癌细胞的适配体混合,得到纳米复合材料。
优选的,所述血小板膜是采用血小板制备获得;每1*106个血小板制备得到80~120μL血小板膜;所述普鲁士蓝纳米粒子溶解于磷酸盐缓冲液中;所述血小板膜和普鲁士蓝纳米粒子的体积比为(1.2~1.5):1;所述普鲁士蓝纳米粒子的浓度为0.5~0.6mg/mL。
优选的,所述癌细胞的适配体为羧基修饰的癌细胞适配体。
优选的,所述PB/PM/HRP和癌细胞的适配体质量比为(65~70):1。
优选的,所述辣根过氧化物酶标记有生物素;所述PB/PM纳米粒子和标记有生物素的辣根过氧化物酶的质量比为(55~60):1。
本发明还提供了上述方案所述的纳米复合材料或者所述制备方法制备得到的纳米复合材料制备抗肿瘤药物中的应用。
本发明提供了一种纳米复合材料,以血小板膜(PM)为壳体,包裹有普鲁士蓝纳米粒子(PB);所述血小板膜表面修饰有癌细胞的适配体和辣根过氧化物酶(HRP)。本发明将具有良好光热转换效率的PB和保护纳米材料免受免疫清除的PM结合。利用血小板(PLT)特异性靶向癌细胞和炎性部位的能力,可以有效增强纳米粒子在肿瘤部位的积累,并在近红外光的照射下实现良好的光热疗法(PTT)。此外,肿瘤微环境中高表达过氧化氢,修饰于分布纳米复合材料表面的HRP能够分解过氧化氢生成氧气气泡,氧气气泡驱动纳米复合物主动运输,HRP可以起到化学驱动作用,从而增强癌细胞中的累积。最后,本发明在血小板膜表面修饰癌细胞的适配体,实现增强癌细胞靶向的作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为PB/PM/HRP/Apt的合成示意图;
图2为PB的透射电子显微镜图像;
图3为PB/PM的透射电子显微镜图像;
图4为不同粒子的粒径分布,其中(a)为PB的粒径分布,(b)为PB/PM的粒径分布;
图5为PB、PM、PB/PM、PB/PM/HRP、PB/PM/HRP/Apt的电位变化;
图6为PB、PM、PB/PM的十二烷基硫酸钠聚丙烯酰胺凝胶电泳图像;
图7为不同浓度PB的紫外-可见吸收光谱;
图8为游离的FITC、PB/PM/HRP与PB/PM的荧光光谱;
图9为PB和PB/PM/HRP/Apt在808nm激光照射10min时的温升曲线。
图10为在适用的情况下,用游离的PB、PB/PM、PB/PM/Apt、PB/PM/HRP/Apt处理过的4T1细胞活力;
图11为培养不同时间后,PB/PM/HRP/Apt作用于4T1细胞的荧光成像(比例尺:10μm)。
具体实施方式
本发明提供了一种纳米复合材料,以血小板膜为壳体,包裹有普鲁士蓝纳米粒子;所述血小板膜表面修饰有癌细胞的适配体和辣根过氧化物酶。
在本发明中,所述纳米复合材料为核壳式结构。
在本发明中,所述血小板膜是采用血小板制备获得;每1*106个血小板制备得到80~120μL血小板膜,更优选为;每1*106个血小板制备得到100μL血小板膜;本发明对采用血小板制备血小板膜的制备方法没有特殊限制,采用本领域的常规方法即可;本发明具体实施过程中,优选的采用反复冻融法制备血小板膜。在本发明中,血小板膜具有固有的肿瘤归巢性能,可以特异性的靶向肿瘤部位,有效增强纳米粒子在肿瘤部位的积累。
在本发明中,所述普鲁士蓝纳米粒子的包裹量优选为0.5~0.6mg/mL。在本发明中,普鲁士蓝纳米粒子作为光热剂,利用其将光能转化为热能的能力,在近红外等外部光源下杀死肿瘤细胞,因而,本发明的纳米复合材料在近红外光的照射下实现良好的光热性能。
在本发明中,所述癌细胞优选的包括乳腺癌细胞;所述乳腺癌细胞的适配体优选的包括AS1411适配体;所述AS1411适配体的核苷酸序列如SEQ ID NO.1所示,具体为:5’-COOH-GGTGGTGGTGGTTGTGGTGGTGGTGG-3’。在本发明中,所述癌细胞的适配体的作用是增强纳米复合材料的癌细胞靶向性。
在本发明中,肿瘤微环境中高表达过氧化氢,修饰于分布纳米复合材料表面的HRP能够分解过氧化氢生成氧气气泡,氧气气泡驱动纳米复合物主动运输,HRP可以起到化学驱动作用,从而增强纳米复合材料在癌细胞中的累积。
本发明的纳米复合材料是由血小板膜包裹普鲁士蓝纳米粒子而制备的,由于血小板膜具有固有的肿瘤归巢性能,可以特异性的靶向肿瘤部位,因此细胞膜包覆纳米复合物是具有同源性的。根据血小板固有的肿瘤归巢能力和优异的生物相容性,本发明的同源性纳米复合材料,具有良好的稳定性、靶向性、智能性及较高的生物利用度等优势。通过对具有良好光热性能的PB表面进行功能化处理,包覆具有癌细胞靶向性和免疫逃逸能力的PM,在PM上修饰HRP,最后修饰4T1细胞的适配体。PB/PM/HRP/Apt可以更容易地逃避免疫清除并靶向肿瘤组织,同时这种特异性靶向方法可以显著增强PB/PM/HRP/Apt在肿瘤部位的累积,为生物医学领域多种纳米载体的开发提供了新思路。
本发明还提供了上述方案所述的纳米复合材料的制备方法,包括以下步骤:
