CN114191548A - 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用 - Google Patents

肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用 Download PDF

Info

Publication number
CN114191548A
CN114191548A CN202111383994.6A CN202111383994A CN114191548A CN 114191548 A CN114191548 A CN 114191548A CN 202111383994 A CN202111383994 A CN 202111383994A CN 114191548 A CN114191548 A CN 114191548A
Authority
CN
China
Prior art keywords
auncs
icg
mno
bsa
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111383994.6A
Other languages
English (en)
Inventor
王慧敏
孙玉东
杨昌英
王逸飞
冉家兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202111383994.6A priority Critical patent/CN114191548A/zh
Publication of CN114191548A publication Critical patent/CN114191548A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/32Manganese; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于生物医学纳米材料技术领域,涉及一种肿瘤微环境响应型纳米组装体的制备及其在肿瘤联合治疗中的应用。该纳米组装体以牛血清蛋白稳定的金纳米团簇(BSA@AuNCs)为载体,通过生物矿化及疏水作用力方式,制备负载二氧化锰(MnO2)和吲哚菁绿(ICG)的纳米颗粒,并为其表面结合氨基修饰的AS1411(BSA@AuNCs‑MnO2‑ICG/AS1411,简称AMIT)。利用MnO2的肿瘤微环境响应性以及AS1411的肿瘤靶向性,提升纳米系统在肿瘤部位富集程度;在808nm激光照射下,该纳米系统能够实现O2自补给的增强型光动力治疗效应,稳定的光热效应以及Mn2+与内源性H2O2触发的化学动力学治疗效应,展现出优异的肿瘤联合治疗能力。

Description

肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用
技术领域
本发明属于医用纳米材料领域,具体涉及一种肿瘤微环境响应型纳米组装体的制备及其在肿瘤联合治疗中的应用。
背景技术
迄今为止,癌症仍然是世界上最危险的疾病之一,而传统的癌症治疗方法,包括手术、化疗、放疗等,仍然存在着复发性高、创伤性大、治疗效率低等缺陷。随着纳米技术的发展,近年来多种温和的非侵入性和时空可控性的治疗方式因疗效高和副作用小而受到广泛关注,例如光动力治疗(PDT)、化学动力学治疗(CDT)和光热治疗(PTT)。PDT是利用光敏剂在特定波长的激光照射下吸收能量而被激发,并进一步将能量传递给周围的氧气或其他物质,产生具有细胞毒性的单线态氧导致癌细胞凋亡;CDT是基于芬顿反应的原理,催化过氧化氢(H2O2)产生高毒性的羟基自由基的新型方式;PTT则是利用光热试剂吸收光能并转化为热能,引起局部高温而促使细胞凋亡的过程。然而肿瘤组织由于肿瘤细胞代谢旺盛,分裂与增值失控,生理特征与正常细胞显著不同,构成了独特而又复杂的肿瘤微环境,并普遍表现为缺氧、弱酸性、高含量谷胱甘肽(GSH)和过氧化氢(H2O2)的特征,这对新型的癌症治疗方式造成了巨大的阻碍。例如,氧气依赖型的PDT在乏氧微环境中效率低下,强氧化性的活性氧受到还原性的谷胱甘肽的清除等,因此,迫切需要开发以肿瘤微环境为智能响应条件的纳米系统来提高治疗效应。
二氧化锰(MnO2)作为一种重要的过渡金属氧化物,因其良好的生物相容性、较高的氧化还原活性以及特殊的光学物理性能,且制备成本低、环境友好等特征,已经成为一种多用途的抗肿瘤纳米材料。其一,MnO2在弱酸环境下能够催化H2O2产生氧气,有利于缓解肿瘤缺氧;其二,MnO2能与GSH发生氧化还原反应,有利于减少活性氧被GSH的消耗;其三,Mn2+作为一种类芬顿试剂,能催化H2O2生成羟基自由基,有利于CDT的实现。基于上述考虑,MnO2有望成为肿瘤微环境智能响应的引发剂,设计以MnO2为门控的纳米系统将具有巨大的应用潜力。
现如今,单一的治疗方式并不能达到很好的治疗效果,因此,将多种治疗方式整合到一个平台,构建多模式联合治疗体系的思路受到了诸多关注。如何将不同组分合理结合,最大化的发挥各组分的治疗效应是实现高效联合治疗的关键。为了解决上述技术问题,本发明采用牛血清蛋白稳定的金纳米团簇(BSA@AuNCs)作为药物载体,通过生物矿化技术包裹MnO2纳米粒子作为肿瘤微环境响应介质,同时负载近红外光敏剂吲哚菁绿(ICG)作为光动力和光热介质,表面修饰肿瘤细胞靶向基团核酸适配体(AS1411)(堵玉林,梁静. 核酸适配体在肿瘤靶向治疗方面的研究进展. 化学通报,2017,80,809-818)来提高纳米系统在肿瘤部位的富集程度,最终实现肿瘤微环境响应触发的光动力/化学动力学/光热联合治疗效应(PDT/CDT/PTT)。
发明内容
本发明的目的在于设计制备一种同时具备多种治疗效应的肿瘤微环境响应型纳米组装体。为了实现上述目的,本发明的技术方案具体如下:
一种肿瘤微环境响应型纳米组装体,所述纳米组装体包括金纳米团簇水溶液、MnO2及ICG水溶液形成的混合物,即为BSA@AuNCs-MnO2-ICG;所述纳米组装体在600nm至900nm具有紫外吸收特征峰。该纳米组装体具有均匀的球形结构,直径约60-80 nm;所述纳米系统中MnO2具有肿瘤微环境响应性质,可用于生成O2并释放Mn2+;所述纳米系统在808 nm激光照射下具有高效的单线态氧生成能力和光热转换能力,以及Mn2+与H2O2通过类芬顿反应触发的羟基自由基生成能力。
所述的纳米组装体中,金纳米团簇水溶液、MnO2及ICG水溶液的体积比为1:0.1-0.2:1-2,其中,MnO2以KMnO4水溶液计算。所述的纳米组装体还包含有与氨基修饰的AS1411溶液混合后所得的溶液,即BSA@AuNCs-MnO2-ICG/AS1411,所述氨基修饰的AS1411适配体是与核仁素特异性结合的DNA单链,DNA单链序列为5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’,有利于增强纳米组装体的肿瘤靶向性;氨基修饰的AS1411溶液与纳米颗粒的混合液的体积比为1:0.05-0.1;所述的纳米组装体在808nm具有紫外吸收特征峰。
所述的纳米组装体的制备方法如下:
(1)金纳米团簇AuNCs水溶液的制备:将BSA溶液与HAuCl4溶液混匀,加入NaOH溶液调节pH至11-12,继续搅拌得到深棕色金纳米团簇水溶液,将该水溶液转入透析袋中用去离子水透析12-15 h后置4℃条件下避光保存备用;
(2)将KMnO4水溶液与ICG水溶液依次加入步骤(1)所得AuNCs水溶液中,室温下避光搅拌得到纳米颗粒BSA@AuNCs-MnO2-ICG,将该溶液转入透析袋中用去离子水避光透析4-8 h以除去多余前体分子,然后置于4℃条件下避光保存即为BSA@AuNCs-MnO2-ICG的纳米颗粒的混合液。