1)将血小板膜和普鲁士蓝纳米粒子混合,得到PB/PM纳米粒子;
2)将PB/PM纳米粒子附着于底部有一层聚赖氨酸的孔板中,再在孔板中加入辣根过氧化物酶,辣根过氧化物酶和PB/PM纳米粒子进行脱水缩合反应,将脱水缩合反应后的产物从孔板分离,得到PB/PM/HRP;
3)将PB/PM/HRP和癌细胞的适配体混合,得到纳米复合材料。
本发明首先将血小板膜和普鲁士蓝纳米粒子混合,得到PB/PM纳米粒子。
在本发明中,所述普鲁士蓝纳米粒子溶解于磷酸盐缓冲液(PBS)中;所述血小板膜和普鲁士蓝纳米粒子的体积比优选为(1.2~1.5):1;所述普鲁士蓝纳米粒子的浓度优选为0.5~0.6mg/mL。
本发明对所述普鲁士蓝纳米粒子的来源没有特殊限制,采用本领域常规方法制备或者来源于常规市售即可。
得到PB/PM纳米粒子后,本发明将PB/PM纳米粒子附着于底部有一层聚赖氨酸的孔板中,再在孔板中加入辣根过氧化物酶,辣根过氧化物酶和PB/PM纳米粒子进行脱水缩合反应,将脱水缩合反应后的产物从孔板分离,得到PB/PM/HRP。
在本发明中,所述辣根过氧化物酶标记有生物素;所述PB/PM纳米粒子和标记有生物素的辣根过氧化物酶的质量比为(55~60):1。
得到PB/PM/HRP后,本发明将PB/PM/HRP和癌细胞的适配体混合,得到纳米复合材料。
在本发明中,所述癌细胞的适配体优选为羧基修饰的癌细胞适配体。本发明在活化剂的作用下,利用血小板膜上的氨基与修饰有羧基的癌细胞的适配体发生脱水缩合反应,使血小板膜表面修饰上癌细胞的适配体。
本发明在癌细胞的适配体上修饰了羧基,辣根过氧化物酶上自带羧基。因此可以利用血小板膜上的氨基与辣根过氧化物酶的羧基、癌细胞适配体上修饰的羧基进行脱水缩合反应,从而使血小板膜表面修饰有辣根过氧化物酶和癌细胞的适配体。
在本发明中,所述活化剂优选为N-(3-二甲基氨基丙基)-N-乙基氨基丙基二酰亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)。
在本发明中,所述PB/PM/HRP和癌细胞的适配体质量比为(65~70):1。
本发明还提供了上述方案所述的纳米复合材料或者所述制备方法制备得到的纳米复合材料在制备抗肿瘤药物中的应用。
为了进一步说明本发明,下面结合附图和实施例对本发明提供的一种纳米复合材料及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
1、材料和试剂
聚乙烯吡咯烷酮(PVP)购自上海源叶生物科技有限公司。K3[Fe(CN)6]购自上海麦克林生化科技有限公司。N-(3-二甲基氨基丙基)-N-乙基氨基丙基二酰亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)购自上海阿拉丁生物化学技术有限公司。FITC标记链霉亲和素及HRP标记的生物素购自生工生物工程(上海)股份有限公司。AS1411适配体(5’-COOH-GGTGGTGGTGGTTGTGGTGGTGGTGG-3’,SEQ ID NO.1)购自生工生物工程(上海)股份有限公司。Hoechst 33342由北京Solarbio科技有限公司提供。Calcein AM/PI细胞活性与细胞毒性检测试剂盒购自上海碧云天生物技术有限公司。细胞增殖/毒性检测试剂盒(CCK-8)购自东仁化学科技(上海)有限公司。从ProSciTech购买了300目铜网。所有其他试剂均为分析纯试剂,无需进一步纯化即可直接使用。实验中使用的所有水都是经过消毒的超纯水。所有玻璃器皿在使用前都用新鲜王水(HCl/HNO3=3:1,v/v)清洗。
2仪器
用透射电镜(TEM)对产物进行了表征(JEM-2100,JEOL)。采用F-4600荧光分光光度计(Hitachi)测量荧光。通过动态光散射(DLS)测量平均粒径和Zeta电位,使用带有物镜(×20)的激光扫描共焦显微镜(LSCM)(Nikon C2 plus)进行共聚焦荧光成像研究。
3 PB的合成
将聚乙烯吡咯烷酮(PVP)(3g)在室温条件下置于100mL圆底烧瓶中,磁力搅拌下溶于去离子水。然后,在连续搅拌下将HCl(0.8mL,0.1M)和K3[Fe(CN)6](264mg)添加至溶液。随后,将圆底烧瓶在搅拌下转移至80℃的恒温油浴锅中油浴20h。最后,分离获得的PB,并用无水乙醇和去离子水通过离心纯化。将所得的PB分散在10mL的去离子水中,以备将来使用。
4 PM的获取
通过梯度离心分离全血中的血小板。简言之,10毫升全血以200g离心10min。上清液被分离为富含血小板的血浆(PRP)。在PRP以1800g离心20min后,沉淀用PBS缓冲液洗涤并重复离心,然后获得血小板。血小板在80℃下冷冻,在室温下解冻。过程重复三次。通过以8000rpm离心10min获得膜,用含有蛋白酶抑制剂的PBS洗涤,并用超声处理器超声处理5min。
5 PB/PM纳米粒子的合成