向所得到的纳米颗粒的混合液中加入氨基修饰的AS1411适配体,AS1411适配体是与核仁素特异性结合的DNA单链,DNA单链序列为5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’,避光孵育10-12 h后置于4℃条件下避光保存得多功能纳米系统BSA@AuNCs-MnO2-ICG/AS1411。
步骤(1)中金纳米团簇AuNCs水溶液制备体系中,BSA溶液的质量浓度为30-50mg/mL,HAuCl4溶液的摩尔浓度为8-12mM;质量浓度为30-50mg/mL与摩尔浓度为8-12mM的HAuCl4溶液的体积比为1:1-5;
步骤(2)中KMnO4水溶液的摩尔浓度为0.05-0.2mM,ICG水溶液的质量浓度为1-4mg/mL;AuNCs水溶液、KMnO4水溶液、ICG水溶液的体积比为1:0.1-0.2:1-2;
氨基修饰的AS1411溶液的质量浓度为0.2-0.5 mg/mL。
所述的透析袋的型号为8KD-14KD。
本发明又一技术方案是将所述的肿瘤微环境响应型纳米组装体BSA@AuNCs-MnO2-ICG、或BSA@AuNCs-MnO2-ICG/AS1411在制备降解9,10-蒽基-双(亚甲基)二丙二酸上的应用。
本发明又一技术方案是将所述的肿瘤微环境响应型纳米组装体BSA@AuNCs-MnO2-ICG、或BSA@AuNCs-MnO2-ICG/AS1411在制备降解3,7-双(二甲氨基)吩噻嗪-5-翁氯化物上的应用。
本发明所述的纳米系统的光动力效应以单线态氧产率实施考察,测试纳米系统在808nm激光照射下降解9,10-蒽基-双(亚甲基)二丙二酸(ABDA)上的应用;本发明所述的纳米系统的化学动力学效应以羟基自由基产率实施考察,测试纳米系统在无激光照射时降解3,7-双(二甲氨基)吩噻嗪-5-翁氯化物(MB)上的应用;本发明所述的纳米系统的光热效应以实时温度监测实施考察,测试纳米系统在808nm激光照射下的温度变化速率。
本发明又一加方案是提供纳米系统在肿瘤光动力/化学动力学/光热治疗中的应用。将所述的肿瘤微环境响应型纳米组装体BSA@AuNCs-MnO2-ICG、或BSA@AuNCs-MnO2-ICG/AS1411在制备治疗肿瘤疾病上的应用,所述的肿瘤细胞包括MCF-7细胞。所述肿瘤模型为携带MCF-7肿瘤的雌性Balb/c裸鼠。
本发明提供的纳米系统制备方式简单,稳定性好,同时能够实现光动力治疗、化学动力学治疗以及光热治疗效应,表现出显著的联合治疗效应。
附图说明
图1为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411的透射电镜图。
图2为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411的粒径分布图。
图3为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411的紫外吸收光谱图。
图4为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411引起的单线态氧指示剂9,10-蒽基-双(亚甲基)二丙二酸(ABDA)的吸收随时间变化曲线。
图5为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411引起的羟基自由基指示剂3,7-双(二甲氨基)吩噻嗪-5-翁氯化物(MB)的吸收随时间变化曲线。
图6为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411在不同浓度下的光热效应曲线。
图7为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411的光热稳定性曲线。
图8为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411在无激光照射时的细胞毒性结果。
图9为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411在激光照射时的细胞毒性结果。
图10为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411作用于癌细胞后的活死染色结果。
图11为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411作用于荷瘤小鼠后肿瘤相对体积变化图。
图12为实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411作用于荷瘤小鼠后的治疗效果。
图13为实施例1制备得到的不同处理条件后荷瘤小鼠主要器官的组织学检查结果。
具体实施方式
所述纳米系统形貌测试采用高分辨透射电子显微镜
所述粒径分布测试采用纳米粒度电位仪
所述吸收光谱测试采用紫外可见分光光度计
所述光动力光热效应测试所用激光器为808 nm半导体激光灯
所述肿瘤细胞存活率实验用到的肿瘤细胞是人乳腺癌MCF-7细胞
所述活体治疗实验用到的模型是携带MCF-7肿瘤的雌性Balb/c裸鼠
下述试验和实例用于进一步说明但不限于本发明。
实施例1
纳米系统BSA@AuNCs-MnO2-ICG/AS1411的制备
(1)制备牛血清蛋白稳定的具有近红外荧光性质的金纳米团簇(BSA@AuNCs)。将浓度为50 mg/mL的BSA溶液与浓度为10 mM的HAuCl4溶液按照体积比1:1在37℃下磁力搅拌混匀,加入NaOH溶液调节pH至12,继续搅拌10-12 h得到深棕色金纳米团簇水溶液。将该水溶液转入透析袋(8KD-14KD)中用去离子水透析12-15 h后置4℃条件下避光保存备用。
(2)将0.1 M的KMnO4水溶液与2 mg/mL的ICG水溶液依次加入步骤(1)所得AuNCs水溶液,室温下避光强力搅拌3 h,经生物矿化及疏水作用力过程得纳米颗粒BSA@AuNCs-MnO2-ICG。将该溶液转入透析袋(8KD-14KD)中用去离子水避光透析4-8 h以除去多余前体分子,置4℃条件下避光保存备用。所述AuNCs水溶液、KMnO4水溶液、ICG水溶液的体积分别为1mL,0.1mL和1mL。
(3)向步骤(2)所得BSA@AuNCs-MnO2-ICG溶液(1mL)中加入0.05mL 0.33 mg/mL氨基修饰的AS1411溶液(可与核仁素特异性结合的DNA单链5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’),避光孵育10-12 h得多功能纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT),置4℃条件下避光保存,得到肿瘤微环境响应型纳米组装体。
实施例2
纳米系统BSA@AuNCs-MnO2-ICG/AS1411的制备
(1)制备牛血清蛋白稳定的具有近红外荧光性质的金纳米团簇(BSA@AuNCs)。将浓度为50 mg/mL的BSA溶液与浓度为10 mM的HAuCl4溶液按照体积比1:1在37℃下磁力搅拌混匀,加入NaOH溶液调节pH至12,继续搅拌10-12 h得到深棕色金纳米团簇水溶液。将该水溶液转入透析袋(8KD-14KD)中用去离子水透析12-15 h后置4℃条件下避光保存备用。
(2)将0.1 M的KMnO4水溶液与2 mg/mL的ICG水溶液依次加入步骤(1)所得AuNCs水溶液,室温下避光强力搅拌3 h,经生物矿化及疏水作用力过程得纳米颗粒BSA@AuNCs-MnO2-ICG。将该溶液转入透析袋(8KD-14KD)中用去离子水避光透析4-8 h以除去多余前体分子,置4℃条件下避光保存备用。所述AuNCs水溶液、KMnO4水溶液、ICG水溶液的体积分别为1mL,0.2mL和2mL。
(3)向步骤(2)所得BSA@AuNCs-MnO2-ICG溶液(1mL)中加入0.05mL 0.33 mg/mL氨基修饰的AS1411溶液(可与核仁素特异性结合的DNA单链5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’),避光孵育10-12 h得多功能纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT),置4℃条件下避光保存,得到肿瘤微环境响应型纳米组装体。
实施例3
纳米系统BSA@AuNCs-MnO2-ICG/AS1411的制备
(1)制备牛血清蛋白稳定的具有近红外荧光性质的金纳米团簇(BSA@AuNCs)。将浓度为50 mg/mL的BSA溶液与浓度为10 mM的HAuCl4溶液按照体积比1:1在37℃下磁力搅拌混匀,加入NaOH溶液调节pH至12,继续搅拌10-12 h得到深棕色金纳米团簇水溶液。将该水溶液转入透析袋(8KD-14KD)中用去离子水透析12-15 h后置4℃条件下避光保存备用。
(2)将0.1 M的KMnO4水溶液与2 mg/mL的ICG水溶液依次加入步骤(1)所得AuNCs水溶液,室温下避光强力搅拌3 h,经生物矿化及疏水作用力过程得纳米颗粒BSA@AuNCs-MnO2-ICG。将该溶液转入透析袋(8KD-14KD)中用去离子水避光透析4-8 h以除去多余前体分子,置4℃条件下避光保存备用。所述AuNCs水溶液、KMnO4水溶液、ICG水溶液的体积分别为1mL,0.1mL和1mL。
(3)向步骤(2)所得BSA@AuNCs-MnO2-ICG溶液(1mL)中加入0.1mL 0.33 mg/mL氨基修饰的AS1411溶液(可与核仁素特异性结合的DNA单链5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’),避光孵育10-12 h得多功能纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT),置4℃条件下避光保存,得到肿瘤微环境响应型纳米组装体。