将制备一定量的PM细胞膜与PB混合,并将所得混合物超声处理35min以获得PB/PM,为了维持膜蛋白的活性,在超声过程中需加入冰。最后,将新制备的PB/PM在1×PBS缓冲液中于4℃放置过夜。将PB/PM放入离心管中,8000rpm离心6min后吸出液体,沉淀溶于PBS溶液中。该操作重复三次以去除多余的细胞膜,得到被纯化的PB/PM。
6 PB/PM/HRP/Apt的合成
PB/PM/HRP/Apt是在商用聚赖氨酸(PLL)改性的12孔板上制造的。为了完成表面修饰,首先通过900rpm离心3min将PB/PM附着到PLL表面,在室温下培养1h后,去除上清液,并用PBS清洗平板三次,以去除所有未附着的PB/PM。离心可以使PB/PM部分浸入12孔板底部的PLL层,而随后的孵育增强了带正电的PLL表面和带负电的血小板膜之间的静电附着,该过程能部分阻断血小板膜并允许随后的辣根过氧化氢酶固定。然后,将10μL浓度为0.5mM的EDC和10μL浓度为0.5mM的NHS溶液作为活化剂分别添加到反应体系中并孵育30min。在室温下与HRP标记的生物素和FITC标记链霉亲和素分别依次孵育30min后,除去上清液,并用PBS洗涤PLL三次以除去所有未附着的试剂。通过轻柔重复移液,然后进行两次PBS洗涤,将产物从PLL表面分离,得到荧光基团FITC修饰的PB/PM/HRP。最后,引入AS1411适体以获得纳米复合材料PB/PM/HRP/Apt。
7细胞培养
所有参与实验的4T1细胞在37℃恒温恒湿箱中培养,湿度为95%,CO2浓度为5%。细胞培养基为DMEM,含10%胎牛血清和1%双抗体(青霉素-链霉素)。
8材料光热效率测试
用功率为2W cm-2的808nm激光分别照射相同浓度的PB和PB/PM/HRP/Apt材料10min,进行了光热效率测试。利用红外热成像仪采集不同时间点的图像,并利用数据处理系统得到不同时间段的温度变化曲线。
9 CCK-8分析
通过CCK-8分析评估纳米复合材料对细胞的细胞毒性。将4T1细胞接种到96孔板中,细胞密度约为每孔10000个细胞。向96孔板中分别加入10μL不同浓度的纳米复合物,将96孔板在37℃下培养4h。然后小心地去除上清液,添加100μL新鲜培养基(含10%CCK-8溶液)并继续培养35min。最后,用酶标仪测定在450nm处的吸光度。
10细胞内化实验
为了研究纳米复合材料在细胞内的摄取,首先在共聚焦培养皿中培养4T1细胞12h左右后,将PB/PM/HRP/Apt添加到细胞中并分别培养30min、2h和4h。然后用Hoechst 33342染色大约10min后,用PBS彻底清洗细胞,最后用共聚焦显微镜检测纳米复合材料在细胞内的内化。
结果与讨论
1、PB/PM/HRP/Apt的表征
在酸性环境中,[Fe(CN)6]3-作为前体且聚乙烯吡咯烷酮(PVP)作为保护剂的情况下,可以缓慢释放出亚铁离子并被氧化成铁离子。形成的铁离子可以与未分解的离子反应形成PB。由于反应过程缓慢,形成的PB具有较高的单分散性,所以该方法被认为是制备PB的最佳方法。在合成PB的基础上,通过超声法获得了PB/PM。细胞膜蛋白的伯胺为细胞表面工程提供了稳定的锚定。然后,利用1-乙基-(3-二甲基氨基丙基)碳酰二亚胺(EDC)、N-羟基琥珀酰亚胺(NHS)作为活化剂,将异硫氰酸荧光素(FITC)荧光团修饰的HRP固定在PB/PM表面。最后,引入羧基修饰的AS1411适配体,获得PB/PM/HRP/Apt(图1)。通过透射电子显微镜(TEM)图像,我们发现PB的分布均匀且大小均一,平均尺寸约为182nm(图2)。且在PB/PM的TEM图像中可以看到明显的核壳结构,平均尺寸约为193nm,PM的厚度大约为9nm(图3)。为了进一步验证PB/PM/HRP/Apt的成功包覆,我们使用动态光散射(DLS)分析来粒径大小和Zeta电位。PB/PM/HRP/Apt的流体动力学直径增加到230nm左右(表1和图4),Zeta电位从PB的-18.8mV降至-46.3mV左右(表2和图5)。
表1 PB、PM、PB/PM、PB/PM/HRP、PB/PM/HRP/Apt的粒径分布
种类 PB PB/PM PB/PM/HRP PB/PM/HRP/Apt
粒径(nm) 181.4 193.6 203.4 230.0
表2 PB、PM、PB/PM、PB/PM/HRP、PB/PM/HRP/Apt的电位变化
种类 PB PM PB/PM PB/PM/HRP PB/PM/HRP/Apt
Zata电位(mV) -18.8 -33.6 -27.8 -30.0 -46.3