实施例4
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的尺寸表征
将上述实施例1制备得到的纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)进行透射电子显微镜(TEM)和动态光散射粒度仪(DLS)表征。TEM表征结果(图1)显示纳米系统具有均匀的球形结构,直径约为60nm至80nm左右。DLS表征结果(图2)显示纳米系统具有较窄的粒径分布范围,并且平均粒径136.3nm。相比于TEM所示脱水粒径大小,DLS测试结果是由于纳米粒子在水溶液中发生聚集和沉降导致。
实施例5
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的紫外吸收表征
将制备所得不同纳米粒子分散在水溶液中进行紫外吸收光谱表征。如图3所示,金纳米团簇(AuNCs)在300nm至900nm波长范围内没有明显吸收,二氧化锰(MnO2)在300nm至500nm处存在较宽的吸收峰,而吲哚菁绿(ICG)的特征吸收峰处于600nm至900nm之间。纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的吸收光谱不仅显示出各个组分的特征吸收区域,表明不同组分的成功组装,同时纳米系统在600nm至900nm表现出显著吸收,当采用808nm激光照射时,纳米系统能够吸收光能并进行转化,这为实现光动力效应和光热效应奠定了基础。
实施例6
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的光动力效应验证
将一定量所制备的纳米粒子溶液与单线态氧指示剂9,10-蒽基-双(亚甲基)二丙二酸(ABDA)混匀,光敏剂浓度为20μg/mL,ABDA浓度为100μM。在808nm,0.65W/cm2的激光照射下,纳米粒子引起的单线态氧指示剂9,10-蒽基-双(亚甲基)二丙二酸(ABDA)在380nm处的紫外吸收值随时间逐渐减弱。以ABDA的吸收减弱程度评估单线态氧生成能力,验证纳米系统的光动力效应。如图4所示,与H2O相比,AMIT仅仅使ABDA的吸收在3分钟激光照射下降低10.3%。当加入过氧化氢(H2O2)溶液时,ABDA的吸收在3分钟激光照射下降低34.7%,这是因为纳米系统结构中的MnO2与H2O2发生氧化还原反应产生氧气,显著提高了氧气依赖型光动力效应。由此可知,MnO2触发的氧气含量的提升能够显著增强单线态氧的生成能力,有利于在乏氧肿瘤微环境内实现增强型的光动力治疗。
实施例7
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的化学动力学效应验证
将一定量所制备的纳米粒子溶液与3,7-双(二甲氨基)吩噻嗪-5-翁氯化物(MB)混合均匀,光敏剂浓度为20μg/mL,MB浓度为10μg/mL。在37℃下孵育0.5h后,纳米粒子引起的羟基自由基指示剂3,7-双(二甲氨基)吩噻嗪-5-翁氯化物(MB)在665nm处的紫外吸收值逐渐减弱。以MB的吸收减弱程度评估羟基自由基的生成能力,验证纳米系统的化学动力学效应。如图5所示,在过氧化氢(H2O2)存在时,纳米系统(AMIT)发生解离产生的Mn2+与H2O2进一步发生类芬顿反应生成羟基自由基(•OH),具有强氧化性的•OH氧化MB导致其吸收减弱。当进一步加入谷胱甘肽(GSH)时,MB吸收的减弱程度与GSH的浓度呈依赖型关系,这是由于GSH能与MnO2发生氧化还原反应,进一步加快MnO2的解离并释放出更多的Mn2+,从而产生更多的•OH。由此可得,肿瘤微环境内过表达的H2O2与GSH能够触发纳米系统的解离,产生的Mn2+能够作为类芬顿反应的催化剂实现化学动力学治疗效应。
实施例8
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的光热效应验证
为了检查实施例1制备得到的纳米系统(AMIT)的光热性能,将1mL纳米粒子AMIT溶液暴露于808nm激光照射下(1.35W/cm2),并用温度记录仪实时监测溶液在10分钟内的温度变化情况。如图6所示,随着纳米粒子浓度的增加,纳米系统的光热效应逐渐增强。为了评估纳米系统的光热稳定性,将1mL纳米粒子溶液暴露于808nm激光照射(1.35W/cm2)10分钟之后,关闭激光光源,待溶液冷却至室温后再次开启激光光源进行照射。通过记录四次开关循环测试的温度变化情况,如图7所示,纳米系统的温度变化幅度保持稳定,表明该纳米系统具有较好的光热稳定性,可多次反复产生高效的光热转化效应。由此可见,所制备的纳米系统在808nm激光照射下能够实现稳定的光热效应。
实施例9
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的细胞毒性
为了考察纳米系统的细胞毒性,将不同浓度的纳米粒子AMIT溶液与人乳腺癌细胞MCF-7共同孵育,以标准MTT法分析测试结果。具体的,先将MCF-7细胞培养在96孔板中(每孔105个细胞);24小时后,将含有不同浓度纳米粒子的新鲜培养基加入每孔(0,2.5,5,10,20,30μg/mL);继续培养48小时后,每孔加入20μL新鲜配制的MTT溶液;孵育4小时后,将每孔中的培养基去除并加入150μL DMSO。通过酶标仪检测每孔在490nm处的吸收值,计算细胞活力并分析。如图8所示(AM表示BSA@AuNCs-MnO2,AI表示BSA@AuNCs-ICG,AMI表示BSA@AuNCs-MnO2-ICG),在没有激光照射时,纳米系统的暗毒性较小,细胞活力均能保持在80%以上。然而,相比于AI组,含有MnO2的实验组(AM,AMI,AMIT)均表现出浓度依赖型的细胞毒性,这可以归因于MnO2在肿瘤微环境内解离后触发的化学动力学治疗效应引发。当引入激光照射时(每孔加入材料培养24小时后给予激光照射),如图9所示(AM表示BSA@AuNCs-MnO2,AI表示BSA@AuNCs-ICG,AMI表示BSA@AuNCs-MnO2-ICG),MCF-7细胞的存活率显著降低;与AM和AI组相比,AMI组的细胞活力为27%,这表明纳米系统触发的联合治疗效应(光动力/化学动力学/光热)具有显著的抑制效果。而含有表面适配体的AMIT组的细胞活力仅存20.2%,这表明具有肿瘤细胞靶向能力的纳米系统能够促进纳米粒子在肿瘤细胞内的富集,产生更强的细胞毒性。
实施例10
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的细胞活死染色分析
基于上述细胞毒性实验结果,为了进一步检查纳米系统的肿瘤细胞抑制能力,采用Calcein-AM/PI染料试剂盒对MCF-7细胞进行活死染色分析。具体的,先将MCF-7细胞培养在96孔板中(每孔105个细胞);24小时后,每孔加入不同组分的纳米粒子溶液(浓度均为30μg/mL);继续培养48小时后(孵育24小时后光照组给予激光照射),将每孔中的培养基去除并加入100μL新鲜配制的Calcein-AM/PI检测工作液,37℃下避光孵育30分钟后在倒置荧光显微镜下观察染色结果。如图10所示(AM表示BSA@AuNCs-MnO2,AI表示BSA@AuNCs-ICG,AMI表示BSA@AuNCs-MnO2-ICG),在没有激光照射时Laser(-),纳米系统细胞毒性较小,活细胞居多;当给予激光照射时Laser(+),纳米系统的细胞毒性显著增强,死细胞数明显增多。结合MTT实验结果,活死细胞染色分析进一步证明所制备的纳米系统具有良好的肿瘤细胞抑制能力。
实施例11
纳米系统BSA@AuNCs-MnO2-ICG/AS1411(AMIT)的活体治疗效果
为了检验纳米系统在体内的联合治疗效果,采用8周龄左右的雌性Balb/c裸鼠作为考察对象。MCF-7荷瘤小鼠模型的建立是通过将MCF-7细胞(107个细胞)皮下注射于雌性Balb/c裸鼠背部右侧,待肿瘤大小达到约100mm3时,即可用于体内治疗实验。具体的,将荷瘤小鼠随机分成五组(每组5只):(Ⅰ)Control组(用生理盐水处理),(Ⅱ)NIR组(808nm激光,1.35W/cm2,5min),(Ⅲ)AI+NIR组(静脉注射AI纳米粒子,808nm激光,1.35W/cm2,5min),(Ⅳ)AMI+NIR组(静脉注射AMI纳米粒子,808nm激光,1.35W/cm2,5min),(Ⅴ)AMIT+NIR组(静脉注射AMIT纳米粒子,808nm激光,1.35W/cm2,5min)。静脉注射在第一、三、五天进行,激光照射在注射24小时后进行;每隔一天观察测量肿瘤大小,并用公式(体积=长×宽2/2)计算肿瘤体积;在持续21天治疗后,将荷瘤小鼠解剖获取主要器官(心,肝,脾,肺,肾)与肿瘤于4%多聚甲醛中保存,进行组织学染色分析(H&E染色)。如图11所示(AM表示BSA@AuNCs-MnO2,AI表示BSA@AuNCs-ICG,AMI表示BSA@AuNCs-MnO2-ICG,NIR表示近红外激光),NIR组与Control组的肿瘤相对体积变化相同,表明单一的激光处理对肿瘤生长没有抑制作用;相比于AI+NIR组,AMI+NIR组和AMIT+NIR组具有显著的肿瘤抑制能力,这表明MnO2响应肿瘤微环境显著提高了光动力/化学动力学/光热治疗的联合效应,同时具有肿瘤靶向能力的适配体能进一步促进纳米粒子在肿瘤部位的富集。如图12所示,在持续21天治疗后,AMIT+NIR组的肿瘤明显小于其他实验组,同时H&E染色结果(图13)表明纳米系统对正常器官(心,肝,脾,肺,肾)影响较小,而对肿瘤组织损伤较大,由此可知所制备的纳米系统通过肿瘤微环境响应触发的联合治疗效应对肿瘤生长具有显著的抑制能力。
以上结合附图对本发明的实施方式作了详细说明,但本发明并不限于上述实施方式,本领域的技术人员在不脱离本发明结构的前提下,还可以进一步改进与优化。