接下来,我们使用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)来确定细胞膜的表面蛋白是否可以保持在PB/PM上。如图6所示,PB/PM和PM显示相似的蛋白质谱,表明该蛋白质已完全保留在PB/PM中。然而,在凝胶电泳分析中找不到连接的HRP部分的条带,因为它们的含量比血小板表面上存在的蛋白的含量低得多。这些结果表明,可以用HRP修饰于纳米材料表面而不改变其蛋白质谱,这是随后PB/PM/HRP/Apt进行生物医学应用的前提。同时,紫外可见分光光度法(UV-Vis)分析证明了PB和PB/PM/HRP/Apt的成功制备。在UV-Vis分析中,PB在650~800nm范围内具有很强的吸光度,这是PB的特征峰,证明了PB的合成是成功的。并且PB在650~800nm处的吸收峰也说明了其可以在808nm的激光照射下,将光能转化为热能,从而用于后续的光热疗法(图7)。此外,由于HRP表面被荧光基团FITC修饰,所以合成的PB/PM/HRP是带有荧光的。在荧光光谱图中,PB/PM/HRP中检测到FITC的荧光信号,而在未修饰的PB中未检测到FITC的荧光信号,表明纳米材料成功实现了HRP的负载(图8)。以上一系列结果表明,成功制备了PB/PM/HRP/Apt。
2、PB/PM/HRP/Apt光热性能评估
为了表征PB/PM/HRP/Apt的光热性能,我们在体外验证了其光热转换效应。在功率密度为2W cm-2时对PB/PM/HRP/Apt进行808nm的近红外激光照射10min,PB/PM/HRP/Apt分散体在激光照射过程中的温度也通过红外热成像仪进行实时监测。可以得到结论,PB/PM/HRP/Apt的浓度增加时温度曲线呈浓度依赖性增加,说明温度升高与PB/PM/HRP/Apt的浓度呈正相关,且浓度为0.6mg/mL的PB/PM/HRP/Apt在5min后即可达到对肿瘤的最佳治疗温度。
同时,在以相同功率密度辐照浓度均为0.6mg/mL的PB和PB/PM/HRP/Apt 10min后,二者的温度迅速升高,10min时PB温度升高到约61℃,PB/PM/HRP/Apt温度升高至60℃,二者温度相差不大,并逐渐趋于稳定(图9)。以上结果表明包覆了其它物质的复合纳米材料仍具有较高的光热转换性能,细胞膜的涂层、HRP和适配体对PB本身的光热效应几乎没有影响。总而言之,PB/PM/HRP/Apt具有明显的光热转换效率,可以作为一种光热试剂,通过热消融杀死癌细胞。
3、体外抗肿瘤细胞功效
为了进一步探索纳米复合材料的细胞毒性和生物安全性,使用乳腺癌细胞(4T1)通过标准细胞增殖/毒性实验(CCK-8)进行了研究。用不同浓度(PB:200,100,50,10,5μg/mL)的PB、PB/PM、PB/PM/Apt、PB/PM/HRP/Apt处理4T1细胞4h。如图10所示,经过PB、PB/PM、PB/PM/Apt、PB/PM/HRP/Apt处理的4T1细胞存活率皆在90%左右,细胞毒性几乎可以忽略不计,这表明我们制备的PB/PM/HRP/Apt具有良好的生物相容性。进行近红外(NIR)激光照射后,与用PB处理的细胞的活力相比,用PB/PM处理的细胞的活力明显较弱,表明PM对肿瘤产生的特异性靶向可增强肿瘤细胞的治疗效果。添加PB/PM/Apt组的存活率低于单独添加PB或者PB/PM组,这可能是由于AS1411适配体与PM对癌细胞的双重靶向作用增加了纳米材料在肿瘤部位的累积。在PB/PM/HRP/Apt组中,经808nm近红外激光处理后,4T1细胞的存活率约为28%。该结果表明纳米复合物在燃料下的有效运动可以有效增强它们与生物靶标的结合效率,从而提高治疗功效。显然PB/PM/HRP/Apt在PM涂层的伪装下快速到达靶细胞,并发挥HRP的化学推动效应,与PTT疗法相结合,对癌细胞造成毁灭性损伤,有效抑制甚至杀死癌细胞。
从以上结果可知,PB/PM/HRP/Apt加激光照射诱导4T1细胞的相关凋亡的能力最强。接下来,为了证明PB/PM/HRP/Apt可以有效靶向肿瘤细胞,加速其吞噬功能。我们使用4T1细胞来研究PB/PM/HRP/Apt的细胞内化能力。将PB/PM/HRP/Apt与DiI荧光染料孵育15min,使其染色。再将染色后PB/PM/HRP/Apt与细胞分别孵育30min、2h和4h,最后加入Hoechst 33342荧光染料对细胞核进行染色10min。通过共聚焦激光扫描显微镜(CLSM)的明场、荧光图像和叠加图我们可以清晰的看到,4T1细胞的细胞核出现蓝色荧光,细胞质中出现红色荧光,且随着孵育时间的增加,红色荧光强度随之增加(图11)。结果表明PB/PM/HRP/Apt成功地被DiI染色,并进入4T1细胞的细胞质。这说明了PB/PM/HRP/Apt可以有效靶向肿瘤细胞,并利用推进性能,可以成功的增强纳米复合材料在肿瘤细胞内的蓄积。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (9)

1.一种纳米复合材料,以血小板膜为壳体,包裹有普鲁士蓝纳米粒子;所述血小板膜表面修饰有癌细胞的适配体和辣根过氧化物酶。
2.根据权利要求1所述的纳米复合材料,其特征在于,所述癌细胞包括乳腺癌细胞。
3.根据权利要求2所述的纳米复合材料,其特征在于,所述乳腺癌细胞的适配体包括AS1411适配体。
4.权利要求1~3任意一项所述的纳米复合材料的制备方法,包括以下步骤:
1)将血小板膜和普鲁士蓝纳米粒子混合,得到PB/PM纳米粒子;
2)将PB/PM纳米粒子附着于底部有一层聚赖氨酸的孔板中,再在孔板中加入辣根过氧化物酶,辣根过氧化物酶和PB/PM纳米粒子进行脱水缩合反应,将脱水缩合反应后的产物从孔板分离,得到PB/PM/HRP;
3)将PB/PM/HRP和癌细胞的适配体混合,得到纳米复合材料。
5.根据权利要求4所述的制备方法,其特征在于,所述血小板膜是采用血小板制备获得;每1*106个血小板制备得到80~120μL血小板膜;所述普鲁士蓝纳米粒子溶解于磷酸盐缓冲液中;所述血小板膜和普鲁士蓝纳米粒子的体积比为(1.2~1.5):1;所述普鲁士蓝纳米粒子的浓度为0.5~0.6mg/mL。
6.根据权利要求4所述的制备方法,其特征在于,所述癌细胞的适配体为羧基修饰的癌细胞适配体。
7.根据权利要求4或6所述的制备方法,其特征在于,所述PB/PM/HRP和癌细胞的适配体质量比为(65~70):1。
8.根据权利要求6所述的制备方法,其特征在于,所述辣根过氧化物酶标记有生物素;所述PB/PM纳米粒子和标记有生物素的辣根过氧化物酶的质量比为(55~60):1。
9.权利要求1~3任意一项所述的纳米复合材料或者权利要求4~8任意一项所述制备方法制备得到的纳米复合材料制备抗肿瘤药物中的应用。
CN202211315441.1A 2022-10-26 2022-10-26 一种纳米复合材料及其制备方法和应用 Pending CN115887646A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211315441.1A CN115887646A (zh) 2022-10-26 2022-10-26 一种纳米复合材料及其制备方法和应用
US18/251,185 US20240342103A1 (en) 2022-10-26 2022-11-25 Nanocomposite and preparation method and use thereof
PCT/CN2022/134412 WO2024087292A1 (zh) 2022-10-26 2022-11-25 一种纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211315441.1A CN115887646A (zh) 2022-10-26 2022-10-26 一种纳米复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115887646A true CN115887646A (zh) 2023-04-04

Family

ID=86471928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211315441.1A Pending CN115887646A (zh) 2022-10-26 2022-10-26 一种纳米复合材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US20240342103A1 (zh)
CN (1) CN115887646A (zh)
WO (1) WO2024087292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115887646A (zh) * 2022-10-26 2023-04-04 齐鲁工业大学 一种纳米复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107890566A (zh) * 2017-11-13 2018-04-10 北京大学 一种肿瘤诊断治疗制剂及其制备方法和应用
CN114191548A (zh) * 2021-11-19 2022-03-18 三峡大学 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用
CN114306281A (zh) * 2022-01-25 2022-04-12 中国医学科学院生物医学工程研究所 一种可视化杂合细胞膜纳米递送体系及其制备方法和应用
CN114617963A (zh) * 2022-01-27 2022-06-14 临沂大学 一种自噬抑制协同光热治疗靶向杀死肿瘤细胞的金纳米药物合成方法
WO2024087292A1 (zh) * 2022-10-26 2024-05-02 齐鲁工业大学 一种纳米复合材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017231678A1 (en) * 2016-03-08 2018-09-20 Children's National Medical Center Functionalized prussian blue nanopartices, combination prussian blue nanoparticle-based nano-immunotheraphy and applications thereof
CN107837404B (zh) * 2017-11-13 2018-12-28 中国科学院生物物理研究所 一种纳米粒子肿瘤诊断治疗联用制剂及其制备方法和应用
KR102419736B1 (ko) * 2020-05-25 2022-07-14 한국세라믹기술원 활성산소 제거를 위한 플루로닉 고분자/프러시안 블루 나노입자 복합체 및 이의 용도
CN114533889B (zh) * 2022-02-25 2023-05-26 中南大学 一种DNA功能化PBNPs纳米酶制备方法和在靶向光热治疗剂制备中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107890566A (zh) * 2017-11-13 2018-04-10 北京大学 一种肿瘤诊断治疗制剂及其制备方法和应用
CN114191548A (zh) * 2021-11-19 2022-03-18 三峡大学 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用
CN114306281A (zh) * 2022-01-25 2022-04-12 中国医学科学院生物医学工程研究所 一种可视化杂合细胞膜纳米递送体系及其制备方法和应用
CN114617963A (zh) * 2022-01-27 2022-06-14 临沂大学 一种自噬抑制协同光热治疗靶向杀死肿瘤细胞的金纳米药物合成方法
WO2024087292A1 (zh) * 2022-10-26 2024-05-02 齐鲁工业大学 一种纳米复合材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JINRONG ZHENG ET AL: "Enzyme Catalysis Biomotor Engineering of Neutrophils for Nanodrug Delivery and Cell-Based Thrombolytic Therapy", 《ACS NANO》, vol. 16, 9 February 2022 (2022-02-09), pages 2341 *
WENXIN LI ET AL: "Self-actuated biomimetic nanocomposites for photothermal therapy and PD-L1 immunosuppression", 《FRONTIERS IN CHEMISTRY》, vol. 11, 17 March 2023 (2023-03-17) *
YONGQIANG YOU ET AL: "Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions", 《APPLIED MATERIALS TODAY》, vol. 16, 8 August 2019 (2019-08-08), pages 2 - 3 *

Also Published As

Publication number Publication date
US20240342103A1 (en) 2024-10-17
WO2024087292A1 (zh) 2024-05-02

Similar Documents

Publication Publication Date Title
Feng et al. Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy
Chen et al. pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction
Zhang et al. Tumor microenvironment responsive FePt/MoS 2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy
Bian et al. Cu-based MOFs decorated dendritic mesoporous silica as tumor microenvironment responsive nanoreactor for enhanced tumor multimodal therapy
Li et al. A smart nanoplatform for synergistic starvation, hypoxia-active prodrug treatment and photothermal therapy mediated by near-infrared-II light