Claims (10)

1.一种肿瘤微环境响应型纳米组装体,其特征在于,所述纳米组装体包括金纳米团簇水溶液、二氧化锰及吲哚菁绿水溶液形成的混合物,即为BSA@AuNCs-MnO2-ICG;所述纳米组装体在600nm至900nm具有紫外吸收特征峰。
2.根据权利要求1所述的肿瘤微环境响应型纳米组装体,其特征在于,所述的纳米组装体还包含有与氨基修饰的AS1411溶液混合后所得的溶液,即BSA@AuNCs-MnO2-ICG/AS1411,所述氨基修饰的AS1411适配体是与核仁素特异性结合的DNA单链,DNA单链序列为5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’。
3.根据权利要求1所述的肿瘤微环境响应型纳米组装体,其特征在于,所述的纳米组装体中,金纳米团簇水溶液、MnO2及ICG水溶液的体积比为1:0.1-0.2:1-2,其中,MnO2以KMnO4水溶液计算。
4.根据权利要求2所述的肿瘤微环境响应型纳米组装体,其特征在于,氨基修饰的AS1411溶液与纳米颗粒的混合液的体积比为1:0.05-0.1;所述的纳米组装体在808nm具有紫外吸收特征峰。
5.根据权利要求4所述的肿瘤微环境响应型纳米组装体,其特征在于,纳米组装体的制备方法如下:
(1)金纳米团簇AuNCs水溶液的制备:将BSA溶液与HAuCl4溶液混匀,加入NaOH溶液调节pH至11-12,继续搅拌得到深棕色金纳米团簇水溶液,将该水溶液转入透析袋中用去离子水透析12-15 h后置4℃条件下避光保存备用;
(2)将KMnO4水溶液与ICG水溶液依次加入步骤(1)所得AuNCs水溶液中,室温下避光搅拌得到纳米颗粒BSA@AuNCs-MnO2-ICG,将该溶液转入透析袋中用去离子水避光透析4-8 h后置4℃条件下避光保存即为BSA@AuNCs-MnO2-ICG的纳米颗粒的混合液。
6.根据权利要求5所述的肿瘤微环境响应型纳米组装体,其特征在于,向所得到的纳米颗粒的混合液中加入氨基修饰的AS1411适配体,AS1411适配体是与核仁素特异性结合的DNA单链,DNA单链序列为5’-GGTGGTGGTGGTTGTGGTGGTGGTGG-NH2-3’,避光孵育10-12 h后置于4℃条件下避光保存得多功能纳米系统BSA@AuNCs-MnO2-ICG/AS1411。
7.根据权利要求6所述的肿瘤微环境响应型纳米组装体,其特征在于,步骤(1)中金纳米团簇AuNCs水溶液制备体系中,BSA溶液的质量浓度为30-50mg/mL,HAuCl4溶液的摩尔浓度为8-12mM;质量浓度为30-50mg/mL的BSA溶液与摩尔浓度为8-12mM的HAuCl4溶液的体积比为1:1-5;
步骤(2)中KMnO4水溶液的摩尔浓度为0.05-0.2mM,ICG水溶液的质量浓度为1-4 mg/mL;AuNCs水溶液、KMnO4水溶液、ICG水溶液的体积比为1:0.1-0.2:1-2;
氨基修饰的AS1411溶液的质量浓度为0.2-0.5 mg/mL。
8.根据权利要求1-7任一项所述的肿瘤微环境响应型纳米组装体BSA@AuNCs-MnO2-ICG、或BSA@AuNCs-MnO2-ICG/AS1411在制备降解9,10-蒽基-双(亚甲基)二丙二酸(ABDA)上的应用。
9.根据权利要求1-7任一项所述的肿瘤微环境响应型纳米组装体BSA@AuNCs-MnO2-ICG、或BSA@AuNCs-MnO2-ICG/AS1411在制备降解3,7-双(二甲氨基)吩噻嗪-5-翁氯化物(MB)上的应用。
10.根据权利要求1-7任一项所述的肿瘤微环境响应型纳米组装体BSA@AuNCs-MnO2-ICG、或BSA@AuNCs-MnO2-ICG/AS1411在制备治疗肿瘤疾病上的应用,所述的肿瘤细胞包括MCF-7细胞。
CN202111383994.6A 2021-11-19 2021-11-19 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用 Pending CN114191548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111383994.6A CN114191548A (zh) 2021-11-19 2021-11-19 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111383994.6A CN114191548A (zh) 2021-11-19 2021-11-19 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用