Zhang et al. A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy
Du et al. NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds
CN111450270A (zh) 基于葡萄糖氧化酶/磷酸铁的催化纳米颗粒的构建及应用
CN112641946A (zh) 聚多巴胺包裹金纳米复合物及其制备方法与在肿瘤多模态诊疗中的应用
Tan et al. Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles as photosensitizers for photodynamic therapy against ovarian cancer (SKOV-3) cells
Jin et al. A multifunctional hydrogel containing gold nanorods and methylene blue for synergistic cancer phototherapy
Zhu et al. Sonodynamic cancer therapy by novel iridium-gold nanoassemblies
CN115887646A (zh) 一种纳米复合材料及其制备方法和应用
Xu et al. A versatile NiS2/FeS2 hybrid nanocrystal for synergistic cancer therapy by inducing ferroptosis and pyroptosis
Pan et al. Self-assembled quercetin-Fe3+ nanoparticles for synergetic near-infrared light-triggered low-temperature photothermal/glutathione-activated chemodynamic therapy
Liang et al. Fe/MOF based platform for NIR laser induced efficient PDT/PTT of cancer
Du et al. A dual-nanozyme-loaded black phosphorus multifunctional therapeutic platform for combined photothermal/photodynamic/starvation cancer therapy
CN111759808B (zh) 一种脂质体-石墨烯-金复合纳米材料及其制备方法和应用
Ma et al. Aptamer induced nanosystem with dynamically self-monitoring and in-situ imaging for breast cancer therapy
CN112336858A (zh) 一种铋-锰基复合颗粒及其制备方法和应用
Sun et al. Electron Transfer Strategies to Regulate Carriers’ Separation for Intensive Pyroelectric Dynamic Therapy With Simultaneous Photothermal Therapy
CN115192708B (zh) 负载抗肿瘤药物的纳米复合材料、纳米载药体系及制备与应用
Xu et al. Cu2+-pyropheophorbide-a-cystine conjugate-mediated multifunctional mesoporous silica nanoparticles for photo-chemodynamic therapy/GSH depletion combined with immunotherapy cancer
CN110665005B (zh) 一种掺铁聚合物纳米粒及其制备方法和应用
Perota et al. A Study of Sonodynamic Therapy of Melanoma C540 Cells in Vitro by Titania/Gold Nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Applicant after: Qilu University of Technology (Shandong Academy of Sciences)

Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Applicant before: Qilu University of Technology

Country or region before: China