Publications (1)

Publication Number Publication Date
CN114191548A true CN114191548A (zh) 2022-03-18

Family

ID=80648338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111383994.6A Pending CN114191548A (zh) 2021-11-19 2021-11-19 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用

Country Status (1)

Country Link
CN (1) CN114191548A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414386A (zh) * 2022-09-15 2022-12-02 西北工业大学 一种具有催化抗菌性能的生物活性玻璃纳米复合材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107854689A (zh) * 2017-11-27 2018-03-30 南京大学 激活型纳米探针及其生物应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107854689A (zh) * 2017-11-27 2018-03-30 南京大学 激活型纳米探针及其生物应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANPING XIE等: "Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters", 《J. AM. CHEM. SOC.》 *
YUDONG SUN等: "Intelligent Tumor Microenvironment-Activated Multifunctional Nanoplatform Coupled with Turn-on and Always-on Fluorescence Probes for Imaging-Guided Cancer Treatment", 《ACS APPL. MATER. INTERFACES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414386A (zh) * 2022-09-15 2022-12-02 西北工业大学 一种具有催化抗菌性能的生物活性玻璃纳米复合材料的制备方法
CN115414386B (zh) * 2022-09-15 2023-08-08 西北工业大学 一种具有催化抗菌性能的生物活性玻璃纳米复合材料的制备方法

Similar Documents

Publication Publication Date Title
Mo et al. Multifunctional phototheranostic nanoplatform based on polydopamine-manganese dioxide-IR780 iodide for effective magnetic resonance imaging-guided synergistic photodynamic/photothermal therapy
Bai et al. Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration
Cao et al. Pt@ polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy
Ding et al. Full-spectrum responsive WO 3− x@ HA nanotheranostics for NIR-II photoacoustic imaging-guided PTT/PDT/CDT synergistic therapy
Zhang et al. A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy
CN110819339B (zh) Cu-氨基酸复合上转换纳米材料及其制备方法
Zheng et al. Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation
CN107469079B (zh) 一种t1-mri成像引导下的光动治疗剂制备方法
Liu et al. X-ray and NIR light dual-triggered mesoporous upconversion nanophosphor/Bi heterojunction radiosensitizer for highly efficient tumor ablation
Gu et al. Dual catalytic cascaded nanoplatform for photo/chemodynamic/starvation synergistic therapy
CN112641946A (zh) 聚多巴胺包裹金纳米复合物及其制备方法与在肿瘤多模态诊疗中的应用
CN112807430A (zh) 一种纳米酶基材料的应用
Cheng et al. Degradable iron-rich mesoporous dopamine as a dual-glutathione depletion nanoplatform for photothermal-enhanced ferroptosis and chemodynamic therapy
Sun et al. Metal–organic framework combined with CaO 2 nanoparticles for enhanced and targeted photodynamic therapy
Yang et al. In-situ fabrication of novel Au nanoclusters-Cu2+@ sodium alginate/hyaluronic acid nanohybrid gels for cuproptosis enhanced photothermal/photodynamic/chemodynamic therapy via tumor microenvironment regulation
Zhao et al. Ball-milling fabrication of BiAgOS nanoparticles for 808 nm light mediated photodynamic/photothermal treatment
Zhou et al. In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles
Liu et al. Nanoscale hematoporphrin-based frameworks for photo-sono synergistic cancer therapy via utilizing Al (III) as metal nodes rather than heavy metals
CN113751079A (zh) 一种生物材料负载的钙钛矿-二氧化钛纳米复合光催化剂及其构建方法和应用
Hu et al. Mitochondria-targeted and multistage synergistic ROS-elevated drug delivery system based on surface decorated MnO2 with CeO2 for enhanced chemodynamic/chemotherapy
Zhu et al. A MnO2-coated multivariate porphyrinic metal–organic framework for oxygen self-sufficient chemo-photodynamic synergistic therapy
CN114191548A (zh) 肿瘤微环境响应型纳米组装体及在肿瘤联合治疗中的应用
Chen et al. NIR-II light-assisted radiotherapy based on ultrasmall HfO2-embedded porous carbon nanooctahedra for overcoming tumor radioresistance
Shao et al. Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy
Shi et al. Endo/exo-genous dual-stimuli responsive gold nanotetrapod-based nanoprobe for magnetic resonance imaging and enhanced multimodal therapeutics by amplifying· OH generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220318